Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 16;69(Pt 11):m604. doi: 10.1107/S1600536813027384

Bis(μ-di­phenyl­phosphan­yl)bis­[(tri­methyl­phosphane)cobalt(I)](CoCo)

Robert Beck a,*, Hans-Friedrich Klein a
PMCID: PMC3884259  PMID: 24454035

Abstract

The title compound, [Co2{P(C6H5)2}2(C3H9P)4], was obtained by the addition of di­phenyl­phosphane to a solution of Co(CH3)(C3H9P)4. The dinuclear complex mol­ecule exhibits inversion symmetry with the inversion centre located between the two CoI atoms. The short Co—Co distance of 2.3670 (8) Å lies within the range of metal–metal double bonds. As a result of inversion symmetry, the four-membered Co2P2 core is rigorously planar, and the two bridging P(C6H5)2-ligands and the terminal C3H9P ligands are arranged in a pseudo-tetra­hedral fashion about the CoI atom.

Related literature  

For related homobimetallic cobalt complexes, see: Harley et al. (1983); Jones et al. (1983); Winter­halter et al. (2001): For related salt metathesis reactions, see: Klein et al. (1988, 2003); Klein & Karsch (1975).graphic file with name e-69-0m604-scheme1.jpg

Experimental  

Crystal data  

  • [Co2(C12H10P)2(C3H9P)4]

  • M r = 792.49

  • Monoclinic, Inline graphic

  • a = 10.318 (2) Å

  • b = 19.262 (4) Å

  • c = 10.721 (2) Å

  • β = 113.32 (3)°

  • V = 1956.8 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 173 K

  • 0.12 × 0.10 × 0.08 mm

Data collection  

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.912, T max = 0.940

  • 37952 measured reflections

  • 5413 independent reflections

  • 3251 reflections with I > 2σ(I)

  • R int = 0.062

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.083

  • S = 0.81

  • 5413 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.86 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813027384/wm2765sup1.cif

e-69-0m604-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813027384/wm2765Isup2.hkl

e-69-0m604-Isup2.hkl (265.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support of this work by the Fonds der Chemischen Industrie is gratefully acknowledged.

supplementary crystallographic information

1. Comment

The synthesis of bimetallic complexes with bridging anionic PR2 ligands (R = aryl or alkyl) are long time established (Harley et al., 1983), and numerous variants of synthetic approaches were developed (Jones et al., 1983). During the course of our investigations into the chemistry of cyclometallation of triphenylphosphane derivatives (Winterhalter et al., 2001), we isolated, structurally and spectroscopically characterized a series of ortho-metallated cobalt complexes (Klein et al., 2003). Using previous method allowed to synthesize a related bimetallic cobalt complex via salt metathesis of CoCl(PMe3)3 with LiPPMe2 in high yield (Klein et al., 1988).

The molecular structure of the bimetallic title complex, (I), [Co(C3H9P)22-P(C6H5)2)]2, is shown in Fig. 1. The complex exhibits a crystallographically imposed inversion centre in the middle of the molecule. Each CoI atom has a distorted tetrahedral coordination geometry with a short Co—Co distance of 2.3670 (8) Å, slightly longer than found for other Co═Co distances of homobimetallic cobalt complexes. Each set of terminal ligands is trans with respect to the Co═Co bond. Both bridging µ2-PPh2 and PMe3-ligands are bent away from the central Co2P2 core with the distortion from idealized tetrahedral geometry being greater for the larger PPh2 group with 115.13 (3)°.

The crystal packing of compound (I) can be described as being composed of rods of single molecules stacked along [100] and [001], with the Co2P2 cores arranged in alternating directions (Fig. 2).

