Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 19;69(Pt 11):m610–m611. doi: 10.1107/S1600536813028006

Bis[4-(di­methyl­amino)­pyridinium] tetra­chlorido­cuprate(II)

Sofiane Bouacida a,b,*, Rafika Bouchene b, Amina Khadri b, Ratiba Belhouas a, Hocine Merazig a
PMCID: PMC3884264  PMID: 24454040

Abstract

The asymmetric unit of the title salt, (C7H11N2)2[CuCl4], comprises half a tetrahedral tetra­chlorido­cuprate anion, being located on a twofold axis, and a protonated 4-(di­methyl­amino)­pyridine cation. The geometry around the CuII ion is highly distorted with the range of Cl—Cu—Cl angles being 94.94 (1)–141.03 (1)°. The crystal structure is stabilized by N—H⋯Cl and C—H⋯Cl hydrogen bonds. In the three-dimensional network, cations and anions pack in the lattice so as to generate chains of [CuCl4]2− anions separated by two orientations of cation layers, which are inter­locked through π–π stacking contacts between pairs of pyridine rings, with centroid–centroid distances of 3.7874 (7) Å.

Related literature  

For general background to organic-inorganic systems, see: Bouacida (2008). For related 4-di­methyl­amino­pyridinium metal(II) chloride salts, see: Khadri et al. (2013). For the geometry of four-coordinated tetra­halocuprate(II) ions, see: Awwadi et al. (2007); Choi et al. (2002); Diaz et al. (1999); Haddad et al. (2006); Harlow et al. (1975); Marzotto et al. (2001); Parent et al. (2007).graphic file with name e-69-0m610-scheme1.jpg

Experimental  

Crystal data  

  • (C7H11N2)2[CuCl4]

  • M r = 451.71

  • Monoclinic, Inline graphic

  • a = 12.3750 (8) Å

  • b = 12.1901 (8) Å

  • c = 14.1713 (9) Å

  • β = 115.023 (1)°

  • V = 1937.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 150 K

  • 0.13 × 0.12 × 0.10 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.675, T max = 0.747

  • 12787 measured reflections

  • 3895 independent reflections

  • 3389 reflections with I > 2σ(I)

  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.059

  • S = 1.05

  • 3895 reflections

  • 107 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813028006/bq2389sup1.cif

e-69-0m610-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028006/bq2389Isup2.hkl

e-69-0m610-Isup2.hkl (187.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—Cl1 2.2487 (3)
Cu1—Cl2 2.2588 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1 0.86 2.55 3.2264 (11) 136
N2—H2⋯Cl2 0.86 2.55 3.2760 (10) 143
C2—H2A⋯Cl1i 0.93 2.67 3.5790 (11) 167
C5—H5⋯Cl2ii 0.93 2.80 3.6501 (11) 152
C11—H11B⋯Cl2iii 0.96 2.82 3.6850 (13) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We are grateful to all personel of the LCATM laboratory, Université Oum El Bouaghi, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique - Algérie) via the PNR programme for financial support.

supplementary crystallographic information

1. Comment

The role of weak intermolecular interactions in the stabilization of hybrid organic-inorganic systems is one of the main targets of our investigation in crystal engineering study (Bouacida, 2008). In continuation of our recent research on 4-dimethylaminopyridinium (HDMAP) metal halide salts (Khadri et al., 2013), the X-ray crystal structures of new one with tetrachlorocuprate (II) anion is reported.

Electronic subshell d9 of Cu(II) is responsible for distortions of symmetry of the coordination polyhedron. This deals with the Jahn-Teller effect. The shape of the four-coordinated tetrahalocuprate (II) ions changes from square planar (Harlow et al., 1975) to distorted tetrahedral (Diaz et al., 1999) and the geometry of [CuX4]2- species is influenced by the crystal-packing forces resulted from the size and the form of counter cations (Diaz et al., 1999; Parent et al., 2007), hydrogen bonding to cations (Haddad et al., 2006; Marzotto et al., 2001; Choi et al., 2002), and halide-halide interactions in solid (Awwadi et al., 2007). The degree of distortion of [CuX4]2- coordination polyhedra is determined by the mean value of the flattering or trans-angle θ. The asymmetric unit of the title compound, shown in figure 1, contains one half of the copper chloride salt, the other half is generated by a twofold rotation axis (4 e) on which Cu(II) is situated. The [CuCl4]2- ions are highly distorted with a mean trans angle of 141.02° as a result of hydrogen bonding interactions with two nearly planar HDMAP cations (0.0295 Å mean deviation). The pyridinium nitrogen forms bifurcated hydrogen bond to two chloride ligands Cl1 and Cl2 and the created organic-inorganic hybrid compound (Fig. 2) is further assembled by C—H···Cl hydrogen bonding interactions (Table 2). In the three dimension network (Fig. 3), cations and anions pack in the lattice to generate chains of [CuX4]2- anions separated by two orientations of cation layers which are interlocked through π-π stacking contacts between pairs of pyridine rings with distances centroid-centroid of 3.7874 (7) Å. All these interactions bonds link the layers together, forming a three-dimensional network and reinforcing the cohesion of ionic structure. Additionel hydrogen bond parameters are listed in table 1.

2. Experimental

4-dimethylaminopyridine and CuCl2·2H2O in a molar ratio of 1:1 were dissolved in sufficient acidified water (HCl, 37%). Evaporation of obtained solution at room temperature yields yellow crystals of the title compound after one week which crystals suitable for X-ray diffraction were carefully isolated.

3. Refinement

All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C and N) with C—H = 0.96 Å (methyl) or C—H = 0.93 Å (aromatic) N—H = 0.86 Å and with Uiso(H) = 1.2 Ueq(Caryl or N )and Uiso(H) = 1.5 Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

A view of molecule structure of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

(Brandenburg & Berndt, 2001) Partial packing viewed via b axis showing structure as alternating layers of CuCl4 tetrahedral and protonated 4-Dimethylaminopyridine along the c axis and Hydrogen bonds interactions [N—H···Cl and C—H···Cl], as dashed lines.

Fig. 3.

Fig. 3.

(Brandenburg & Berndt, 2001) Partial packing of (I) showing π-π stacking interactions as red dashed lines.

Crystal data

(C7H11N2)2[CuCl4] F(000) = 924
Mr = 451.71 Dx = 1.549 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 6282 reflections
a = 12.3750 (8) Å θ = 2.5–34.7°
b = 12.1901 (8) Å µ = 1.68 mm1
c = 14.1713 (9) Å T = 150 K
β = 115.023 (1)° Cube, yellow
V = 1937.1 (2) Å3 0.13 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3895 independent reflections
Radiation source: sealed tube 3389 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.017
φ and ω scans θmax = 34.7°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −19→19
Tmin = 0.675, Tmax = 0.747 k = −18→18
12787 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.9756P] where P = (Fo2 + 2Fc2)/3
3895 reflections (Δ/σ)max = 0.001
107 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.43961 (8) 0.14134 (8) −0.05308 (7) 0.0225 (2)
N2 0.24689 (8) 0.09752 (8) 0.12016 (7) 0.0250 (3)
C1 0.37610 (8) 0.12756 (8) 0.00275 (7) 0.0179 (2)
C2 0.39370 (8) 0.19580 (8) 0.08966 (7) 0.0202 (2)
C3 0.32794 (9) 0.17919 (9) 0.14518 (8) 0.0229 (3)
C4 0.22731 (9) 0.03122 (9) 0.03815 (9) 0.0259 (3)
C5 0.28831 (9) 0.04393 (8) −0.02169 (8) 0.0222 (2)
C11 0.53277 (10) 0.22510 (10) −0.02403 (9) 0.0286 (3)
C12 0.41514 (11) 0.07546 (10) −0.14600 (9) 0.0280 (3)
Cu1 0.00000 0.05740 (1) 0.25000 0.0173 (1)
Cl1 0.07732 (2) −0.06512 (2) 0.17693 (2) 0.0251 (1)
Cl2 0.15211 (2) 0.17785 (2) 0.29261 (2) 0.0211 (1)
H2 0.20730 0.08760 0.15680 0.0300*
H2A 0.45010 0.25170 0.10860 0.0240*
H3 0.33920 0.22490 0.20110 0.0270*
H4 0.17090 −0.02440 0.02220 0.0310*
H5 0.27260 −0.00200 −0.07840 0.0270*
H11A 0.49760 0.29640 −0.02970 0.0430*
H11B 0.57180 0.22070 −0.06980 0.0430*
H11C 0.59000 0.21310 0.04640 0.0430*
H12A 0.42520 −0.00080 −0.12750 0.0420*
H12B 0.46940 0.09570 −0.17540 0.0420*
H12C 0.33470 0.08820 −0.19620 0.0420*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0217 (4) 0.0262 (4) 0.0203 (4) −0.0016 (3) 0.0097 (3) 0.0010 (3)
N2 0.0215 (4) 0.0318 (5) 0.0241 (4) −0.0019 (3) 0.0120 (3) 0.0016 (3)
C1 0.0164 (4) 0.0182 (4) 0.0172 (4) 0.0003 (3) 0.0052 (3) 0.0015 (3)
C2 0.0200 (4) 0.0194 (4) 0.0192 (4) −0.0025 (3) 0.0063 (3) −0.0007 (3)
C3 0.0226 (4) 0.0250 (5) 0.0200 (4) 0.0010 (3) 0.0079 (3) −0.0012 (3)
C4 0.0217 (4) 0.0265 (5) 0.0276 (5) −0.0067 (4) 0.0087 (4) −0.0001 (4)
C5 0.0210 (4) 0.0215 (4) 0.0217 (4) −0.0036 (3) 0.0067 (3) −0.0032 (3)
C11 0.0245 (5) 0.0341 (6) 0.0282 (5) −0.0058 (4) 0.0122 (4) 0.0049 (4)
C12 0.0320 (5) 0.0322 (6) 0.0216 (4) 0.0056 (4) 0.0132 (4) 0.0010 (4)
Cu1 0.0164 (1) 0.0169 (1) 0.0192 (1) 0.0000 0.0082 (1) 0.0000
Cl1 0.0269 (1) 0.0203 (1) 0.0353 (1) −0.0061 (1) 0.0200 (1) −0.0087 (1)
Cl2 0.0205 (1) 0.0197 (1) 0.0232 (1) −0.0035 (1) 0.0095 (1) −0.0029 (1)

Geometric parameters (Å, º)

Cu1—Cl1i 2.2487 (3) C2—C3 1.3653 (16)
Cu1—Cl2i 2.2588 (3) C4—C5 1.3618 (17)
Cu1—Cl1 2.2487 (3) C2—H2A 0.9300
Cu1—Cl2 2.2588 (3) C3—H3 0.9300
N1—C1 1.3409 (15) C4—H4 0.9300
N1—C12 1.4606 (15) C5—H5 0.9300
N1—C11 1.4627 (16) C11—H11A 0.9600
N2—C3 1.3498 (15) C11—H11B 0.9600
N2—C4 1.3507 (15) C11—H11C 0.9600
N2—H2 0.8600 C12—H12B 0.9600
C1—C2 1.4246 (13) C12—H12C 0.9600
C1—C5 1.4217 (15) C12—H12A 0.9600
Cl1i—Cu1—Cl2i 94.94 (1) C3—C2—H2A 120.00
Cl1—Cu1—Cl2i 141.03 (1) C2—C3—H3 119.00
Cl1—Cu1—Cl2 94.94 (1) N2—C3—H3 120.00
Cl1—Cu1—Cl1i 96.76 (1) N2—C4—H4 119.00
Cl1i—Cu1—Cl2 141.03 (1) C5—C4—H4 119.00
Cl2—Cu1—Cl2i 98.91 (1) C1—C5—H5 120.00
C1—N1—C12 120.89 (10) C4—C5—H5 120.00
C1—N1—C11 120.68 (9) H11A—C11—H11B 109.00
C11—N1—C12 118.41 (10) H11A—C11—H11C 110.00
C3—N2—C4 120.68 (10) N1—C11—H11A 109.00
C4—N2—H2 120.00 N1—C11—H11B 109.00
C3—N2—H2 120.00 N1—C11—H11C 109.00
C2—C1—C5 116.81 (9) H11B—C11—H11C 109.00
N1—C1—C2 121.57 (9) H12B—C12—H12C 109.00
N1—C1—C5 121.62 (9) N1—C12—H12A 109.00
C1—C2—C3 120.08 (9) N1—C12—H12B 109.00
N2—C3—C2 121.05 (10) N1—C12—H12C 109.00
N2—C4—C5 121.52 (11) H12A—C12—H12B 109.00
C1—C5—C4 119.84 (9) H12A—C12—H12C 109.00
C1—C2—H2A 120.00
C11—N1—C1—C2 2.21 (15) N1—C1—C2—C3 −179.66 (10)
C11—N1—C1—C5 −177.56 (10) C5—C1—C2—C3 0.11 (14)
C12—N1—C1—C2 −175.95 (10) N1—C1—C5—C4 178.72 (10)
C12—N1—C1—C5 4.28 (16) C2—C1—C5—C4 −1.06 (15)
C4—N2—C3—C2 −1.18 (16) C1—C2—C3—N2 1.00 (16)
C3—N2—C4—C5 0.20 (17) N2—C4—C5—C1 0.93 (17)

Symmetry code: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···Cl1 0.86 2.55 3.2264 (11) 136
N2—H2···Cl2 0.86 2.55 3.2760 (10) 143
C2—H2A···Cl1ii 0.93 2.67 3.5790 (11) 167
C5—H5···Cl2iii 0.93 2.80 3.6501 (11) 152
C11—H11B···Cl2iv 0.96 2.82 3.6850 (13) 150

Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x, −y, z−1/2; (iv) x+1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2389).

References

  1. Awwadi, F. F., Willett, R. D. & Twamly, B. (2007). Cryst. Growth Des. 7, 624–632.
  2. Bouacida, S. (2008). PhD thesis, Montouri–Constantine University, Algeria.
  3. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
  4. Bruker (2011). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  6. Choi, S.-N., Lee, Y.-M., Lee, H.-W., Kang, S. K. & Kim, Y.-I. (2002). Acta Cryst. E58, m583–m585.
  7. Diaz, I., Fernandes, V., Belsky, V. K. & Martinez, J. L. (1999). Z. Naturforsch. Teil B, 54, 718–724.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Haddad, S. F., Aidamen, M. A. & Willett, R. D. (2006). Inorg. Chim. Acta, 359, 424–432.
  10. Harlow, R. L., Wells, W. J., Watt, G. W. & Simonsen, S. H. (1975). Inorg. Chem. 14, 1786–1772.
  11. Khadri, A., Bouchene, R., Bouacida, S., Merazig, H. & Roisnel, T. (2013). Acta Cryst. E69, m190. [DOI] [PMC free article] [PubMed]
  12. Marzotto, A., Clemente, D. A., Benetollo, F. & Valle, G. (2001). Polyhedron, 20, 171–177.
  13. Parent, A. R., Landee, C. P. & Turnbull, M. M. (2007). Inorg. Chim. Acta, 360, 1943–1953.
  14. Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813028006/bq2389sup1.cif

e-69-0m610-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028006/bq2389Isup2.hkl

e-69-0m610-Isup2.hkl (187.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES