Abstract
The classification of the title compound, tridysprosium nickel, into the Fe3C (or Al3Ni) structure type has been deduced from powder X-ray diffraction data with lattice parameters reported in a previous study [Lemaire & Paccard (1967 ▶). Bull. Soc. Fr. Mineral. Cristallogr. 40, 311–315]. The current re-investigation of Dy3Ni based on single-crystal X-ray data revealed atomic positional parameters and anisotropic displacement parameters with high precision. The asymmetric unit consists of two Dy and one Ni atoms. One Dy atom has site symmetry .m. (Wyckoff position 4c) and is surrounded by twelve Dy and three Ni atoms. The other Dy atom (site symmetry 1, 8d) has eleven Dy and three Ni atoms as neighbours, forming a distorted Frank–Kasper polyhedron. The coordination polyhedron of the Ni atom (.m., 4c) is a tricapped trigonal prism formed by nine Dy atoms.
Related literature
For a previous crystallographic investigation of the title compound, see: Lemaire & Paccard (1967 ▶). For the Fe3C structure, see: Hendricks (1930 ▶), and for the Al3Ni structure, see: Bradley & Taylor (1937 ▶). For the Dy–Ni phase diagram, see: Zheng & Wang (1982 ▶). For magnetic properties of Dy3Ni, see: Talik et al. (1996 ▶), and for magnetic properties of Dy3Co, see: Baranov et al. (1995 ▶). For isotypic compounds, see: Tsvyashchenko (1986 ▶); Romaka et al. (2011 ▶); Buschow & van der Goot (1969 ▶); Givord & Lemaire (1971 ▶). For structure refinements of other compounds in the Dy–Ni system, see: Levytskyy et al. (2012a ▶,b ▶).
Experimental
Crystal data
Dy3Ni
M r = 546.21
Orthorhombic,
a = 6.863 (3) Å
b = 9.553 (3) Å
c = 6.302 (2) Å
V = 413.2 (3) Å3
Z = 4
Mo Kα radiation
μ = 57.86 mm−1
T = 293 K
0.14 × 0.11 × 0.10 mm
Data collection
Stoe IPDS II diffractometer
Absorption correction: numerical (X-RED; Stoe & Cie, 2009 ▶) T min = 0.007, T max = 0.026
973 measured reflections
582 independent reflections
447 reflections with I > 2σ(I)
R int = 0.042
Refinement
R[F 2 > 2σ(F 2)] = 0.042
wR(F 2) = 0.052
S = 1.12
582 reflections
23 parameters
Δρmax = 2.82 e Å−3
Δρmin = −2.65 e Å−3
Data collection: X-AREA (Stoe & Cie, 2009 ▶); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR2011 (Burla et al., 2012 ▶); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008 ▶) and WinGX (Farrugia, 2012 ▶); molecular graphics: DIAMOND (Brandenburg, 2006 ▶); software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813028717/wm2777sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028717/wm2777Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
1. Comment
Lattice parameters for RE3Ni compounds with RE = Y, La, Pr, Nd, Sm, Gd–Tm, have been determined and their crystal structures reported to be isotypic with the Fe3C (or Al3Ni) type structure which includes also Dy3Ni (Lemaire & Paccard, 1967). According to the phase diagram of the Dy–Ni system (Zheng & Wang, 1982), Dy3Ni is stable below 1035 K and is formed by the peritectic reaction: Dy + L→ Dy3Ni.
Similar isotypic RE3Co compounds were also reported (Buschow & van der Goot, 1969) for RE = Y, La, Pr, Nd, Sm, Gd–Er. Lu3Co has been prepared by Givord & Lemaire (1971), Lu3Ni by Romaka et al. (2011). Tsvyashchenko (1986) synthesized Yb3Co and Yb3Ni at high pressure. According to Tsvyashchenko (1986), Yb3Co adopts the Fe3C type structure and Yb3Ni the Al3Ni structure type. On the other hand, Lemaire & Paccard (1967) claimed the RE3Ni compounds to have the same structure as the RE3Co compounds. To clarify the confusion with the assigned structure types, we have studied literature data for the Fe3C (Hendricks, 1930) and the Al3Ni (Bradley & Taylor, 1937) prototype structures, concluding that Al3Ni and Fe3C are isotypic. In accordance with the majority in literature, we will use the Fe3C structure type for classification as it has been reported earlier.
Recently, two binary compounds of the Dy–Ni system have been redetermined using single-crystal X-ray data (Levytskyy et al., 2012a,b). Here we present the results of the single-crystal X-ray analysis of Dy3Ni. Details of the crystal structure have not been investigated before, and only isotypism with the Fe3C was reported together with lattice parameters (Lemaire & Paccard, 1967).
The structure of Dy3Ni is characterized by formation of trigonal prisms of Dy atoms with Ni atom enclosed in the centre. A view of the crystal structure of Dy3Ni is shown in Fig. 1. The value of the displacement parameter U22 for the Ni atom displays a high anisotropy in the b direction which may have an influence on some physical properties of the compound. Magnetic properties of Dy3Ni were reported by Talik et al. (1996) and generally confirm this assumption which is also valid for the isotypic Dy3Co (Baranov et al., 1995).
In Fig. 2 the ac projection of the unit cell and the coordination polyhedra for all atom types in Dy3Ni are shown. The coordination number for Dy1 (site symmetry .m., Wyckoff site 4 c) is 15 with bonding to 12 Dy and 3 Ni atoms. The coordination number for Dy2 (site symmetry 1, Wyckoff site 8 d) is 14, resulting in a distorted Frank–Kasper polyhedron defined by 11 Dy and 3 Ni atoms. The coordination number for Ni (site symmetry .m., Wyckoff site 4 c) is 9, resulting in a slightly distorted tricapped trigonal prism made up of 9 Dy atoms.
The analysis of interatomic distances shows a slight decrease of some Dy–Ni distances. This feature is in good agreement with the observed Ho–Co distances for previously reported Ho3Co (Buschow & van der Goot, 1969). The explanation of this fact may be deduced from an electronic band structure calculation.
2. Experimental
The sample was prepared from powdered commercially available pure elements: sublimed bulk pieces of dysprosium metal with a claimed purity of 99.99 at.% (Alfa Aesar, Johnson Matthey) and electrolytic nickel (99.99% pure) pieces (Aldrich). A mixture of the powders was compacted into a pellet. It was arc-melted under an argon atmosphere on a water-cooled copper hearth. The alloy button (~1 g) was turned over and remelted three times to improve homogeneity. Subsequently, the sample was annealed in an evacuated silica tube under an argon atmosphere for four weeks at 870 K. Shiny metallic gray plate-like crystals were isolated mechanically with a help of microscope by crushing the sample.
3. Refinement
The atomic positions found from the direct methods structure solution were in good agreement with those from the Fe3C structure type (Hendricks, 1930) and were used as starting point for the structure refinement. The highest Fourier difference peak of 2.82 e Å-3 is at (0.0340 0.75 0.1598) and 1.36 Å away from the Dy2 atom. The deepest hole of -2.65 e Å-3 is at (0.0358 0.25 0.0220) and 1.01 Å away from the Ni atom.
Figures
Fig. 1.
Perspective view of the crystal structure of Dy3Ni. The unit cell and coordination trigonal prisms for Ni atoms are emphasized. The stacking edge of these prisms is marked by red colour. Atoms are represented by their anisotropic displacement ellipsoids at the 99.9% probability level.
Fig. 2.
The ac projection of the unit cell and coordination polyhedra for all types of atoms in the Dy3Ni structure.