2. Experimental

Standard vacuum techniques were used in manipulations of volatile and air sensitive material. Literature methods were applied for the preparation of Co(CH3)(PMe3)4 (Klein & Karsch, 1975). Other chemicals were used as purchased. The title compound bis(µ2-diphenylphosphino)tetrakis(trimethylphosphane) dicobalt(I) was synthesized by combining stoichiometric amounts of diphenylphosphane (118 mg, 0.63 mmol) in 20 ml of n-pentane at 203 K with a sample of Co(CH3)(PMe3)4 (240 mg, 0.63 mmol) in 20 ml of n-pentane, effecting a change of color from red to dark brown. After warm-up, the mixture was kept stirring at 293 K for 16 h, and then the volatiles were removed in vacuo to give a dark brown, waxy solid. This was dissolved in a mixture of 10 ml of n-pentane / diethyl ether (3:1) and crystallized at 253 K to give brown rhombic crystals, which were suitable for X-ray diffraction. Isolated yield 145 mg (58%); m. p. 391–393 K (dec.). 1H NMR (300 MHz, THF-d8, 293 K, p.p.m.): δ = 0.88 (s(br), 36H, PCH3); 7.03 - 7.11 (m, 12H, Ar—H); 7.51 – 7.56 (m, 8H, Ar—H); - 31P{1H} NMR (121 MHz, THF-d8, 297 K, p.p.m.): δ = 4.66 (s(br), 4P, PCH3), 12.3 (s(br), 2P, PPh2). Anal. Calcd. for C36H56Co2P6 (792.5): C, 54.56; H, 7.12; P, 23.45: Found: C, 54.88; H, 6.72; P 23.98%.

3. Refinement

H atoms were fixed geometrically and treated as riding on their parent atoms with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl), and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of compound (I), with atom labels and thermal displacement parameters of the atoms drawn at the 50% probability level for non-H atoms; H atoms were omitted for clarity. Symmetry code (i) -x, 1 - y, -z indicates symmetry-related atoms generated by a crystallographic inversion centre.

Fig. 2.

Fig. 2.

Crystal packing of compound (I) viewed along [001].

Crystal data

[Co2(C12H10P)2(C3H9P)4] F(000) = 832
Mr = 792.49 Dx = 1.345 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.318 (2) Å Cell parameters from 864 reflections
b = 19.262 (4) Å θ = 3.0–26.0°
c = 10.721 (2) Å µ = 1.12 mm1
β = 113.32 (3)° T = 173 K
V = 1956.8 (7) Å3 Block, brown
Z = 2 0.12 × 0.10 × 0.08 mm

Data collection

Bruker APEX CCD diffractometer 5413 independent reflections
Radiation source: fine-focus sealed tube 3251 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.062
phi and ω scans θmax = 29.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −14→14
Tmin = 0.912, Tmax = 0.940 k = −26→26
37952 measured reflections l = −14→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083 H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0484P)2] where P = (Fo2 + 2Fc2)/3
5413 reflections (Δ/σ)max = 0.001
205 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.86 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.05854 (3) 0.453786 (15) 0.07344 (3) 0.02705 (8)
P1 0.01598 (6) 0.55315 (3) 0.14726 (6) 0.02866 (12)
P2 0.00076 (7) 0.36275 (3) 0.15980 (6) 0.03557 (15)
P3 0.28562 (6) 0.43802 (3) 0.16358 (6) 0.03235 (14)
C1 0.1571 (2) 0.61095 (11) 0.2607 (2) 0.0314 (5)
C2 0.2519 (2) 0.64148 (12) 0.2142 (3) 0.0379 (5)
H2 0.2402 0.6342 0.1227 0.045*
C3 0.3630 (3) 0.68225 (13) 0.2982 (3) 0.0461 (6)
H3 0.4249 0.7034 0.2634 0.055*
C4 0.3839 (3) 0.69221 (14) 0.4325 (3) 0.0479 (7)
H4 0.4611 0.7193 0.4909 0.057*
C5 0.2914 (3) 0.66245 (14) 0.4807 (3) 0.0448 (6)
H5 0.3049 0.6692 0.5728 0.054*
C6 0.1783 (3) 0.62262 (12) 0.3958 (2) 0.0360 (5)
H6 0.1146 0.6031 0.4303 0.043*
C7 −0.1106 (2) 0.56800 (12) 0.2273 (2) 0.0304 (5)
C8 −0.1900 (2) 0.62912 (12) 0.1978 (2) 0.0347 (5)
H8 −0.1728 0.6637 0.1430 0.042*
C9 −0.2939 (3) 0.64003 (13) 0.2478 (3) 0.0385 (5)
H9 −0.3478 0.6816 0.2259 0.046*
C10 −0.3189 (3) 0.59079 (13) 0.3289 (3) 0.0397 (6)
H10 −0.3916 0.5977 0.3609 0.048*
C11 −0.2371 (3) 0.53124 (14) 0.3632 (3) 0.0412 (6)
H11 −0.2517 0.4977 0.4213 0.049*
C12 −0.1339 (3) 0.52056 (13) 0.3129 (2) 0.0356 (5)
H12 −0.0779 0.4797 0.3378 0.043*
C13 −0.1791 (3) 0.35558 (15) 0.1568 (3) 0.0485 (7)
H13A −0.1993 0.3965 0.2005 0.073*
H13B −0.1856 0.3137 0.2059 0.073*
H13C −0.2478 0.3528 0.0625 0.073*
C14 0.0125 (3) 0.27953 (13) 0.0821 (3) 0.0465 (6)
H14A −0.0508 0.2801 −0.0143 0.070*
H14B −0.0151 0.2419 0.1280 0.070*
H14C 0.1097 0.2721 0.0909 0.070*
C15 0.1016 (3) 0.34134 (16) 0.3393 (3) 0.0525 (7)
H15A 0.2003 0.3327 0.3546 0.079*
H15B 0.0617 0.2997 0.3629 0.079*
H15C 0.0965 0.3802 0.3962 0.079*
C16 0.3665 (3) 0.35193 (14) 0.1710 (3) 0.0450 (6)
H16A 0.3405 0.3213 0.2304 0.068*
H16B 0.4694 0.3567 0.2071 0.068*
H16C 0.3327 0.3320 0.0796 0.068*
C17 0.3846 (3) 0.48700 (14) 0.0843 (3) 0.0419 (6)
H17A 0.3540 0.4730 −0.0110 0.063*
H17B 0.4857 0.4775 0.1323 0.063*
H17C 0.3673 0.5368 0.0890 0.063*
C18 0.3801 (3) 0.46387 (13) 0.3413 (2) 0.0401 (6)
H18A 0.3655 0.5135 0.3509 0.060*
H18B 0.4811 0.4547 0.3693 0.060*
H18C 0.3442 0.4373 0.3988 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.02893 (15) 0.02544 (14) 0.02803 (15) −0.00128 (12) 0.01259 (11) −0.00020 (12)
P1 0.0307 (3) 0.0278 (3) 0.0289 (3) −0.0012 (2) 0.0132 (2) −0.0022 (2)
P2 0.0428 (4) 0.0298 (3) 0.0350 (3) −0.0054 (2) 0.0164 (3) 0.0019 (2)
P3 0.0299 (3) 0.0338 (3) 0.0320 (3) 0.0013 (2) 0.0108 (2) −0.0002 (2)
C1 0.0301 (11) 0.0251 (10) 0.0356 (12) 0.0023 (8) 0.0095 (10) −0.0021 (9)
C2 0.0325 (12) 0.0364 (12) 0.0439 (14) −0.0014 (9) 0.0142 (11) −0.0024 (11)
C3 0.0336 (13) 0.0367 (13) 0.0651 (18) −0.0008 (10) 0.0162 (13) 0.0016 (12)
C4 0.0344 (13) 0.0395 (14) 0.0557 (17) 0.0006 (11) 0.0028 (12) −0.0098 (12)
C5 0.0376 (13) 0.0461 (14) 0.0396 (14) 0.0038 (11) 0.0035 (11) −0.0097 (11)
C6 0.0323 (12) 0.0355 (12) 0.0353 (12) 0.0018 (9) 0.0083 (10) −0.0030 (10)
C7 0.0317 (11) 0.0327 (11) 0.0259 (11) −0.0023 (9) 0.0105 (9) −0.0054 (9)
C8 0.0382 (13) 0.0321 (11) 0.0350 (12) −0.0017 (9) 0.0156 (10) −0.0035 (9)
C9 0.0362 (13) 0.0383 (13) 0.0404 (13) 0.0039 (10) 0.0145 (11) −0.0044 (10)
C10 0.0339 (12) 0.0505 (15) 0.0374 (13) −0.0002 (11) 0.0171 (11) −0.0045 (11)
C11 0.0439 (14) 0.0472 (15) 0.0380 (13) 0.0008 (11) 0.0220 (11) 0.0054 (11)
C12 0.0361 (12) 0.0365 (12) 0.0358 (12) 0.0020 (10) 0.0159 (10) 0.0018 (10)
C13 0.0543 (17) 0.0484 (15) 0.0512 (16) −0.0161 (12) 0.0297 (14) −0.0055 (12)
C14 0.0529 (16) 0.0309 (12) 0.0516 (16) −0.0010 (11) 0.0164 (13) 0.0017 (11)
C15 0.0659 (18) 0.0481 (16) 0.0425 (15) −0.0118 (14) 0.0204 (14) 0.0074 (12)
C16 0.0410 (14) 0.0445 (14) 0.0438 (15) 0.0086 (11) 0.0106 (12) −0.0019 (11)
C17 0.0334 (13) 0.0527 (15) 0.0395 (13) −0.0042 (11) 0.0144 (11) −0.0033 (12)
C18 0.0363 (12) 0.0437 (14) 0.0374 (13) 0.0023 (11) 0.0115 (10) −0.0009 (11)

Geometric parameters (Å, º)

Co1—Co1i 2.3670 (8) C8—H8 0.9500
Co1—P1i 2.1835 (9) C8—C9 1.391 (3)
Co1—P1 2.1812 (7) C9—H9 0.9500
Co1—P2 2.1735 (7) C9—C10 1.378 (4)
Co1—P3 2.1734 (9) C10—H10 0.9500
P1—Co1i 2.1835 (9) C10—C11 1.385 (4)
P1—C1 1.854 (2) C11—H11 0.9500
P1—C7 1.847 (2) C11—C12 1.387 (3)
P2—C13 1.849 (3) C12—H12 0.9500
P2—C14 1.833 (3) C13—H13A 0.9800
P2—C15 1.836 (3) C13—H13B 0.9800
P3—C16 1.844 (3) C13—H13C 0.9800
P3—C17 1.829 (3) C14—H14A 0.9800
P3—C18 1.833 (3) C14—H14B 0.9800
C1—C2 1.392 (3) C14—H14C 0.9800
C1—C6 1.394 (3) C15—H15A 0.9800
C2—H2 0.9500 C15—H15B 0.9800
C2—C3 1.388 (3) C15—H15C 0.9800
C3—H3 0.9500 C16—H16A 0.9800
C3—C4 1.383 (4) C16—H16B 0.9800
C4—H4 0.9500 C16—H16C 0.9800
C4—C5 1.377 (4) C17—H17A 0.9800
C5—H5 0.9500 C17—H17B 0.9800
C5—C6 1.392 (3) C17—H17C 0.9800
C6—H6 0.9500 C18—H18A 0.9800
C7—C8 1.397 (3) C18—H18B 0.9800
C7—C12 1.382 (3) C18—H18C 0.9800
P1—Co1—Co1i 57.21 (2) C9—C8—C7 120.8 (2)
P1i—Co1—Co1i 57.11 (2) C9—C8—H8 119.6
P1—Co1—P1i 114.32 (2) C8—C9—H9 119.9
P2—Co1—Co1i 137.42 (3) C10—C9—C8 120.3 (2)
P2—Co1—P1i 111.96 (3) C10—C9—H9 119.9
P2—Co1—P1 115.13 (3) C9—C10—H10 120.3
P3—Co1—Co1i 125.27 (3) C9—C10—C11 119.4 (2)
P3—Co1—P1i 109.18 (4) C11—C10—H10 120.3
P3—Co1—P1 107.32 (3) C10—C11—H11 120.0
P3—Co1—P2 97.30 (3) C10—C11—C12 120.0 (2)
Co1—P1—Co1i 65.68 (2) C12—C11—H11 120.0
C1—P1—Co1 123.13 (7) C7—C12—C11 121.5 (2)
C1—P1—Co1i 126.59 (8) C7—C12—H12 119.2
C7—P1—Co1i 120.15 (7) C11—C12—H12 119.2
C7—P1—Co1 125.83 (7) P2—C13—H13A 109.5
C7—P1—C1 96.80 (10) P2—C13—H13B 109.5
C13—P2—Co1 119.71 (10) P2—C13—H13C 109.5
C14—P2—Co1 115.68 (10) H13A—C13—H13B 109.5
C14—P2—C13 99.98 (13) H13A—C13—H13C 109.5
C14—P2—C15 99.68 (14) H13B—C13—H13C 109.5
C15—P2—Co1 119.38 (10) P2—C14—H14A 109.5
C15—P2—C13 98.61 (14) P2—C14—H14B 109.5
C16—P3—Co1 122.34 (9) P2—C14—H14C 109.5
C17—P3—Co1 115.06 (9) H14A—C14—H14B 109.5
C17—P3—C16 99.05 (13) H14A—C14—H14C 109.5
C17—P3—C18 100.24 (12) H14B—C14—H14C 109.5
C18—P3—Co1 117.43 (9) P2—C15—H15A 109.5
C18—P3—C16 98.85 (12) P2—C15—H15B 109.5
C2—C1—P1 119.95 (18) P2—C15—H15C 109.5
C2—C1—C6 117.4 (2) H15A—C15—H15B 109.5
C6—C1—P1 122.54 (19) H15A—C15—H15C 109.5
C1—C2—H2 119.2 H15B—C15—H15C 109.5
C3—C2—C1 121.6 (3) P3—C16—H16A 109.5
C3—C2—H2 119.2 P3—C16—H16B 109.5
C2—C3—H3 119.9 P3—C16—H16C 109.5
C4—C3—C2 120.2 (3) H16A—C16—H16B 109.5
C4—C3—H3 119.9 H16A—C16—H16C 109.5
C3—C4—H4 120.4 H16B—C16—H16C 109.5
C5—C4—C3 119.2 (2) P3—C17—H17A 109.5
C5—C4—H4 120.4 P3—C17—H17B 109.5
C4—C5—H5 119.7 P3—C17—H17C 109.5
C4—C5—C6 120.7 (3) H17A—C17—H17B 109.5
C6—C5—H5 119.7 H17A—C17—H17C 109.5
C1—C6—H6 119.5 H17B—C17—H17C 109.5
C5—C6—C1 120.9 (2) P3—C18—H18A 109.5
C5—C6—H6 119.5 P3—C18—H18B 109.5
C8—C7—P1 119.00 (18) P3—C18—H18C 109.5
C12—C7—P1 123.14 (18) H18A—C18—H18B 109.5
C12—C7—C8 117.8 (2) H18A—C18—H18C 109.5
C7—C8—H8 119.6 H18B—C18—H18C 109.5

Symmetry code: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2765).

References

  1. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Harley, A. D., Whittle, R. R. & Geoffroy, G. L. (1983). Organometallics, 2, 60–63.
  5. Jones, R. A., Stuart, A. L., Atwood, J. L. & Hunter, W. E. (1983). Organometallics, 2, 1437–1441.
  6. Klein, H.-F., Beck, R., Flörke, U. & Haupt, H.-J. (2003). Eur. J. Inorg. Chem. pp. 1380–1387.
  7. Klein, H.-F., Gass, M., Zucha, U. & Eisenmann, B. (1988). Z. Naturforsch. Teil B, 43, 927–932.
  8. Klein, H.-F. & Karsch, H. H. (1975). Chem. Ber. 108, 944–955.
  9. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Winterhalter, U., Zsolnai, L., Kircher, P., Heinze, K. & Huttner, G. (2001). Eur. J. Inorg. Chem. pp. 89–103.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813027384/wm2765sup1.cif

e-69-0m604-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813027384/wm2765Isup2.hkl

e-69-0m604-Isup2.hkl (265.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES