Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 26;69(Pt 11):i80. doi: 10.1107/S1600536813028717

Redetermination of Dy3Ni from single-crystal X-ray data

Volodymyr Levytskyy a,*, Volodymyr Babizhetskyy a, Bohdan Kotur a, Volodymyr Smetana b
PMCID: PMC3884239  PMID: 24454015

Abstract

The classification of the title compound, tridysprosium nickel, into the Fe3C (or Al3Ni) structure type has been deduced from powder X-ray diffraction data with lattice parameters reported in a previous study [Lemaire & Paccard (1967). Bull. Soc. Fr. Mineral. Cristallogr. 40, 311–315]. The current re-investigation of Dy3Ni based on single-crystal X-ray data revealed atomic positional parameters and anisotropic displacement parameters with high precision. The asymmetric unit consists of two Dy and one Ni atoms. One Dy atom has site symmetry .m. (Wyckoff position 4c) and is surrounded by twelve Dy and three Ni atoms. The other Dy atom (site symmetry 1, 8d) has eleven Dy and three Ni atoms as neighbours, forming a distorted Frank–Kasper polyhedron. The coordination polyhedron of the Ni atom (.m., 4c) is a tricapped trigonal prism formed by nine Dy atoms.

Related literature  

For a previous crystallographic investigation of the title compound, see: Lemaire & Paccard (1967). For the Fe3C structure, see: Hendricks (1930), and for the Al3Ni structure, see: Bradley & Taylor (1937). For the Dy–Ni phase diagram, see: Zheng & Wang (1982). For magnetic properties of Dy3Ni, see: Talik et al. (1996), and for magnetic properties of Dy3Co, see: Baranov et al. (1995). For isotypic compounds, see: Tsvyashchenko (1986); Romaka et al. (2011); Buschow & van der Goot (1969); Givord & Lemaire (1971). For structure refinements of other compounds in the Dy–Ni system, see: Levytskyy et al. (2012a ,b ).

Experimental  

Crystal data  

  • Dy3Ni

  • M r = 546.21

  • Orthorhombic, Inline graphic

  • a = 6.863 (3) Å

  • b = 9.553 (3) Å

  • c = 6.302 (2) Å

  • V = 413.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 57.86 mm−1

  • T = 293 K

  • 0.14 × 0.11 × 0.10 mm

Data collection  

  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-RED; Stoe & Cie, 2009) T min = 0.007, T max = 0.026

  • 973 measured reflections

  • 582 independent reflections

  • 447 reflections with I > 2σ(I)

  • R int = 0.042

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.052

  • S = 1.12

  • 582 reflections

  • 23 parameters

  • Δρmax = 2.82 e Å−3

  • Δρmin = −2.65 e Å−3

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and WinGX (Farrugia, 2012); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813028717/wm2777sup1.cif

e-69-00i80-sup1.cif (48.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028717/wm2777Isup2.hkl

e-69-00i80-Isup2.hkl (32.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

1. Comment

Lattice parameters for RE3Ni compounds with RE = Y, La, Pr, Nd, Sm, Gd–Tm, have been determined and their crystal structures reported to be isotypic with the Fe3C (or Al3Ni) type structure which includes also Dy3Ni (Lemaire & Paccard, 1967). According to the phase diagram of the Dy–Ni system (Zheng & Wang, 1982), Dy3Ni is stable below 1035 K and is formed by the peritectic reaction: Dy + L→ Dy3Ni.

Similar isotypic RE3Co compounds were also reported (Buschow & van der Goot, 1969) for RE = Y, La, Pr, Nd, Sm, Gd–Er. Lu3Co has been prepared by Givord & Lemaire (1971), Lu3Ni by Romaka et al. (2011). Tsvyashchenko (1986) synthesized Yb3Co and Yb3Ni at high pressure. According to Tsvyashchenko (1986), Yb3Co adopts the Fe3C type structure and Yb3Ni the Al3Ni structure type. On the other hand, Lemaire & Paccard (1967) claimed the RE3Ni compounds to have the same structure as the RE3Co compounds. To clarify the confusion with the assigned structure types, we have studied literature data for the Fe3C (Hendricks, 1930) and the Al3Ni (Bradley & Taylor, 1937) prototype structures, concluding that Al3Ni and Fe3C are isotypic. In accordance with the majority in literature, we will use the Fe3C structure type for classification as it has been reported earlier.

Recently, two binary compounds of the Dy–Ni system have been redetermined using single-crystal X-ray data (Levytskyy et al., 2012a,b). Here we present the results of the single-crystal X-ray analysis of Dy3Ni. Details of the crystal structure have not been investigated before, and only isotypism with the Fe3C was reported together with lattice parameters (Lemaire & Paccard, 1967).