Crystal data
| Dy3Ni | Dx = 8.781 Mg m−3 |
| Mr = 546.21 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, Pnma | Cell parameters from 2575 reflections |
| a = 6.863 (3) Å | θ = 3.7–29.5° |
| b = 9.553 (3) Å | µ = 57.86 mm−1 |
| c = 6.302 (2) Å | T = 293 K |
| V = 413.2 (3) Å3 | Block, metallic gray |
| Z = 4 | 0.14 × 0.11 × 0.10 mm |
| F(000) = 904 |
Data collection
| Stoe IPDS II diffractometer | 447 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.042 |
| ω scans | θmax = 29.6°, θmin = 3.9° |
| Absorption correction: numerical (X-RED; Stoe & Cie, 2009) | h = 0→9 |
| Tmin = 0.007, Tmax = 0.026 | k = 0→12 |
| 973 measured reflections | l = −8→8 |
| 582 independent reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0141P)2] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.052 | (Δ/σ)max < 0.001 |
| S = 1.12 | Δρmax = 2.82 e Å−3 |
| 582 reflections | Δρmin = −2.65 e Å−3 |
| 23 parameters | Extinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 0 restraints | Extinction coefficient: 0.00030 (10) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Dy1 | 0.17975 (10) | 0.06439 (6) | 0.17745 (9) | 0.01479 (17) | |
| Dy2 | 0.03218 (14) | 0.2500 | 0.63694 (13) | 0.0147 (2) | |
| Ni | 0.3917 (4) | 0.2500 | 0.4477 (4) | 0.0197 (5) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Dy1 | 0.0150 (3) | 0.0151 (3) | 0.0143 (2) | 0.0001 (3) | 0.0003 (3) | −0.0004 (2) |
| Dy2 | 0.0158 (5) | 0.0144 (4) | 0.0138 (4) | 0.000 | 0.0014 (3) | 0.000 |
| Ni | 0.0131 (12) | 0.0268 (14) | 0.0192 (11) | 0.000 | 0.0003 (10) | 0.000 |
Geometric parameters (Å, º)
| Dy1—Nii | 2.770 (2) | Dy2—Dy1xii | 3.5361 (12) |
| Dy1—Ni | 2.856 (2) | Dy2—Dy1vi | 3.5433 (12) |
| Dy1—Niii | 3.3700 (15) | Dy2—Dy1viii | 3.5944 (14) |
| Dy1—Dy1iii | 3.5174 (11) | Dy2—Dy1i | 3.5944 (14) |
| Dy1—Dy1iv | 3.5174 (11) | Dy2—Dy1xiii | 3.6047 (12) |
| Dy1—Dy2v | 3.5361 (12) | Dy2—Dy1iii | 3.6047 (12) |
| Dy1—Dy2 | 3.5433 (12) | Dy2—Dy2xiv | 3.7156 (15) |
| Dy1—Dy1vi | 3.5462 (16) | Dy2—Dy2xi | 3.7156 (15) |
| Dy1—Dy1vii | 3.5502 (15) | Ni—Dy1x | 2.770 (2) |
| Dy1—Dy1viii | 3.5512 (15) | Ni—Dy1ix | 2.770 (2) |
| Dy1—Dy1ix | 3.5512 (15) | Ni—Dy2xiv | 2.790 (3) |
| Dy1—Dy2x | 3.5944 (14) | Ni—Dy1vi | 2.856 (2) |
| Dy2—Ni | 2.740 (3) | Ni—Dy1xiii | 3.3700 (15) |
| Dy2—Nixi | 2.790 (3) | Ni—Dy1iii | 3.3700 (15) |
| Dy2—Dy1v | 3.5361 (12) | ||
| Nii—Dy1—Ni | 97.80 (5) | Dy1—Dy2—Dy1vi | 60.06 (3) |
| Nii—Dy1—Niii | 110.14 (3) | Ni—Dy2—Dy1viii | 111.46 (6) |
| Ni—Dy1—Niii | 152.06 (4) | Nixi—Dy2—Dy1viii | 106.54 (6) |
| Nii—Dy1—Dy1iii | 132.42 (6) | Dy1v—Dy2—Dy1viii | 59.11 (2) |
| Ni—Dy1—Dy1iii | 62.83 (4) | Dy1xii—Dy2—Dy1viii | 108.94 (3) |
| Niii—Dy1—Dy1iii | 96.49 (5) | Dy1—Dy2—Dy1viii | 59.67 (3) |
| Nii—Dy1—Dy1iv | 99.46 (5) | Dy1vi—Dy2—Dy1viii | 89.35 (3) |
| Ni—Dy1—Dy1iv | 127.71 (7) | Ni—Dy2—Dy1i | 111.46 (6) |
| Niii—Dy1—Dy1iv | 48.95 (4) | Nixi—Dy2—Dy1i | 106.54 (6) |
| Dy1iii—Dy1—Dy1iv | 127.23 (4) | Dy1v—Dy2—Dy1i | 108.94 (3) |
| Nii—Dy1—Dy2v | 110.13 (6) | Dy1xii—Dy2—Dy1i | 59.11 (2) |
| Ni—Dy1—Dy2v | 122.64 (5) | Dy1—Dy2—Dy1i | 89.35 (3) |
| Niii—Dy1—Dy2v | 47.57 (5) | Dy1vi—Dy2—Dy1i | 59.67 (3) |
| Dy1iii—Dy1—Dy2v | 61.27 (3) | Dy1viii—Dy2—Dy1i | 59.12 (3) |
| Dy1iv—Dy1—Dy2v | 96.43 (3) | Ni—Dy2—Dy1xiii | 62.42 (3) |
| Nii—Dy1—Dy2 | 73.05 (5) | Nixi—Dy2—Dy1xiii | 97.07 (4) |
| Ni—Dy1—Dy2 | 49.28 (6) | Dy1v—Dy2—Dy1xiii | 155.48 (3) |
| Niii—Dy1—Dy2 | 139.07 (5) | Dy1xii—Dy2—Dy1xiii | 59.64 (3) |
| Dy1iii—Dy1—Dy2 | 61.40 (2) | Dy1—Dy2—Dy1xiii | 108.55 (3) |
| Dy1iv—Dy1—Dy2 | 170.23 (3) | Dy1vi—Dy2—Dy1xiii | 58.947 (18) |
| Dy2v—Dy1—Dy2 | 92.13 (2) | Dy1viii—Dy2—Dy1xiii | 144.99 (2) |
| Nii—Dy1—Dy1vi | 50.21 (4) | Dy1i—Dy2—Dy1xiii | 89.83 (3) |
| Ni—Dy1—Dy1vi | 51.63 (4) | Ni—Dy2—Dy1iii | 62.42 (3) |
| Niii—Dy1—Dy1vi | 153.03 (4) | Nixi—Dy2—Dy1iii | 97.07 (4) |
| Dy1iii—Dy1—Dy1vi | 110.47 (2) | Dy1v—Dy2—Dy1iii | 59.64 (3) |
| Dy1iv—Dy1—Dy1vi | 110.47 (2) | Dy1xii—Dy2—Dy1iii | 155.48 (3) |
| Dy2v—Dy1—Dy1vi | 148.141 (19) | Dy1—Dy2—Dy1iii | 58.947 (18) |
| Dy2—Dy1—Dy1vi | 59.972 (15) | Dy1vi—Dy2—Dy1iii | 108.55 (3) |
| Nii—Dy1—Dy1vii | 63.03 (5) | Dy1viii—Dy2—Dy1iii | 89.83 (3) |
| Ni—Dy1—Dy1vii | 160.83 (5) | Dy1i—Dy2—Dy1iii | 144.99 (2) |
| Niii—Dy1—Dy1vii | 47.11 (5) | Dy1xiii—Dy2—Dy1iii | 112.85 (4) |
| Dy1iii—Dy1—Dy1vii | 129.32 (4) | Ni—Dy2—Dy2xiv | 48.35 (6) |
| Dy1iv—Dy1—Dy1vii | 60.32 (3) | Nixi—Dy2—Dy2xiv | 87.67 (7) |
| Dy2v—Dy1—Dy1vii | 68.17 (3) | Dy1v—Dy2—Dy2xiv | 104.66 (3) |
| Dy2—Dy1—Dy1vii | 119.32 (4) | Dy1xii—Dy2—Dy2xiv | 104.66 (3) |
| Dy1vi—Dy1—Dy1vii | 110.28 (2) | Dy1—Dy2—Dy2xiv | 92.83 (3) |
| Nii—Dy1—Dy1viii | 51.95 (5) | Dy1vi—Dy2—Dy2xiv | 92.83 (3) |
| Ni—Dy1—Dy1viii | 109.78 (6) | Dy1viii—Dy2—Dy2xiv | 146.39 (2) |
| Niii—Dy1—Dy1viii | 88.29 (5) | Dy1i—Dy2—Dy2xiv | 146.39 (2) |
| Dy1iii—Dy1—Dy1viii | 91.96 (3) | Dy1xiii—Dy2—Dy2xiv | 57.75 (2) |
| Dy1iv—Dy1—Dy1viii | 119.71 (3) | Dy1iii—Dy2—Dy2xiv | 57.75 (2) |
| Dy2v—Dy1—Dy1viii | 61.14 (2) | Ni—Dy2—Dy2xi | 176.75 (7) |
| Dy2—Dy1—Dy1viii | 60.88 (2) | Nixi—Dy2—Dy2xi | 47.22 (6) |
| Dy1vi—Dy1—Dy1viii | 90.0 | Dy1v—Dy2—Dy2xi | 59.55 (2) |
| Dy1vii—Dy1—Dy1viii | 59.38 (3) | Dy1xii—Dy2—Dy2xi | 59.55 (2) |
| Nii—Dy1—Dy1ix | 139.72 (4) | Dy1—Dy2—Dy2xi | 125.27 (3) |
| Ni—Dy1—Dy1ix | 49.80 (5) | Dy1vi—Dy2—Dy2xi | 125.27 (3) |
| Niii—Dy1—Dy1ix | 104.55 (5) | Dy1viii—Dy2—Dy2xi | 65.79 (3) |
| Dy1iii—Dy1—Dy1ix | 60.29 (3) | Dy1i—Dy2—Dy2xi | 65.79 (3) |
| Dy1iv—Dy1—Dy1ix | 88.04 (3) | Dy1xiii—Dy2—Dy2xi | 118.64 (2) |
| Dy2v—Dy1—Dy1ix | 108.20 (2) | Dy1iii—Dy2—Dy2xi | 118.64 (2) |
| Dy2—Dy1—Dy1ix | 93.77 (3) | Dy2xiv—Dy2—Dy2xi | 134.90 (5) |
| Dy1vi—Dy1—Dy1ix | 90.0 | Dy2—Ni—Dy1x | 140.04 (4) |
| Dy1vii—Dy1—Dy1ix | 146.49 (3) | Dy2—Ni—Dy1ix | 140.04 (4) |
| Dy1viii—Dy1—Dy1ix | 150.16 (4) | Dy1x—Ni—Dy1ix | 79.59 (8) |
| Nii—Dy1—Dy2x | 90.43 (6) | Dy2—Ni—Dy2xiv | 84.43 (7) |
| Ni—Dy1—Dy2x | 71.33 (6) | Dy1x—Ni—Dy2xiv | 91.17 (8) |
| Niii—Dy1—Dy2x | 107.50 (5) | Dy1ix—Ni—Dy2xiv | 91.17 (8) |
| Dy1iii—Dy1—Dy2x | 118.81 (4) | Dy2—Ni—Dy1 | 78.53 (7) |
| Dy1iv—Dy1—Dy2x | 59.62 (2) | Dy1x—Ni—Dy1 | 126.22 (9) |
| Dy2v—Dy1—Dy2x | 151.42 (2) | Dy1ix—Ni—Dy1 | 78.25 (5) |
| Dy2—Dy1—Dy2x | 113.33 (3) | Dy2xiv—Ni—Dy1 | 137.35 (5) |
| Dy1vi—Dy1—Dy2x | 60.442 (16) | Dy2—Ni—Dy1vi | 78.53 (7) |
| Dy1vii—Dy1—Dy2x | 106.94 (4) | Dy1x—Ni—Dy1vi | 78.25 (5) |
| Dy1viii—Dy1—Dy2x | 142.39 (2) | Dy1ix—Ni—Dy1vi | 126.22 (9) |
| Dy1ix—Dy1—Dy2x | 59.45 (3) | Dy2xiv—Ni—Dy1vi | 137.35 (5) |
| Ni—Dy2—Ni3xi | 136.02 (9) | Dy1—Ni—Dy1vi | 76.74 (7) |
| Ni—Dy2—Dy1v | 120.95 (2) | Dy2—Ni—Dy1xiii | 71.46 (5) |
| Nixi—Dy2—Dy1v | 63.09 (3) | Dy1x—Ni—Dy1xiii | 69.86 (3) |
| Ni—Dy2—Dy1xii | 120.95 (2) | Dy1ix—Ni—Dy1xiii | 142.80 (9) |
| Nixi—Dy2—Dy1xii | 63.09 (3) | Dy2xiv—Ni—Dy1xiii | 69.34 (4) |
| Dy1v—Dy2—Dy1xii | 116.28 (4) | Dy1—Ni—Dy1xiii | 137.33 (9) |
| Ni—Dy2—Dy1 | 52.19 (4) | Dy1vi—Ni—Dy1xiii | 68.22 (3) |
| Nixi—Dy2—Dy1 | 149.959 (16) | Dy2—Ni—Dy1iii | 71.46 (5) |
| Dy1v—Dy2—Dy1 | 87.87 (3) | Dy1x—Ni—Dy1iii | 142.80 (9) |
| Dy1xii—Dy2—Dy1 | 144.38 (2) | Dy1ix—Ni—Dy1iii | 69.86 (3) |
| Ni—Dy2—Dy1vi | 52.19 (4) | Dy2xiv—Ni—Dy1iii | 69.34 (4) |
| Nixi—Dy2—Dy1vi | 149.959 (16) | Dy1—Ni—Dy1iii | 68.22 (3) |
| Dy1v—Dy2—Dy1vi | 144.38 (2) | Dy1vi—Ni—Dy1iii | 137.33 (9) |
| Dy1xii—Dy2—Dy1vi | 87.87 (2) | Dy1xiii—Ni—Dy1iii | 126.05 (8) |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, z−1/2; (iii) −x+1/2, −y, z+1/2; (iv) −x+1/2, −y, z−1/2; (v) −x, −y, −z+1; (vi) x, −y+1/2, z; (vii) −x, −y, −z; (viii) x−1/2, y, −z+1/2; (ix) x+1/2, y, −z+1/2; (x) x+1/2, −y+1/2, −z+1/2; (xi) x−1/2, −y+1/2, −z+3/2; (xii) −x, y+1/2, −z+1; (xiii) −x+1/2, y+1/2, z+1/2; (xiv) x+1/2, −y+1/2, −z+3/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2777).
References
- Baranov, N. V., Pirogov, A. N. & Teplykh, A. E. (1995). J. Alloys Compd, 226, 70–74.
- Bradley, A. J. & Taylor, A. (1937). Philos. Mag. 23, 1049–1067.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
- Buschow, K. H. J. & van der Goot, A. S. (1969). J. Less-Common Met. 18, 309–311.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Givord, F. & Lemaire, R. (1971). Solid State Commun. 9, 341–346.
- Hendricks, S. B. (1930). Z. Kristallogr. 74, 534–545.
- Lemaire, R. & Paccard, D. (1967). Bull. Soc. Fr. Mineral. Cristallogr. 40, 311–315.
- Levytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012a). Acta Cryst. E68, i20. [DOI] [PMC free article] [PubMed]
- Levytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012b). Acta Cryst. E68, i83. [DOI] [PMC free article] [PubMed]
- Romaka, L., Romaka, V. & Stadnyk, Yu. (2011). Chem. Met. Alloys, 4, 89–93.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Stoe & Cie (2009). X-AREA and X-RED Stoe & Cie, Darmstadt, Germany.
- Talik, E., Mydlarz, T. & Gilewski, A. (1996). J. Alloys Compd, 233, 136–139.
- Tsvyashchenko, A. V. (1986). J. Less-Common Met. 118, 103–107.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Zheng, J.-X. & Wang, C.-Z. (1982). Acta Phys. Sin. 31, 668–673.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813028717/wm2777sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028717/wm2777Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


