Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 26;69(Pt 11):m622. doi: 10.1107/S1600536813028985

catena-Poly[bis­[dimeth­yl(pyridine-κN)indium(III)]-μ4-benzene-1,3-diolato-bis­[di­methyl­indium(III)]-μ4-benzene-1,3-diolato]

Glen G Briand a,*, Andreas Decken b, Marshall R Hoey a
PMCID: PMC3884271  PMID: 24454047

Abstract

The title compound, [In2(CH3)4(C6H4O2)(C5H5N)] or [{(CH3)2In}(1,3-O2C6H4){In(CH3)2(py)}]n, (py = pyridine) contains two crystallographically unique InIII ions which are in distorted tetra­hedral C2O2 and distorted trigonal-bipyramidal C2O2N coordination environments. The InIII coordination centers are bridged head-to-head via In—O bonds, yielding four-membered In2O2 rings and zigzag polymeric chains along [001].

Related literature  

For background to di­methyl­indium aryl­oxides, see: Briand et al. (2010); Beachley et al. (2003); Hausslein et al. (1999); Blake et al. (2011); Bradley et al. (1988); Trentler et al. (1997). For di­methyl­indium compounds with bidentate imine-alkoxide ligands, see: Hu et al. (1999); Wu et al. (1999); Pal et al. (2013); Lewinski et al. (2003); Ghoshal et al. (2007).graphic file with name e-69-0m622-scheme1.jpg

Experimental  

Crystal data  

  • [In2(CH3)4(C6H4O2)(C5H5N)]

  • M r = 476.97

  • Monoclinic, Inline graphic

  • a = 9.1584 (17) Å

  • b = 14.075 (3) Å

  • c = 13.856 (3) Å

  • β = 90.106 (3)°

  • V = 1786.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.58 mm−1

  • T = 188 K

  • 0.20 × 0.03 × 0.03 mm

Data collection  

  • Bruker P4/SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a ) T min = 0.626, T max = 0.938

  • 12064 measured reflections

  • 3967 independent reflections

  • 2885 reflections with I > 2σ(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.087

  • S = 1.16

  • 3967 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.72 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b ); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008b ); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b ).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813028985/lh5663sup1.cif

e-69-0m622-sup1.cif (373.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028985/lh5663Isup2.hkl

e-69-0m622-Isup2.hkl (217.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813028985/lh5663Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the New Brunswick Innovation Foundation, the Canadian Foundation for Innovation and Mount Allison University.

supplementary crystallographic information

1. Comment

Dimethylindium aryloxides [Me2InOR]2 form dimeric structures in the solid state via intermolecular In—O coordinate bonding interactions (Briand et al., 2010; Beachley et al., 2003; Hausslein et al., 1999; Blake et al., 2011; Bradley et al., 1988; Trentler et al., 1997). These structures feature distorted tetrahedral geometries at In, distorted trigonal planar or slightly pyramidal geometries at O, and symmetric near planar In2O2 ring cores. Substitution of monodentate alkoxide (–OR) ligands with bidentate imine-alkoxide ligands additionally results in an intramolecular In—N coordination, yielding distorted trigonal bipyramidal In centres and asymmetric In2O2 rings (Hu et al., 1999; Wu et al., 1999; Pal et al., 2013; Lewinski et al., 2003; Ghoshal et al., 2007). The molecular structure of (I) (Fig. 1) shows two crystallographically unique In atoms. In addition to the In1—O1 bond, In1 exhibits an intermolecular In1—O1i interaction. This results in a distorted tetrahedral C2O2 bonding environment for indium [C1—In1—C2 = 144.3 (3), O1—In1—O1i = 73.87 (14)°] and a symmetric In2O2 ring structure [In1—O1 = 2.172 (3), In1—O1i = 2.174 (3) Å]. Similarly, In2 is coordinated to two methyl C atoms [C3 and C4] and two aryloxide O atoms [O2 and O2ii], but is is also coordinated by the N atom of a pyridine molecule [2.486 (4) Å]. This results in a distorted trigonal bypyramidal C2O2N bonding environment for In, with the two methyl C atoms and a bridging O atom in equatorial positions [C3—In2—C4 = 142.5 (2), C3—In2—O2ii = 107.8 (2), C4—In2—O2ii = 109.25 (19)°], and the pyridine N atom and a bridging O atom in axial positions [O2—In2—N1 = 156.63 (13)°]. The axial In2—O2 bond distance [2.330 (3) Å] is longer than the equatorial In2—O2ii bond distance [2.152 (3) Å], presumably as a result of the trans influence of the pyridine N atom, resulting in an asymmetric In2O2 ring. The two unique In2O2 rings are bridged by the 1,3-benzenediolate phenyl ring, giving a zigzag polymeric structure along [001] (Fig. 2).

2. Experimental

Under an atmosphere of dinitrogen, InMe3 (0.250 g, 1.56 mmol) was dissolved in diethyl ether (10 ml). Pyridine (0.125 g, 1.56 mmol) was added and the solution stirred for 30 min. Resorcinol (0.088 g, 0.78 mmol) was then added and the reaction mixture stirred for an additional 1 h. The reaction was then filtered and the filtrate allowed to sit at 296K. After 1 d, the solution was filtered to yield colourless crystals of [Me2In(1,3-O2C6H4)InMe2(py)] (0.122 g, 0.256 mmol, 33%). Anal. Calc. for C15H21In2NO2: C, 37.77; H, 4.44; N, 2.94. Found: C, 38.32; H, 4.47; N, 2.88. F T—IR (ATR, cm-1): 618 w, 698 s, 748 m, 772 w, 829 w, 844 w, 968 s, 1003 w, 1034 w, 1142 s, 1171 s, 1213 w, 1249 m, 1299 m, 1427 w, 1441 w, 1482 m, 1467 m, 1573 s, 2283 w, 2475 w, 2881 m, 3004 m. FT-Raman (cm-1): 487 vs [νsym (Me—In—Me)], 524 w [νasym (Me—In—Me)], 994 m, 1034 m, 1159 m, 1305 w, 1586 w, 2920 m, 2982 w, 3064 m.

3. Refinement

Hydrogen atoms were included in calculated positions and refined using a riding model.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: (i) -x, 1 - y, 1 - z; (ii) -x, 1 - y, 2 - z.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I) showing the zigzag polymeric structure along [001], with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: (i) -x, 1 - y, 1 - z; (ii) -x, 1 - y, 2 - z.

Crystal data

[In2(CH3)4(C6H4O2)(C5H5N)] F(000) = 928
Mr = 476.97 Dx = 1.774 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5671 reflections
a = 9.1584 (17) Å θ = 2.7–27.9°
b = 14.075 (3) Å µ = 2.58 mm1
c = 13.856 (3) Å T = 188 K
β = 90.106 (3)° Rod, colourless
V = 1786.1 (6) Å3 0.20 × 0.03 × 0.03 mm
Z = 4

Data collection

Bruker P4/SMART 1000 diffractometer 3967 independent reflections
Radiation source: fine-focus sealed tube, K760 2885 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
φ and ω scans θmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) h = −10→11
Tmin = 0.626, Tmax = 0.938 k = −18→18
12064 measured reflections l = −16→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087 H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0339P)2 + 1.2232P] where P = (Fo2 + 2Fc2)/3
3967 reflections (Δ/σ)max = 0.001
185 parameters Δρmax = 1.02 e Å3
0 restraints Δρmin = −0.72 e Å3

Special details

Experimental. Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement._reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
In1 0.12136 (4) 0.57110 (3) 0.43640 (3) 0.03464 (12)
In2 0.11428 (4) 0.39665 (3) 1.01934 (3) 0.02955 (11)
O1 0.0623 (4) 0.5253 (3) 0.5809 (2) 0.0361 (8)
O2 0.0754 (3) 0.5316 (2) 0.9254 (2) 0.0300 (8)
N1 0.0635 (5) 0.2789 (3) 1.1488 (3) 0.0396 (11)
C1 0.0184 (8) 0.7054 (5) 0.4259 (6) 0.073 (2)
H1A 0.0580 0.7480 0.4755 0.109*
H1B −0.0870 0.6980 0.4356 0.109*
H1C 0.0365 0.7325 0.3619 0.109*
C2 0.3108 (7) 0.4920 (5) 0.3979 (5) 0.0631 (19)
H2A 0.3153 0.4856 0.3276 0.095*
H2B 0.3060 0.4288 0.4275 0.095*
H2C 0.3981 0.5253 0.4211 0.095*
C3 0.0431 (7) 0.3018 (4) 0.9068 (4) 0.0562 (17)
H3A 0.1234 0.2910 0.8616 0.084*
H3B −0.0397 0.3302 0.8724 0.084*
H3C 0.0130 0.2412 0.9353 0.084*
C4 0.3053 (6) 0.4553 (4) 1.0846 (4) 0.0454 (15)
H4A 0.3067 0.5242 1.0746 0.068*
H4B 0.3923 0.4269 1.0553 0.068*
H4C 0.3047 0.4417 1.1540 0.068*
C5 0.1383 (5) 0.5416 (3) 0.6650 (3) 0.0270 (10)
C6 0.0693 (5) 0.5259 (3) 0.7530 (3) 0.0277 (11)
H6 −0.0282 0.5029 0.7544 0.033*
C7 0.1435 (5) 0.5439 (3) 0.8395 (3) 0.0264 (10)
C8 0.2872 (5) 0.5754 (4) 0.8361 (4) 0.0314 (11)
H8 0.3395 0.5870 0.8941 0.038*
C9 0.3536 (6) 0.5897 (4) 0.7479 (4) 0.0371 (13)
H9 0.4518 0.6115 0.7462 0.044*
C10 0.2808 (5) 0.5731 (3) 0.6622 (3) 0.0311 (11)
H10 0.3282 0.5832 0.6022 0.037*
C11 −0.0627 (6) 0.2311 (4) 1.1471 (5) 0.0464 (14)
H11 −0.1250 0.2380 1.0927 0.056*
C12 −0.1062 (7) 0.1719 (4) 1.2216 (5) 0.0572 (17)
H12 −0.1960 0.1383 1.2176 0.069*
C13 −0.0192 (8) 0.1624 (5) 1.3002 (5) 0.066 (2)
H13 −0.0476 0.1223 1.3520 0.080*
C14 0.1099 (8) 0.2112 (5) 1.3044 (5) 0.0614 (18)
H14 0.1723 0.2061 1.3590 0.074*
C15 0.1467 (7) 0.2677 (4) 1.2274 (4) 0.0479 (15)
H15 0.2369 0.3010 1.2302 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
In1 0.0337 (2) 0.0504 (2) 0.0198 (2) −0.00910 (16) 0.00038 (15) 0.00502 (16)
In2 0.0284 (2) 0.0370 (2) 0.02328 (19) 0.00222 (15) 0.00004 (14) −0.00206 (15)
O1 0.035 (2) 0.058 (2) 0.0152 (17) −0.0138 (17) −0.0001 (15) 0.0008 (16)
O2 0.0281 (18) 0.047 (2) 0.0149 (17) 0.0054 (15) 0.0021 (14) 0.0016 (15)
N1 0.039 (3) 0.040 (3) 0.040 (3) 0.001 (2) 0.004 (2) 0.003 (2)
C1 0.080 (5) 0.058 (4) 0.081 (5) −0.005 (4) −0.005 (4) 0.018 (4)
C2 0.043 (4) 0.103 (6) 0.044 (4) −0.001 (4) 0.004 (3) −0.014 (4)
C3 0.078 (5) 0.054 (4) 0.037 (3) −0.002 (3) 0.002 (3) −0.018 (3)
C4 0.034 (3) 0.051 (4) 0.051 (4) −0.007 (3) −0.011 (3) 0.011 (3)
C5 0.035 (3) 0.032 (3) 0.014 (2) −0.001 (2) −0.001 (2) 0.0007 (19)
C6 0.022 (2) 0.040 (3) 0.022 (3) −0.004 (2) −0.001 (2) 0.000 (2)
C7 0.031 (3) 0.030 (3) 0.019 (2) 0.006 (2) 0.001 (2) 0.001 (2)
C8 0.028 (3) 0.048 (3) 0.018 (2) −0.003 (2) −0.004 (2) −0.001 (2)
C9 0.025 (3) 0.058 (4) 0.029 (3) −0.007 (2) −0.001 (2) 0.004 (2)
C10 0.031 (3) 0.046 (3) 0.016 (2) −0.007 (2) 0.003 (2) −0.001 (2)
C11 0.049 (4) 0.040 (3) 0.050 (4) −0.003 (3) −0.002 (3) 0.001 (3)
C12 0.049 (4) 0.047 (4) 0.076 (5) −0.010 (3) 0.009 (4) 0.009 (3)
C13 0.065 (5) 0.065 (5) 0.069 (5) 0.001 (4) 0.013 (4) 0.024 (4)
C14 0.073 (5) 0.069 (5) 0.042 (4) 0.011 (4) −0.004 (3) 0.020 (3)
C15 0.050 (4) 0.048 (4) 0.046 (4) 0.001 (3) 0.002 (3) 0.008 (3)

Geometric parameters (Å, º)

In1—C1 2.118 (7) C3—H3C 0.9800
In1—C2 2.130 (6) C4—H4A 0.9800
In1—O1 2.172 (3) C4—H4B 0.9800
In1—O1i 2.174 (3) C4—H4C 0.9800
In2—C4 2.134 (5) C5—C10 1.379 (7)
In2—O2ii 2.152 (3) C5—C6 1.393 (6)
In2—C3 2.152 (5) C6—C7 1.400 (6)
In2—O2 2.330 (3) C6—H6 0.9500
In2—N1 2.486 (4) C7—C8 1.390 (7)
O1—C5 1.376 (5) C8—C9 1.380 (7)
O1—In1i 2.174 (3) C8—H8 0.9500
O2—C7 1.355 (5) C9—C10 1.381 (7)
O2—In2ii 2.152 (3) C9—H9 0.9500
N1—C11 1.337 (7) C10—H10 0.9500
N1—C15 1.338 (7) C11—C12 1.385 (8)
C1—H1A 0.9800 C11—H11 0.9500
C1—H1B 0.9800 C12—C13 1.355 (9)
C1—H1C 0.9800 C12—H12 0.9500
C2—H2A 0.9800 C13—C14 1.368 (9)
C2—H2B 0.9800 C13—H13 0.9500
C2—H2C 0.9800 C14—C15 1.373 (8)
C3—H3A 0.9800 C14—H14 0.9500
C3—H3B 0.9800 C15—H15 0.9500
C1—In1—C2 144.3 (3) H3A—C3—H3C 109.5
C1—In1—O1 102.5 (2) H3B—C3—H3C 109.5
C2—In1—O1 106.3 (2) In2—C4—H4A 109.5
C1—In1—O1i 101.9 (2) In2—C4—H4B 109.5
C2—In1—O1i 106.1 (2) H4A—C4—H4B 109.5
O1—In1—O1i 73.87 (14) In2—C4—H4C 109.5
C4—In2—O2ii 109.25 (19) H4A—C4—H4C 109.5
C4—In2—C3 142.5 (2) H4B—C4—H4C 109.5
O2ii—In2—C3 107.8 (2) O1—C5—C10 120.5 (4)
C4—In2—O2 92.62 (17) O1—C5—C6 119.0 (4)
O2ii—In2—O2 72.15 (13) C10—C5—C6 120.4 (4)
C3—In2—O2 93.2 (2) C5—C6—C7 120.0 (4)
C4—In2—N1 96.11 (19) C5—C6—H6 120.0
O2ii—In2—N1 84.49 (13) C7—C6—H6 120.0
C3—In2—N1 93.0 (2) O2—C7—C8 120.5 (4)
O2—In2—N1 156.63 (13) O2—C7—C6 120.3 (4)
C5—O1—In1 127.2 (3) C8—C7—C6 119.1 (4)
C5—O1—In1i 126.0 (3) C9—C8—C7 119.8 (5)
In1—O1—In1i 106.13 (14) C9—C8—H8 120.1
C7—O2—In2ii 128.7 (3) C7—C8—H8 120.1
C7—O2—In2 121.6 (3) C8—C9—C10 121.5 (5)
In2ii—O2—In2 107.85 (13) C8—C9—H9 119.2
C11—N1—C15 116.4 (5) C10—C9—H9 119.2
C11—N1—In2 119.1 (4) C5—C10—C9 119.1 (4)
C15—N1—In2 124.0 (4) C5—C10—H10 120.4
In1—C1—H1A 109.5 C9—C10—H10 120.4
In1—C1—H1B 109.5 N1—C11—C12 122.7 (6)
H1A—C1—H1B 109.5 N1—C11—H11 118.7
In1—C1—H1C 109.5 C12—C11—H11 118.7
H1A—C1—H1C 109.5 C13—C12—C11 119.2 (6)
H1B—C1—H1C 109.5 C13—C12—H12 120.4
In1—C2—H2A 109.5 C11—C12—H12 120.4
In1—C2—H2B 109.5 C12—C13—C14 119.5 (6)
H2A—C2—H2B 109.5 C12—C13—H13 120.3
In1—C2—H2C 109.5 C14—C13—H13 120.3
H2A—C2—H2C 109.5 C13—C14—C15 118.1 (7)
H2B—C2—H2C 109.5 C13—C14—H14 120.9
In2—C3—H3A 109.5 C15—C14—H14 120.9
In2—C3—H3B 109.5 N1—C15—C14 124.1 (6)
H3A—C3—H3B 109.5 N1—C15—H15 118.0
In2—C3—H3C 109.5 C14—C15—H15 118.0

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5663).

References

  1. Beachley, O. T. Jr, MacRae, D. J. & Kovalevsky, A. Y. (2003). Organometallics, 22, 1690–1695.
  2. Blake, M. P., Schwarz, A. D. & Mountford, P. (2011). Organometallics, 30, 1202–1214.
  3. Bradley, D. C., Frigo, D. M., Hursthouse, M. B. & Hussain, B. (1988). Organometallics, 7, 1112–1115.
  4. Brandenburg, K. (2012). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Briand, G. G., Decken, A. & Hamilton, N. S. (2010). Dalton Trans. 39, 3833–3841. [DOI] [PubMed]
  6. Bruker (1999). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Bruker (2006). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Ghoshal, S., Wadawale, A., Jain, V. K. & Nethaji, M. (2007). J. Chem. Res. pp. 221–225.
  9. Hausslein, M., Hausen, H.-D., Klinkhammer, K. W., Weidlein, J. & Merz, K. (1999). Z. Anorg. Allg. Chem. 625, 1608–1618.
  10. Hu, J.-Z., Yang, M., Wu, X.-S., Pan, Y., Liu, Y.-J. & Sun, X.-Z. (1999). Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 15, 347–350.
  11. Lewinski, J., Zachara, J., Starowieyski, K. B., Ochal, Z., Justyniak, I., Kopec, T., Stolarzewicz, P. & Dranka, M. (2003). Organometallics, 22, 3773–3780.
  12. Pal, M. K., Kushwah, N., Manna, D., Wadawale, A., Sudarsan, V., Ghanty, T. K. & Jain, V. K. (2013). Organometallics, 32, 104–111.
  13. Sheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Trentler, T. J., Goel, S. C., Hickman, K. M., Viano, A. M., Chiang, M. Y., Beatty, A. M., Gibbons, P. C. & Buhro, W. E. (1997). J. Am. Chem. Soc. 119, 2172–2181.
  16. Wu, X.-S., Pan, Y., Sun, X.-Z. & Zhu, Y. (1999). Jiegou Huaxue (Chin. J. Struct. Chem.), 18, 418–422.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813028985/lh5663sup1.cif

e-69-0m622-sup1.cif (373.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028985/lh5663Isup2.hkl

e-69-0m622-Isup2.hkl (217.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813028985/lh5663Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES