Abstract
The title compound, [In2(CH3)4(C6H4O2)(C5H5N)] or [{(CH3)2In}(1,3-O2C6H4){In(CH3)2(py)}]n, (py = pyridine) contains two crystallographically unique InIII ions which are in distorted tetrahedral C2O2 and distorted trigonal-bipyramidal C2O2N coordination environments. The InIII coordination centers are bridged head-to-head via In—O bonds, yielding four-membered In2O2 rings and zigzag polymeric chains along [001].
Related literature
For background to dimethylindium aryloxides, see: Briand et al. (2010 ▶); Beachley et al. (2003 ▶); Hausslein et al. (1999 ▶); Blake et al. (2011 ▶); Bradley et al. (1988 ▶); Trentler et al. (1997 ▶). For dimethylindium compounds with bidentate imine-alkoxide ligands, see: Hu et al. (1999 ▶); Wu et al. (1999 ▶); Pal et al. (2013 ▶); Lewinski et al. (2003 ▶); Ghoshal et al. (2007 ▶).
Experimental
Crystal data
[In2(CH3)4(C6H4O2)(C5H5N)]
M r = 476.97
Monoclinic,
a = 9.1584 (17) Å
b = 14.075 (3) Å
c = 13.856 (3) Å
β = 90.106 (3)°
V = 1786.1 (6) Å3
Z = 4
Mo Kα radiation
μ = 2.58 mm−1
T = 188 K
0.20 × 0.03 × 0.03 mm
Data collection
Bruker P4/SMART 1000 diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a ▶) T min = 0.626, T max = 0.938
12064 measured reflections
3967 independent reflections
2885 reflections with I > 2σ(I)
R int = 0.039
Refinement
R[F 2 > 2σ(F 2)] = 0.035
wR(F 2) = 0.087
S = 1.16
3967 reflections
185 parameters
H-atom parameters constrained
Δρmax = 1.02 e Å−3
Δρmin = −0.72 e Å−3
Data collection: SMART (Bruker, 1999 ▶); cell refinement: SAINT (Bruker, 2006 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b ▶); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008b ▶); molecular graphics: DIAMOND (Brandenburg, 2012 ▶); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b ▶).
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813028985/lh5663sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028985/lh5663Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536813028985/lh5663Isup3.cdx
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
This work was supported by the Natural Sciences and Engineering Research Council of Canada, the New Brunswick Innovation Foundation, the Canadian Foundation for Innovation and Mount Allison University.
supplementary crystallographic information
1. Comment
Dimethylindium aryloxides [Me2InOR]2 form dimeric structures in the solid state via intermolecular In—O coordinate bonding interactions (Briand et al., 2010; Beachley et al., 2003; Hausslein et al., 1999; Blake et al., 2011; Bradley et al., 1988; Trentler et al., 1997). These structures feature distorted tetrahedral geometries at In, distorted trigonal planar or slightly pyramidal geometries at O, and symmetric near planar In2O2 ring cores. Substitution of monodentate alkoxide (–OR) ligands with bidentate imine-alkoxide ligands additionally results in an intramolecular In—N coordination, yielding distorted trigonal bipyramidal In centres and asymmetric In2O2 rings (Hu et al., 1999; Wu et al., 1999; Pal et al., 2013; Lewinski et al., 2003; Ghoshal et al., 2007). The molecular structure of (I) (Fig. 1) shows two crystallographically unique In atoms. In addition to the In1—O1 bond, In1 exhibits an intermolecular In1—O1i interaction. This results in a distorted tetrahedral C2O2 bonding environment for indium [C1—In1—C2 = 144.3 (3), O1—In1—O1i = 73.87 (14)°] and a symmetric In2O2 ring structure [In1—O1 = 2.172 (3), In1—O1i = 2.174 (3) Å]. Similarly, In2 is coordinated to two methyl C atoms [C3 and C4] and two aryloxide O atoms [O2 and O2ii], but is is also coordinated by the N atom of a pyridine molecule [2.486 (4) Å]. This results in a distorted trigonal bypyramidal C2O2N bonding environment for In, with the two methyl C atoms and a bridging O atom in equatorial positions [C3—In2—C4 = 142.5 (2), C3—In2—O2ii = 107.8 (2), C4—In2—O2ii = 109.25 (19)°], and the pyridine N atom and a bridging O atom in axial positions [O2—In2—N1 = 156.63 (13)°]. The axial In2—O2 bond distance [2.330 (3) Å] is longer than the equatorial In2—O2ii bond distance [2.152 (3) Å], presumably as a result of the trans influence of the pyridine N atom, resulting in an asymmetric In2O2 ring. The two unique In2O2 rings are bridged by the 1,3-benzenediolate phenyl ring, giving a zigzag polymeric structure along [001] (Fig. 2).
2. Experimental
Under an atmosphere of dinitrogen, InMe3 (0.250 g, 1.56 mmol) was dissolved in diethyl ether (10 ml). Pyridine (0.125 g, 1.56 mmol) was added and the solution stirred for 30 min. Resorcinol (0.088 g, 0.78 mmol) was then added and the reaction mixture stirred for an additional 1 h. The reaction was then filtered and the filtrate allowed to sit at 296K. After 1 d, the solution was filtered to yield colourless crystals of [Me2In(1,3-O2C6H4)InMe2(py)]∞ (0.122 g, 0.256 mmol, 33%). Anal. Calc. for C15H21In2NO2: C, 37.77; H, 4.44; N, 2.94. Found: C, 38.32; H, 4.47; N, 2.88. F T—IR (ATR, cm-1): 618 w, 698 s, 748 m, 772 w, 829 w, 844 w, 968 s, 1003 w, 1034 w, 1142 s, 1171 s, 1213 w, 1249 m, 1299 m, 1427 w, 1441 w, 1482 m, 1467 m, 1573 s, 2283 w, 2475 w, 2881 m, 3004 m. FT-Raman (cm-1): 487 vs [νsym (Me—In—Me)], 524 w [νasym (Me—In—Me)], 994 m, 1034 m, 1159 m, 1305 w, 1586 w, 2920 m, 2982 w, 3064 m.
3. Refinement
Hydrogen atoms were included in calculated positions and refined using a riding model.
Figures
Fig. 1.

The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: (i) -x, 1 - y, 1 - z; (ii) -x, 1 - y, 2 - z.
Fig. 2.

Part of the crystal structure of (I) showing the zigzag polymeric structure along [001], with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: (i) -x, 1 - y, 1 - z; (ii) -x, 1 - y, 2 - z.
Crystal data
| [In2(CH3)4(C6H4O2)(C5H5N)] | F(000) = 928 |
| Mr = 476.97 | Dx = 1.774 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2yn | Cell parameters from 5671 reflections |
| a = 9.1584 (17) Å | θ = 2.7–27.9° |
| b = 14.075 (3) Å | µ = 2.58 mm−1 |
| c = 13.856 (3) Å | T = 188 K |
| β = 90.106 (3)° | Rod, colourless |
| V = 1786.1 (6) Å3 | 0.20 × 0.03 × 0.03 mm |
| Z = 4 |
Data collection
| Bruker P4/SMART 1000 diffractometer | 3967 independent reflections |
| Radiation source: fine-focus sealed tube, K760 | 2885 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.039 |
| φ and ω scans | θmax = 27.5°, θmin = 2.1° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | h = −10→11 |
| Tmin = 0.626, Tmax = 0.938 | k = −18→18 |
| 12064 measured reflections | l = −16→17 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.087 | H-atom parameters constrained |
| S = 1.16 | w = 1/[σ2(Fo2) + (0.0339P)2 + 1.2232P] where P = (Fo2 + 2Fc2)/3 |
| 3967 reflections | (Δ/σ)max = 0.001 |
| 185 parameters | Δρmax = 1.02 e Å−3 |
| 0 restraints | Δρmin = −0.72 e Å−3 |
Special details
| Experimental. Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections. |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement._reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| In1 | 0.12136 (4) | 0.57110 (3) | 0.43640 (3) | 0.03464 (12) | |
| In2 | 0.11428 (4) | 0.39665 (3) | 1.01934 (3) | 0.02955 (11) | |
| O1 | 0.0623 (4) | 0.5253 (3) | 0.5809 (2) | 0.0361 (8) | |
| O2 | 0.0754 (3) | 0.5316 (2) | 0.9254 (2) | 0.0300 (8) | |
| N1 | 0.0635 (5) | 0.2789 (3) | 1.1488 (3) | 0.0396 (11) | |
| C1 | 0.0184 (8) | 0.7054 (5) | 0.4259 (6) | 0.073 (2) | |
| H1A | 0.0580 | 0.7480 | 0.4755 | 0.109* | |
| H1B | −0.0870 | 0.6980 | 0.4356 | 0.109* | |
| H1C | 0.0365 | 0.7325 | 0.3619 | 0.109* | |
| C2 | 0.3108 (7) | 0.4920 (5) | 0.3979 (5) | 0.0631 (19) | |
| H2A | 0.3153 | 0.4856 | 0.3276 | 0.095* | |
| H2B | 0.3060 | 0.4288 | 0.4275 | 0.095* | |
| H2C | 0.3981 | 0.5253 | 0.4211 | 0.095* | |
| C3 | 0.0431 (7) | 0.3018 (4) | 0.9068 (4) | 0.0562 (17) | |
| H3A | 0.1234 | 0.2910 | 0.8616 | 0.084* | |
| H3B | −0.0397 | 0.3302 | 0.8724 | 0.084* | |
| H3C | 0.0130 | 0.2412 | 0.9353 | 0.084* | |
| C4 | 0.3053 (6) | 0.4553 (4) | 1.0846 (4) | 0.0454 (15) | |
| H4A | 0.3067 | 0.5242 | 1.0746 | 0.068* | |
| H4B | 0.3923 | 0.4269 | 1.0553 | 0.068* | |
| H4C | 0.3047 | 0.4417 | 1.1540 | 0.068* | |
| C5 | 0.1383 (5) | 0.5416 (3) | 0.6650 (3) | 0.0270 (10) | |
| C6 | 0.0693 (5) | 0.5259 (3) | 0.7530 (3) | 0.0277 (11) | |
| H6 | −0.0282 | 0.5029 | 0.7544 | 0.033* | |
| C7 | 0.1435 (5) | 0.5439 (3) | 0.8395 (3) | 0.0264 (10) | |
| C8 | 0.2872 (5) | 0.5754 (4) | 0.8361 (4) | 0.0314 (11) | |
| H8 | 0.3395 | 0.5870 | 0.8941 | 0.038* | |
| C9 | 0.3536 (6) | 0.5897 (4) | 0.7479 (4) | 0.0371 (13) | |
| H9 | 0.4518 | 0.6115 | 0.7462 | 0.044* | |
| C10 | 0.2808 (5) | 0.5731 (3) | 0.6622 (3) | 0.0311 (11) | |
| H10 | 0.3282 | 0.5832 | 0.6022 | 0.037* | |
| C11 | −0.0627 (6) | 0.2311 (4) | 1.1471 (5) | 0.0464 (14) | |
| H11 | −0.1250 | 0.2380 | 1.0927 | 0.056* | |
| C12 | −0.1062 (7) | 0.1719 (4) | 1.2216 (5) | 0.0572 (17) | |
| H12 | −0.1960 | 0.1383 | 1.2176 | 0.069* | |
| C13 | −0.0192 (8) | 0.1624 (5) | 1.3002 (5) | 0.066 (2) | |
| H13 | −0.0476 | 0.1223 | 1.3520 | 0.080* | |
| C14 | 0.1099 (8) | 0.2112 (5) | 1.3044 (5) | 0.0614 (18) | |
| H14 | 0.1723 | 0.2061 | 1.3590 | 0.074* | |
| C15 | 0.1467 (7) | 0.2677 (4) | 1.2274 (4) | 0.0479 (15) | |
| H15 | 0.2369 | 0.3010 | 1.2302 | 0.057* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| In1 | 0.0337 (2) | 0.0504 (2) | 0.0198 (2) | −0.00910 (16) | 0.00038 (15) | 0.00502 (16) |
| In2 | 0.0284 (2) | 0.0370 (2) | 0.02328 (19) | 0.00222 (15) | 0.00004 (14) | −0.00206 (15) |
| O1 | 0.035 (2) | 0.058 (2) | 0.0152 (17) | −0.0138 (17) | −0.0001 (15) | 0.0008 (16) |
| O2 | 0.0281 (18) | 0.047 (2) | 0.0149 (17) | 0.0054 (15) | 0.0021 (14) | 0.0016 (15) |
| N1 | 0.039 (3) | 0.040 (3) | 0.040 (3) | 0.001 (2) | 0.004 (2) | 0.003 (2) |
| C1 | 0.080 (5) | 0.058 (4) | 0.081 (5) | −0.005 (4) | −0.005 (4) | 0.018 (4) |
| C2 | 0.043 (4) | 0.103 (6) | 0.044 (4) | −0.001 (4) | 0.004 (3) | −0.014 (4) |
| C3 | 0.078 (5) | 0.054 (4) | 0.037 (3) | −0.002 (3) | 0.002 (3) | −0.018 (3) |
| C4 | 0.034 (3) | 0.051 (4) | 0.051 (4) | −0.007 (3) | −0.011 (3) | 0.011 (3) |
| C5 | 0.035 (3) | 0.032 (3) | 0.014 (2) | −0.001 (2) | −0.001 (2) | 0.0007 (19) |
| C6 | 0.022 (2) | 0.040 (3) | 0.022 (3) | −0.004 (2) | −0.001 (2) | 0.000 (2) |
| C7 | 0.031 (3) | 0.030 (3) | 0.019 (2) | 0.006 (2) | 0.001 (2) | 0.001 (2) |
| C8 | 0.028 (3) | 0.048 (3) | 0.018 (2) | −0.003 (2) | −0.004 (2) | −0.001 (2) |
| C9 | 0.025 (3) | 0.058 (4) | 0.029 (3) | −0.007 (2) | −0.001 (2) | 0.004 (2) |
| C10 | 0.031 (3) | 0.046 (3) | 0.016 (2) | −0.007 (2) | 0.003 (2) | −0.001 (2) |
| C11 | 0.049 (4) | 0.040 (3) | 0.050 (4) | −0.003 (3) | −0.002 (3) | 0.001 (3) |
| C12 | 0.049 (4) | 0.047 (4) | 0.076 (5) | −0.010 (3) | 0.009 (4) | 0.009 (3) |
| C13 | 0.065 (5) | 0.065 (5) | 0.069 (5) | 0.001 (4) | 0.013 (4) | 0.024 (4) |
| C14 | 0.073 (5) | 0.069 (5) | 0.042 (4) | 0.011 (4) | −0.004 (3) | 0.020 (3) |
| C15 | 0.050 (4) | 0.048 (4) | 0.046 (4) | 0.001 (3) | 0.002 (3) | 0.008 (3) |
Geometric parameters (Å, º)
| In1—C1 | 2.118 (7) | C3—H3C | 0.9800 |
| In1—C2 | 2.130 (6) | C4—H4A | 0.9800 |
| In1—O1 | 2.172 (3) | C4—H4B | 0.9800 |
| In1—O1i | 2.174 (3) | C4—H4C | 0.9800 |
| In2—C4 | 2.134 (5) | C5—C10 | 1.379 (7) |
| In2—O2ii | 2.152 (3) | C5—C6 | 1.393 (6) |
| In2—C3 | 2.152 (5) | C6—C7 | 1.400 (6) |
| In2—O2 | 2.330 (3) | C6—H6 | 0.9500 |
| In2—N1 | 2.486 (4) | C7—C8 | 1.390 (7) |
| O1—C5 | 1.376 (5) | C8—C9 | 1.380 (7) |
| O1—In1i | 2.174 (3) | C8—H8 | 0.9500 |
| O2—C7 | 1.355 (5) | C9—C10 | 1.381 (7) |
| O2—In2ii | 2.152 (3) | C9—H9 | 0.9500 |
| N1—C11 | 1.337 (7) | C10—H10 | 0.9500 |
| N1—C15 | 1.338 (7) | C11—C12 | 1.385 (8) |
| C1—H1A | 0.9800 | C11—H11 | 0.9500 |
| C1—H1B | 0.9800 | C12—C13 | 1.355 (9) |
| C1—H1C | 0.9800 | C12—H12 | 0.9500 |
| C2—H2A | 0.9800 | C13—C14 | 1.368 (9) |
| C2—H2B | 0.9800 | C13—H13 | 0.9500 |
| C2—H2C | 0.9800 | C14—C15 | 1.373 (8) |
| C3—H3A | 0.9800 | C14—H14 | 0.9500 |
| C3—H3B | 0.9800 | C15—H15 | 0.9500 |
| C1—In1—C2 | 144.3 (3) | H3A—C3—H3C | 109.5 |
| C1—In1—O1 | 102.5 (2) | H3B—C3—H3C | 109.5 |
| C2—In1—O1 | 106.3 (2) | In2—C4—H4A | 109.5 |
| C1—In1—O1i | 101.9 (2) | In2—C4—H4B | 109.5 |
| C2—In1—O1i | 106.1 (2) | H4A—C4—H4B | 109.5 |
| O1—In1—O1i | 73.87 (14) | In2—C4—H4C | 109.5 |
| C4—In2—O2ii | 109.25 (19) | H4A—C4—H4C | 109.5 |
| C4—In2—C3 | 142.5 (2) | H4B—C4—H4C | 109.5 |
| O2ii—In2—C3 | 107.8 (2) | O1—C5—C10 | 120.5 (4) |
| C4—In2—O2 | 92.62 (17) | O1—C5—C6 | 119.0 (4) |
| O2ii—In2—O2 | 72.15 (13) | C10—C5—C6 | 120.4 (4) |
| C3—In2—O2 | 93.2 (2) | C5—C6—C7 | 120.0 (4) |
| C4—In2—N1 | 96.11 (19) | C5—C6—H6 | 120.0 |
| O2ii—In2—N1 | 84.49 (13) | C7—C6—H6 | 120.0 |
| C3—In2—N1 | 93.0 (2) | O2—C7—C8 | 120.5 (4) |
| O2—In2—N1 | 156.63 (13) | O2—C7—C6 | 120.3 (4) |
| C5—O1—In1 | 127.2 (3) | C8—C7—C6 | 119.1 (4) |
| C5—O1—In1i | 126.0 (3) | C9—C8—C7 | 119.8 (5) |
| In1—O1—In1i | 106.13 (14) | C9—C8—H8 | 120.1 |
| C7—O2—In2ii | 128.7 (3) | C7—C8—H8 | 120.1 |
| C7—O2—In2 | 121.6 (3) | C8—C9—C10 | 121.5 (5) |
| In2ii—O2—In2 | 107.85 (13) | C8—C9—H9 | 119.2 |
| C11—N1—C15 | 116.4 (5) | C10—C9—H9 | 119.2 |
| C11—N1—In2 | 119.1 (4) | C5—C10—C9 | 119.1 (4) |
| C15—N1—In2 | 124.0 (4) | C5—C10—H10 | 120.4 |
| In1—C1—H1A | 109.5 | C9—C10—H10 | 120.4 |
| In1—C1—H1B | 109.5 | N1—C11—C12 | 122.7 (6) |
| H1A—C1—H1B | 109.5 | N1—C11—H11 | 118.7 |
| In1—C1—H1C | 109.5 | C12—C11—H11 | 118.7 |
| H1A—C1—H1C | 109.5 | C13—C12—C11 | 119.2 (6) |
| H1B—C1—H1C | 109.5 | C13—C12—H12 | 120.4 |
| In1—C2—H2A | 109.5 | C11—C12—H12 | 120.4 |
| In1—C2—H2B | 109.5 | C12—C13—C14 | 119.5 (6) |
| H2A—C2—H2B | 109.5 | C12—C13—H13 | 120.3 |
| In1—C2—H2C | 109.5 | C14—C13—H13 | 120.3 |
| H2A—C2—H2C | 109.5 | C13—C14—C15 | 118.1 (7) |
| H2B—C2—H2C | 109.5 | C13—C14—H14 | 120.9 |
| In2—C3—H3A | 109.5 | C15—C14—H14 | 120.9 |
| In2—C3—H3B | 109.5 | N1—C15—C14 | 124.1 (6) |
| H3A—C3—H3B | 109.5 | N1—C15—H15 | 118.0 |
| In2—C3—H3C | 109.5 | C14—C15—H15 | 118.0 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+1, −z+2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5663).
References
- Beachley, O. T. Jr, MacRae, D. J. & Kovalevsky, A. Y. (2003). Organometallics, 22, 1690–1695.
- Blake, M. P., Schwarz, A. D. & Mountford, P. (2011). Organometallics, 30, 1202–1214.
- Bradley, D. C., Frigo, D. M., Hursthouse, M. B. & Hussain, B. (1988). Organometallics, 7, 1112–1115.
- Brandenburg, K. (2012). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Briand, G. G., Decken, A. & Hamilton, N. S. (2010). Dalton Trans. 39, 3833–3841. [DOI] [PubMed]
- Bruker (1999). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Ghoshal, S., Wadawale, A., Jain, V. K. & Nethaji, M. (2007). J. Chem. Res. pp. 221–225.
- Hausslein, M., Hausen, H.-D., Klinkhammer, K. W., Weidlein, J. & Merz, K. (1999). Z. Anorg. Allg. Chem. 625, 1608–1618.
- Hu, J.-Z., Yang, M., Wu, X.-S., Pan, Y., Liu, Y.-J. & Sun, X.-Z. (1999). Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 15, 347–350.
- Lewinski, J., Zachara, J., Starowieyski, K. B., Ochal, Z., Justyniak, I., Kopec, T., Stolarzewicz, P. & Dranka, M. (2003). Organometallics, 22, 3773–3780.
- Pal, M. K., Kushwah, N., Manna, D., Wadawale, A., Sudarsan, V., Ghanty, T. K. & Jain, V. K. (2013). Organometallics, 32, 104–111.
- Sheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Trentler, T. J., Goel, S. C., Hickman, K. M., Viano, A. M., Chiang, M. Y., Beatty, A. M., Gibbons, P. C. & Buhro, W. E. (1997). J. Am. Chem. Soc. 119, 2172–2181.
- Wu, X.-S., Pan, Y., Sun, X.-Z. & Zhu, Y. (1999). Jiegou Huaxue (Chin. J. Struct. Chem.), 18, 418–422.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813028985/lh5663sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028985/lh5663Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536813028985/lh5663Isup3.cdx
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