The structure of Dy3Ni is characterized by formation of trigonal prisms of Dy atoms with Ni atom enclosed in the centre. A view of the crystal structure of Dy3Ni is shown in Fig. 1. The value of the displacement parameter U22 for the Ni atom displays a high anisotropy in the b direction which may have an influence on some physical properties of the compound. Magnetic properties of Dy3Ni were reported by Talik et al. (1996) and generally confirm this assumption which is also valid for the isotypic Dy3Co (Baranov et al., 1995).

In Fig. 2 the ac projection of the unit cell and the coordination polyhedra for all atom types in Dy3Ni are shown. The coordination number for Dy1 (site symmetry .m., Wyckoff site 4 c) is 15 with bonding to 12 Dy and 3 Ni atoms. The coordination number for Dy2 (site symmetry 1, Wyckoff site 8 d) is 14, resulting in a distorted Frank–Kasper polyhedron defined by 11 Dy and 3 Ni atoms. The coordination number for Ni (site symmetry .m., Wyckoff site 4 c) is 9, resulting in a slightly distorted tricapped trigonal prism made up of 9 Dy atoms.

The analysis of interatomic distances shows a slight decrease of some Dy–Ni distances. This feature is in good agreement with the observed Ho–Co distances for previously reported Ho3Co (Buschow & van der Goot, 1969). The explanation of this fact may be deduced from an electronic band structure calculation.

2. Experimental

The sample was prepared from powdered commercially available pure elements: sublimed bulk pieces of dysprosium metal with a claimed purity of 99.99 at.% (Alfa Aesar, Johnson Matthey) and electrolytic nickel (99.99% pure) pieces (Aldrich). A mixture of the powders was compacted into a pellet. It was arc-melted under an argon atmosphere on a water-cooled copper hearth. The alloy button (~1 g) was turned over and remelted three times to improve homogeneity. Subsequently, the sample was annealed in an evacuated silica tube under an argon atmosphere for four weeks at 870 K. Shiny metallic gray plate-like crystals were isolated mechanically with a help of microscope by crushing the sample.

3. Refinement

The atomic positions found from the direct methods structure solution were in good agreement with those from the Fe3C structure type (Hendricks, 1930) and were used as starting point for the structure refinement. The highest Fourier difference peak of 2.82 e Å-3 is at (0.0340 0.75 0.1598) and 1.36 Å away from the Dy2 atom. The deepest hole of -2.65 e Å-3 is at (0.0358 0.25 0.0220) and 1.01 Å away from the Ni atom.

Figures

Fig. 1.

Fig. 1.

Perspective view of the crystal structure of Dy3Ni. The unit cell and coordination trigonal prisms for Ni atoms are emphasized. The stacking edge of these prisms is marked by red colour. Atoms are represented by their anisotropic displacement ellipsoids at the 99.9% probability level.

Fig. 2.

Fig. 2.

The ac projection of the unit cell and coordination polyhedra for all types of atoms in the Dy3Ni structure.

Crystal data

Dy3Ni Dx = 8.781 Mg m3
Mr = 546.21 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pnma Cell parameters from 2575 reflections
a = 6.863 (3) Å θ = 3.7–29.5°
b = 9.553 (3) Å µ = 57.86 mm1
c = 6.302 (2) Å T = 293 K
V = 413.2 (3) Å3 Block, metallic gray
Z = 4 0.14 × 0.11 × 0.10 mm
F(000) = 904

Data collection

Stoe IPDS II diffractometer 447 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.042
ω scans θmax = 29.6°, θmin = 3.9°
Absorption correction: numerical (X-RED; Stoe & Cie, 2009) h = 0→9
Tmin = 0.007, Tmax = 0.026 k = 0→12
973 measured reflections l = −8→8
582 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0141P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.052 (Δ/σ)max < 0.001
S = 1.12 Δρmax = 2.82 e Å3
582 reflections Δρmin = −2.65 e Å3
23 parameters Extinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00030 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Dy1 0.17975 (10) 0.06439 (6) 0.17745 (9) 0.01479 (17)
Dy2 0.03218 (14) 0.2500 0.63694 (13) 0.0147 (2)
Ni 0.3917 (4) 0.2500 0.4477 (4) 0.0197 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Dy1 0.0150 (3) 0.0151 (3) 0.0143 (2) 0.0001 (3) 0.0003 (3) −0.0004 (2)
Dy2 0.0158 (5) 0.0144 (4) 0.0138 (4) 0.000 0.0014 (3) 0.000
Ni 0.0131 (12) 0.0268 (14) 0.0192 (11) 0.000 0.0003 (10) 0.000

Geometric parameters (Å, º)

Dy1—Nii 2.770 (2) Dy2—Dy1xii 3.5361 (12)
Dy1—Ni 2.856 (2) Dy2—Dy1vi 3.5433 (12)
Dy1—Niii 3.3700 (15) Dy2—Dy1viii 3.5944 (14)
Dy1—Dy1iii 3.5174 (11) Dy2—Dy1i 3.5944 (14)
Dy1—Dy1iv 3.5174 (11) Dy2—Dy1xiii 3.6047 (12)
Dy1—Dy2v 3.5361 (12) Dy2—Dy1iii 3.6047 (12)
Dy1—Dy2 3.5433 (12) Dy2—Dy2xiv 3.7156 (15)
Dy1—Dy1vi 3.5462 (16) Dy2—Dy2xi 3.7156 (15)
Dy1—Dy1vii 3.5502 (15) Ni—Dy1x 2.770 (2)
Dy1—Dy1viii 3.5512 (15) Ni—Dy1ix 2.770 (2)
Dy1—Dy1ix 3.5512 (15) Ni—Dy2xiv 2.790 (3)
Dy1—Dy2x 3.5944 (14) Ni—Dy1vi 2.856 (2)
Dy2—Ni 2.740 (3) Ni—Dy1xiii 3.3700 (15)
Dy2—Nixi 2.790 (3) Ni—Dy1iii 3.3700 (15)
Dy2—Dy1v 3.5361 (12)
Nii—Dy1—Ni 97.80 (5) Dy1—Dy2—Dy1vi 60.06 (3)
Nii—Dy1—Niii 110.14 (3) Ni—Dy2—Dy1viii 111.46 (6)
Ni—Dy1—Niii 152.06 (4) Nixi—Dy2—Dy1viii 106.54 (6)
Nii—Dy1—Dy1iii 132.42 (6) Dy1v—Dy2—Dy1viii 59.11 (2)
Ni—Dy1—Dy1iii 62.83 (4) Dy1xii—Dy2—Dy1viii 108.94 (3)
Niii—Dy1—Dy1iii 96.49 (5) Dy1—Dy2—Dy1viii 59.67 (3)
Nii—Dy1—Dy1iv 99.46 (5) Dy1vi—Dy2—Dy1viii 89.35 (3)
Ni—Dy1—Dy1iv 127.71 (7) Ni—Dy2—Dy1i 111.46 (6)
Niii—Dy1—Dy1iv 48.95 (4) Nixi—Dy2—Dy1i 106.54 (6)
Dy1iii—Dy1—Dy1iv 127.23 (4) Dy1v—Dy2—Dy1i 108.94 (3)
Nii—Dy1—Dy2v 110.13 (6) Dy1xii—Dy2—Dy1i 59.11 (2)
Ni—Dy1—Dy2v 122.64 (5) Dy1—Dy2—Dy1i 89.35 (3)
Niii—Dy1—Dy2v 47.57 (5) Dy1vi—Dy2—Dy1i 59.67 (3)
Dy1iii—Dy1—Dy2v 61.27 (3) Dy1viii—Dy2—Dy1i 59.12 (3)
Dy1iv—Dy1—Dy2v 96.43 (3) Ni—Dy2—Dy1xiii 62.42 (3)
Nii—Dy1—Dy2 73.05 (5) Nixi—Dy2—Dy1xiii 97.07 (4)
Ni—Dy1—Dy2 49.28 (6) Dy1v—Dy2—Dy1xiii 155.48 (3)
Niii—Dy1—Dy2 139.07 (5) Dy1xii—Dy2—Dy1xiii 59.64 (3)
Dy1iii—Dy1—Dy2 61.40 (2) Dy1—Dy2—Dy1xiii 108.55 (3)
Dy1iv—Dy1—Dy2 170.23 (3) Dy1vi—Dy2—Dy1xiii 58.947 (18)
Dy2v—Dy1—Dy2 92.13 (2) Dy1viii—Dy2—Dy1xiii 144.99 (2)
Nii—Dy1—Dy1vi 50.21 (4) Dy1i—Dy2—Dy1xiii 89.83 (3)
Ni—Dy1—Dy1vi 51.63 (4) Ni—Dy2—Dy1iii 62.42 (3)
Niii—Dy1—Dy1vi 153.03 (4) Nixi—Dy2—Dy1iii 97.07 (4)
Dy1iii—Dy1—Dy1vi 110.47 (2) Dy1v—Dy2—Dy1iii 59.64 (3)
Dy1iv—Dy1—Dy1vi 110.47 (2) Dy1xii—Dy2—Dy1iii 155.48 (3)
Dy2v—Dy1—Dy1vi 148.141 (19) Dy1—Dy2—Dy1iii 58.947 (18)
Dy2—Dy1—Dy1vi 59.972 (15) Dy1vi—Dy2—Dy1iii 108.55 (3)
Nii—Dy1—Dy1vii 63.03 (5) Dy1viii—Dy2—Dy1iii 89.83 (3)
Ni—Dy1—Dy1vii 160.83 (5) Dy1i—Dy2—Dy1iii 144.99 (2)
Niii—Dy1—Dy1vii 47.11 (5) Dy1xiii—Dy2—Dy1iii 112.85 (4)
Dy1iii—Dy1—Dy1vii 129.32 (4) Ni—Dy2—Dy2xiv 48.35 (6)
Dy1iv—Dy1—Dy1vii 60.32 (3) Nixi—Dy2—Dy2xiv 87.67 (7)
Dy2v—Dy1—Dy1vii 68.17 (3) Dy1v—Dy2—Dy2xiv 104.66 (3)
Dy2—Dy1—Dy1vii 119.32 (4) Dy1xii—Dy2—Dy2xiv 104.66 (3)
Dy1vi—Dy1—Dy1vii 110.28 (2) Dy1—Dy2—Dy2xiv 92.83 (3)
Nii—Dy1—Dy1viii 51.95 (5) Dy1vi—Dy2—Dy2xiv 92.83 (3)
Ni—Dy1—Dy1viii 109.78 (6) Dy1viii—Dy2—Dy2xiv 146.39 (2)
Niii—Dy1—Dy1viii 88.29 (5) Dy1i—Dy2—Dy2xiv 146.39 (2)
Dy1iii—Dy1—Dy1viii 91.96 (3) Dy1xiii—Dy2—Dy2xiv 57.75 (2)
Dy1iv—Dy1—Dy1viii 119.71 (3) Dy1iii—Dy2—Dy2xiv 57.75 (2)
Dy2v—Dy1—Dy1viii 61.14 (2) Ni—Dy2—Dy2xi 176.75 (7)
Dy2—Dy1—Dy1viii 60.88 (2) Nixi—Dy2—Dy2xi 47.22 (6)
Dy1vi—Dy1—Dy1viii 90.0 Dy1v—Dy2—Dy2xi 59.55 (2)
Dy1vii—Dy1—Dy1viii 59.38 (3) Dy1xii—Dy2—Dy2xi 59.55 (2)
Nii—Dy1—Dy1ix 139.72 (4) Dy1—Dy2—Dy2xi 125.27 (3)
Ni—Dy1—Dy1ix 49.80 (5) Dy1vi—Dy2—Dy2xi 125.27 (3)
Niii—Dy1—Dy1ix 104.55 (5) Dy1viii—Dy2—Dy2xi 65.79 (3)
Dy1iii—Dy1—Dy1ix 60.29 (3) Dy1i—Dy2—Dy2xi 65.79 (3)
Dy1iv—Dy1—Dy1ix 88.04 (3) Dy1xiii—Dy2—Dy2xi 118.64 (2)
Dy2v—Dy1—Dy1ix 108.20 (2) Dy1iii—Dy2—Dy2xi 118.64 (2)
Dy2—Dy1—Dy1ix 93.77 (3) Dy2xiv—Dy2—Dy2xi 134.90 (5)
Dy1vi—Dy1—Dy1ix 90.0 Dy2—Ni—Dy1x 140.04 (4)
Dy1vii—Dy1—Dy1ix 146.49 (3) Dy2—Ni—Dy1ix 140.04 (4)
Dy1viii—Dy1—Dy1ix 150.16 (4) Dy1x—Ni—Dy1ix 79.59 (8)
Nii—Dy1—Dy2x 90.43 (6) Dy2—Ni—Dy2xiv 84.43 (7)
Ni—Dy1—Dy2x 71.33 (6) Dy1x—Ni—Dy2xiv 91.17 (8)
Niii—Dy1—Dy2x 107.50 (5) Dy1ix—Ni—Dy2xiv 91.17 (8)
Dy1iii—Dy1—Dy2x 118.81 (4) Dy2—Ni—Dy1 78.53 (7)
Dy1iv—Dy1—Dy2x 59.62 (2) Dy1x—Ni—Dy1 126.22 (9)
Dy2v—Dy1—Dy2x 151.42 (2) Dy1ix—Ni—Dy1 78.25 (5)
Dy2—Dy1—Dy2x 113.33 (3) Dy2xiv—Ni—Dy1 137.35 (5)
Dy1vi—Dy1—Dy2x 60.442 (16) Dy2—Ni—Dy1vi 78.53 (7)
Dy1vii—Dy1—Dy2x 106.94 (4) Dy1x—Ni—Dy1vi 78.25 (5)
Dy1viii—Dy1—Dy2x 142.39 (2) Dy1ix—Ni—Dy1vi 126.22 (9)
Dy1ix—Dy1—Dy2x 59.45 (3) Dy2xiv—Ni—Dy1vi 137.35 (5)
Ni—Dy2—Ni3xi 136.02 (9) Dy1—Ni—Dy1vi 76.74 (7)
Ni—Dy2—Dy1v 120.95 (2) Dy2—Ni—Dy1xiii 71.46 (5)
Nixi—Dy2—Dy1v 63.09 (3) Dy1x—Ni—Dy1xiii 69.86 (3)
Ni—Dy2—Dy1xii 120.95 (2) Dy1ix—Ni—Dy1xiii 142.80 (9)
Nixi—Dy2—Dy1xii 63.09 (3) Dy2xiv—Ni—Dy1xiii 69.34 (4)
Dy1v—Dy2—Dy1xii 116.28 (4) Dy1—Ni—Dy1xiii 137.33 (9)
Ni—Dy2—Dy1 52.19 (4) Dy1vi—Ni—Dy1xiii 68.22 (3)
Nixi—Dy2—Dy1 149.959 (16) Dy2—Ni—Dy1iii 71.46 (5)
Dy1v—Dy2—Dy1 87.87 (3) Dy1x—Ni—Dy1iii 142.80 (9)
Dy1xii—Dy2—Dy1 144.38 (2) Dy1ix—Ni—Dy1iii 69.86 (3)
Ni—Dy2—Dy1vi 52.19 (4) Dy2xiv—Ni—Dy1iii 69.34 (4)
Nixi—Dy2—Dy1vi 149.959 (16) Dy1—Ni—Dy1iii 68.22 (3)
Dy1v—Dy2—Dy1vi 144.38 (2) Dy1vi—Ni—Dy1iii 137.33 (9)
Dy1xii—Dy2—Dy1vi 87.87 (2) Dy1xiii—Ni—Dy1iii 126.05 (8)

Symmetry codes: (i) x−1/2, −y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, z−1/2; (iii) −x+1/2, −y, z+1/2; (iv) −x+1/2, −y, z−1/2; (v) −x, −y, −z+1; (vi) x, −y+1/2, z; (vii) −x, −y, −z; (viii) x−1/2, y, −z+1/2; (ix) x+1/2, y, −z+1/2; (x) x+1/2, −y+1/2, −z+1/2; (xi) x−1/2, −y+1/2, −z+3/2; (xii) −x, y+1/2, −z+1; (xiii) −x+1/2, y+1/2, z+1/2; (xiv) x+1/2, −y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2777).

References

  1. Baranov, N. V., Pirogov, A. N. & Teplykh, A. E. (1995). J. Alloys Compd, 226, 70–74.
  2. Bradley, A. J. & Taylor, A. (1937). Philos. Mag. 23, 1049–1067.
  3. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
  5. Buschow, K. H. J. & van der Goot, A. S. (1969). J. Less-Common Met. 18, 309–311.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Givord, F. & Lemaire, R. (1971). Solid State Commun. 9, 341–346.
  8. Hendricks, S. B. (1930). Z. Kristallogr. 74, 534–545.
  9. Lemaire, R. & Paccard, D. (1967). Bull. Soc. Fr. Mineral. Cristallogr. 40, 311–315.
  10. Levytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012a). Acta Cryst. E68, i20. [DOI] [PMC free article] [PubMed]
  11. Levytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012b). Acta Cryst. E68, i83. [DOI] [PMC free article] [PubMed]
  12. Romaka, L., Romaka, V. & Stadnyk, Yu. (2011). Chem. Met. Alloys, 4, 89–93.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Stoe & Cie (2009). X-AREA and X-RED Stoe & Cie, Darmstadt, Germany.
  15. Talik, E., Mydlarz, T. & Gilewski, A. (1996). J. Alloys Compd, 233, 136–139.
  16. Tsvyashchenko, A. V. (1986). J. Less-Common Met. 118, 103–107.
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  18. Zheng, J.-X. & Wang, C.-Z. (1982). Acta Phys. Sin. 31, 668–673.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813028717/wm2777sup1.cif

e-69-00i80-sup1.cif (48.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028717/wm2777Isup2.hkl

e-69-00i80-Isup2.hkl (32.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES