Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 2;69(Pt 11):o1598. doi: 10.1107/S1600536813026500

3-Isopropyl-1-{2-[(1-methyl-1H-tetra­zol-5-yl)sulfan­yl]acet­yl}-2,6-di­phenyl­piperidin-4-one hemihydrate

S Ganesan a,b, P Sugumar c, S Ananthan b, M N Ponnuswamy c,*
PMCID: PMC3884276  PMID: 24454052

Abstract

In the title compound, C24H27N5O2S·0.5H2O, the piperidine ring adopts a distorted boat conformation. The phenyl rings subtend dihedral angles of 69.7 (1) and 88.7 (1)° with the best plane through the piperidine moiety. In the crystal, symmetry-related mol­ecules are linked through a network of C—H⋯O and C—H⋯N inter­actions, the former connecting them into zigzag chains along the c-axis direction and the latter forming an R 2 2(4)motif. The dimer formation (C—H⋯N) and the repetition of symmetry-related molecules (C—H⋯O) along the b-axis direction stabilize the packing mode. The water mol­ecule is located on a twofold rotation axis.

Related literature  

For the biological activity of piperidine derivatives, see: Aridoss et al. (2009). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-69-o1598-scheme1.jpg

Experimental  

Crystal data  

  • C24H27N5O2S·0.5H2O

  • M r = 458.57

  • Monoclinic, Inline graphic

  • a = 28.7522 (9) Å

  • b = 11.1809 (4) Å

  • c = 16.5584 (5) Å

  • β = 115.303 (2)°

  • V = 4812.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.22 × 0.19 × 0.17 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.964, T max = 0.972

  • 22058 measured reflections

  • 6013 independent reflections

  • 4157 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.146

  • S = 1.04

  • 6013 reflections

  • 297 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813026500/bt6930sup1.cif

e-69-o1598-sup1.cif (24.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813026500/bt6930Isup2.hkl

e-69-o1598-Isup2.hkl (294.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813026500/bt6930Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25C⋯O1i 0.96 2.47 3.406 (3) 166
C18—H18⋯O1ii 0.93 2.54 3.312 (2) 140
C25—H25B⋯N4iii 0.96 2.54 3.472 (3) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

SG wishes to thank Orchid Chemicals and Pharmaceuticals Limited (www.orchidpharma.com), Chennai, India, for consent to perform the research. PS thanks the UGC, New Delhi, for financial support in the form of a Research Fellowship in Science for Meritorious Students.

supplementary crystallographic information

1. Comment

In a way to find piperidin-4-one based lead drug molecules for the antimicrobial therapy, various piperidin-4-ones were prepared by condensing N-chloroacetyl-2,6-diphenylpiperidin-4-one with 5-mercapto-(1-methyltetrazole) (Aridoss et al., 2009). 5-Mercapto-(1-methyl tetrazole) is the active part of a number of cephalosporanic drugs like Cefamandole, Cefoperazone, Cefmetazole sodium & Cefotetan and responsible for its activity. The present investigation was undertaken to establish the structure and conformation of the title compound by X-ray crystallographic methods.

The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts a distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983): q2=0.662 (2) Å, q3 = 0.079 (2) Å, φ2 = 76.86 (2)° and Δs(N1 & C4)= 74.11 (2)°.

The methyltetrazol ring is planar with the maximum deviation -0.003 (2) Å for N4 atom. The endocyclic bond lengths of N2–N3=1.362 (4)°, N3–N4= 1.278 (4) Å & N4–N5 = 1.348 (3) Å, clearly indicate that they are alternate single and double bonds.

The carbonyl group is almost anti-periplanar to C2 and C6, [C2—C3—C4—O1 = 155.9 (2)°; C6—C5—C4—O1= 151.1 (2)°]. The dihedral angles between the best plane through the piperidine ring and the phenyl rings are 69.7 (1)° & 88.7 (1)°. The two phenyl rings are oriented to each other with a dihedral angle of 70.5 (1)°.

Symmetry related molecules are linked through a network of intermolecular C—H···O and C—H···N interactions. C18–H18···O1 and C25–H25B···O1 connect the molecules to zigzag chains. Another motif R22(4), involving the weak interaction C25—H25A···N4 is shown in Fig. 2 (Bernstein et al., 1995).

2. Experimental

To anhydrous DMF(10 ml), N-Chloroacetyl-3-isopropyl-2,6-diphenylpiperidin-4-one (1 mole), 5-Mercapto-1-methyltetrazole(1 mole) followed by potassium carbonate (1.5 mole) was added and stirred for 1 hr at room temperature. The reaction mass was heated to 60°C and stirred and monitored using TLC. After completion of reaction, the reaction mass was quenched into water and the product was extracted with dichloromethane. The dichloromethane layer distilled completely and to the residue methanol was added and kept in overnight. The solid obtained was filtered and dried at 60° C under vacuum. Single crystals were obtained by re-crystallization using ethanol.

3. Refinement

H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms. The ADP value for the water molecules is rather high. Since the H atoms of the solvent water molecule could not be located, they were not included in the refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the molecules viewed down c axis.

Crystal data

C24H27N5O2S·0.5H2O F(000) = 1944
Mr = 458.57 Dx = 1.266 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4157 reflections
a = 28.7522 (9) Å θ = 2.5–28.5°
b = 11.1809 (4) Å µ = 0.17 mm1
c = 16.5584 (5) Å T = 293 K
β = 115.303 (2)° Block, white crystalline
V = 4812.4 (3) Å3 0.22 × 0.19 × 0.17 mm
Z = 8

Data collection

Bruker SMART APEXII CCD diffractometer 6013 independent reflections
Radiation source: fine-focus sealed tube 4157 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
ω and φ scans θmax = 28.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −38→37
Tmin = 0.964, Tmax = 0.972 k = −14→14
22058 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0657P)2 + 3.1292P] where P = (Fo2 + 2Fc2)/3
6013 reflections (Δ/σ)max < 0.001
297 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.36794 (6) 0.31060 (16) 0.37251 (12) 0.0412 (4)
H2 0.3603 0.2457 0.3289 0.049*
C3 0.40052 (7) 0.40262 (18) 0.35071 (12) 0.0492 (4)
H3 0.4339 0.3659 0.3635 0.059*
C4 0.41000 (7) 0.51029 (18) 0.41040 (13) 0.0519 (5)
C5 0.37256 (7) 0.52979 (16) 0.45051 (12) 0.0465 (4)
H5A 0.3715 0.6147 0.4617 0.056*
H5B 0.3856 0.4894 0.5078 0.056*
C6 0.31739 (6) 0.48676 (14) 0.39456 (11) 0.0388 (4)
H6 0.3012 0.5417 0.3441 0.047*
C7 0.28781 (6) 0.49375 (15) 0.45121 (11) 0.0402 (4)
C8 0.25431 (7) 0.58770 (17) 0.43993 (14) 0.0519 (5)
H8 0.2485 0.6437 0.3951 0.062*
C9 0.22951 (9) 0.5988 (2) 0.49479 (18) 0.0661 (6)
H9 0.2071 0.6625 0.4868 0.079*
C10 0.23757 (9) 0.5170 (2) 0.56082 (17) 0.0682 (6)
H10 0.2211 0.5253 0.5981 0.082*
C11 0.27031 (9) 0.4222 (2) 0.57168 (15) 0.0638 (6)
H11 0.2755 0.3657 0.6159 0.077*
C12 0.29535 (8) 0.41052 (17) 0.51762 (13) 0.0508 (4)
H12 0.3175 0.3464 0.5257 0.061*
C13 0.39463 (6) 0.25381 (16) 0.46536 (12) 0.0439 (4)
C14 0.36763 (7) 0.16991 (17) 0.48954 (14) 0.0525 (5)
H14 0.3345 0.1489 0.4490 0.063*
C15 0.38885 (9) 0.1164 (2) 0.57293 (15) 0.0640 (6)
H15 0.3698 0.0611 0.5883 0.077*
C16 0.43792 (9) 0.1451 (2) 0.63289 (16) 0.0708 (6)
H16 0.4522 0.1097 0.6891 0.085*
C17 0.46572 (8) 0.2261 (2) 0.60943 (16) 0.0712 (7)
H17 0.4991 0.2450 0.6498 0.085*
C18 0.44445 (7) 0.28039 (19) 0.52588 (14) 0.0570 (5)
H18 0.4638 0.3349 0.5106 0.068*
C19 0.37600 (8) 0.4421 (2) 0.25143 (14) 0.0598 (5)
H19 0.3441 0.4849 0.2402 0.072*
C20 0.36228 (12) 0.3358 (3) 0.18807 (16) 0.0836 (8)
H20A 0.3481 0.3639 0.1275 0.125*
H20B 0.3374 0.2867 0.1968 0.125*
H20C 0.3927 0.2896 0.2000 0.125*
C21 0.41134 (12) 0.5283 (3) 0.2321 (2) 0.1060 (11)
H21A 0.4432 0.4888 0.2434 0.159*
H21B 0.4181 0.5971 0.2701 0.159*
H21C 0.3950 0.5530 0.1707 0.159*
C22 0.27371 (6) 0.31101 (15) 0.30215 (11) 0.0386 (4)
C23 0.22425 (6) 0.37998 (17) 0.27937 (12) 0.0456 (4)
H23A 0.2283 0.4620 0.2643 0.055*
H23B 0.2159 0.3808 0.3303 0.055*
C24 0.12585 (7) 0.41117 (17) 0.17409 (13) 0.0499 (4)
C25 0.06530 (10) 0.3638 (2) 0.01369 (17) 0.0818 (8)
H25A 0.0921 0.3667 −0.0062 0.123*
H25B 0.0352 0.4030 −0.0292 0.123*
H25C 0.0573 0.2819 0.0199 0.123*
N1 0.31787 (5) 0.36569 (12) 0.35824 (9) 0.0368 (3)
N2 0.12550 (7) 0.48754 (19) 0.23410 (14) 0.0695 (5)
N3 0.08016 (8) 0.5478 (2) 0.19371 (18) 0.0833 (6)
N4 0.05421 (7) 0.51015 (18) 0.11397 (18) 0.0799 (6)
N5 0.08241 (6) 0.42381 (15) 0.09937 (12) 0.0600 (5)
O1 0.44618 (6) 0.57684 (16) 0.42809 (13) 0.0792 (5)
O2 0.27217 (5) 0.21064 (12) 0.27106 (9) 0.0508 (3)
S1 0.173492 (17) 0.30767 (4) 0.18556 (3) 0.04999 (15)
O1W 0.0000 0.7061 (7) 0.2500 0.373 (7)
H1W 0.0172 0.6692 0.2298 0.560*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0302 (8) 0.0449 (9) 0.0444 (9) −0.0009 (7) 0.0121 (7) −0.0003 (7)
C3 0.0349 (9) 0.0609 (12) 0.0488 (10) −0.0035 (8) 0.0152 (8) 0.0055 (8)
C4 0.0369 (9) 0.0564 (11) 0.0538 (11) −0.0119 (8) 0.0110 (8) 0.0054 (8)
C5 0.0403 (9) 0.0427 (9) 0.0481 (9) −0.0116 (7) 0.0109 (8) −0.0033 (7)
C6 0.0345 (8) 0.0355 (8) 0.0397 (8) −0.0034 (6) 0.0093 (7) 0.0020 (6)
C7 0.0379 (8) 0.0378 (9) 0.0405 (8) −0.0080 (7) 0.0125 (7) −0.0056 (6)
C8 0.0477 (10) 0.0447 (10) 0.0582 (11) −0.0021 (8) 0.0178 (9) −0.0059 (8)
C9 0.0559 (12) 0.0567 (13) 0.0906 (16) −0.0078 (10) 0.0360 (12) −0.0249 (12)
C10 0.0721 (14) 0.0690 (14) 0.0807 (15) −0.0302 (12) 0.0491 (13) −0.0313 (12)
C11 0.0796 (15) 0.0617 (13) 0.0586 (12) −0.0225 (11) 0.0377 (12) −0.0074 (10)
C12 0.0568 (11) 0.0444 (10) 0.0514 (10) −0.0058 (8) 0.0234 (9) −0.0009 (8)
C13 0.0315 (8) 0.0431 (9) 0.0488 (9) 0.0015 (7) 0.0091 (7) 0.0029 (7)
C14 0.0369 (9) 0.0475 (10) 0.0594 (11) −0.0039 (8) 0.0076 (9) 0.0079 (8)
C15 0.0550 (12) 0.0554 (12) 0.0684 (13) −0.0029 (10) 0.0138 (11) 0.0173 (10)
C16 0.0609 (13) 0.0701 (14) 0.0577 (12) 0.0018 (11) 0.0028 (11) 0.0188 (11)
C17 0.0433 (11) 0.0793 (15) 0.0615 (13) −0.0053 (11) −0.0057 (10) 0.0118 (11)
C18 0.0340 (9) 0.0624 (12) 0.0614 (12) −0.0061 (8) 0.0077 (9) 0.0094 (10)
C19 0.0508 (11) 0.0727 (14) 0.0510 (11) −0.0044 (10) 0.0170 (9) 0.0103 (10)
C20 0.096 (2) 0.0965 (19) 0.0498 (12) −0.0058 (16) 0.0236 (13) 0.0015 (12)
C21 0.104 (2) 0.139 (3) 0.0702 (16) −0.043 (2) 0.0331 (16) 0.0237 (17)
C22 0.0305 (8) 0.0454 (9) 0.0335 (7) −0.0032 (7) 0.0076 (6) 0.0004 (7)
C23 0.0312 (8) 0.0503 (10) 0.0426 (9) −0.0025 (7) 0.0036 (7) −0.0051 (8)
C24 0.0332 (9) 0.0517 (10) 0.0541 (10) −0.0021 (8) 0.0085 (8) 0.0071 (8)
C25 0.0601 (14) 0.0748 (16) 0.0668 (14) 0.0057 (12) −0.0146 (12) 0.0038 (12)
N1 0.0279 (6) 0.0386 (7) 0.0373 (7) −0.0025 (5) 0.0077 (5) −0.0008 (5)
N2 0.0495 (10) 0.0756 (13) 0.0749 (12) 0.0097 (9) 0.0185 (9) −0.0033 (10)
N3 0.0576 (12) 0.0761 (14) 0.1063 (17) 0.0158 (11) 0.0254 (12) −0.0021 (13)
N4 0.0472 (10) 0.0623 (12) 0.1054 (17) 0.0130 (9) 0.0089 (11) 0.0096 (11)
N5 0.0376 (8) 0.0515 (9) 0.0681 (11) 0.0017 (7) 0.0009 (8) 0.0113 (8)
O1 0.0542 (9) 0.0838 (11) 0.0987 (12) −0.0338 (8) 0.0320 (9) −0.0138 (9)
O2 0.0399 (7) 0.0483 (7) 0.0540 (7) −0.0035 (5) 0.0104 (6) −0.0138 (6)
S1 0.0327 (2) 0.0534 (3) 0.0470 (3) −0.00136 (19) 0.00093 (18) −0.0049 (2)
O1W 0.275 (9) 0.202 (7) 0.68 (2) 0.000 0.242 (13) 0.000

Geometric parameters (Å, º)

C2—N1 1.489 (2) C16—C17 1.370 (3)
C2—C13 1.532 (2) C16—H16 0.9300
C2—C3 1.535 (2) C17—C18 1.390 (3)
C2—H2 0.9800 C17—H17 0.9300
C3—C4 1.507 (3) C18—H18 0.9300
C3—C19 1.551 (3) C19—C20 1.522 (3)
C3—H3 0.9800 C19—C21 1.530 (3)
C4—O1 1.209 (2) C19—H19 0.9800
C4—C5 1.503 (3) C20—H20A 0.9600
C5—C6 1.533 (2) C20—H20B 0.9600
C5—H5A 0.9700 C20—H20C 0.9600
C5—H5B 0.9700 C21—H21A 0.9600
C6—N1 1.484 (2) C21—H21B 0.9600
C6—C7 1.514 (2) C21—H21C 0.9600
C6—H6 0.9800 C22—O2 1.228 (2)
C7—C8 1.383 (3) C22—N1 1.357 (2)
C7—C12 1.385 (3) C22—C23 1.517 (2)
C8—C9 1.379 (3) C23—S1 1.8052 (17)
C8—H8 0.9300 C23—H23A 0.9700
C9—C10 1.367 (4) C23—H23B 0.9700
C9—H9 0.9300 C24—N2 1.313 (3)
C10—C11 1.378 (3) C24—N5 1.338 (2)
C10—H10 0.9300 C24—S1 1.741 (2)
C11—C12 1.374 (3) C25—N5 1.452 (3)
C11—H11 0.9300 C25—H25A 0.9600
C12—H12 0.9300 C25—H25B 0.9600
C13—C14 1.382 (3) C25—H25C 0.9600
C13—C18 1.385 (2) N2—N3 1.362 (3)
C14—C15 1.384 (3) N3—N4 1.279 (3)
C14—H14 0.9300 N4—N5 1.347 (3)
C15—C16 1.372 (3) O1W—H1W 0.8163
C15—H15 0.9300
N1—C2—C13 111.48 (14) C17—C16—H16 120.2
N1—C2—C3 109.35 (14) C15—C16—H16 120.2
C13—C2—C3 114.81 (14) C16—C17—C18 120.61 (19)
N1—C2—H2 106.9 C16—C17—H17 119.7
C13—C2—H2 106.9 C18—C17—H17 119.7
C3—C2—H2 106.9 C13—C18—C17 120.36 (19)
C4—C3—C2 109.80 (15) C13—C18—H18 119.8
C4—C3—C19 109.92 (17) C17—C18—H18 119.8
C2—C3—C19 113.18 (15) C20—C19—C21 110.3 (2)
C4—C3—H3 107.9 C20—C19—C3 111.99 (19)
C2—C3—H3 107.9 C21—C19—C3 111.05 (18)
C19—C3—H3 107.9 C20—C19—H19 107.8
O1—C4—C5 120.56 (19) C21—C19—H19 107.8
O1—C4—C3 123.12 (19) C3—C19—H19 107.8
C5—C4—C3 116.29 (15) C19—C20—H20A 109.5
C4—C5—C6 116.04 (15) C19—C20—H20B 109.5
C4—C5—H5A 108.3 H20A—C20—H20B 109.5
C6—C5—H5A 108.3 C19—C20—H20C 109.5
C4—C5—H5B 108.3 H20A—C20—H20C 109.5
C6—C5—H5B 108.3 H20B—C20—H20C 109.5
H5A—C5—H5B 107.4 C19—C21—H21A 109.5
N1—C6—C7 113.78 (13) C19—C21—H21B 109.5
N1—C6—C5 110.17 (14) H21A—C21—H21B 109.5
C7—C6—C5 108.64 (14) C19—C21—H21C 109.5
N1—C6—H6 108.0 H21A—C21—H21C 109.5
C7—C6—H6 108.0 H21B—C21—H21C 109.5
C5—C6—H6 108.0 O2—C22—N1 123.69 (16)
C8—C7—C12 118.77 (18) O2—C22—C23 119.90 (15)
C8—C7—C6 119.93 (16) N1—C22—C23 116.41 (14)
C12—C7—C6 121.23 (16) C22—C23—S1 108.28 (12)
C9—C8—C7 120.4 (2) C22—C23—H23A 110.0
C9—C8—H8 119.8 S1—C23—H23A 110.0
C7—C8—H8 119.8 C22—C23—H23B 110.0
C10—C9—C8 120.5 (2) S1—C23—H23B 110.0
C10—C9—H9 119.7 H23A—C23—H23B 108.4
C8—C9—H9 119.7 N2—C24—N5 108.97 (18)
C9—C10—C11 119.5 (2) N2—C24—S1 127.57 (15)
C9—C10—H10 120.3 N5—C24—S1 123.46 (16)
C11—C10—H10 120.3 N5—C25—H25A 109.5
C12—C11—C10 120.5 (2) N5—C25—H25B 109.5
C12—C11—H11 119.8 H25A—C25—H25B 109.5
C10—C11—H11 119.8 N5—C25—H25C 109.5
C11—C12—C7 120.4 (2) H25A—C25—H25C 109.5
C11—C12—H12 119.8 H25B—C25—H25C 109.5
C7—C12—H12 119.8 C22—N1—C6 121.37 (13)
C14—C13—C18 118.14 (17) C22—N1—C2 118.73 (14)
C14—C13—C2 118.02 (15) C6—N1—C2 119.27 (13)
C18—C13—C2 123.84 (17) C24—N2—N3 105.37 (19)
C13—C14—C15 121.32 (18) N4—N3—N2 111.0 (2)
C13—C14—H14 119.3 N3—N4—N5 106.89 (18)
C15—C14—H14 119.3 C24—N5—N4 107.78 (19)
C16—C15—C14 120.0 (2) C24—N5—C25 130.34 (19)
C16—C15—H15 120.0 N4—N5—C25 121.86 (18)
C14—C15—H15 120.0 C24—S1—C23 96.05 (9)
C17—C16—C15 119.6 (2)
N1—C2—C3—C4 59.75 (18) C2—C13—C18—C17 179.1 (2)
C13—C2—C3—C4 −66.4 (2) C16—C17—C18—C13 0.4 (4)
N1—C2—C3—C19 −63.5 (2) C4—C3—C19—C20 −176.12 (19)
C13—C2—C3—C19 170.36 (17) C2—C3—C19—C20 −53.0 (2)
C2—C3—C4—O1 155.9 (2) C4—C3—C19—C21 60.0 (3)
C19—C3—C4—O1 −79.0 (2) C2—C3—C19—C21 −176.8 (2)
C2—C3—C4—C5 −22.2 (2) O2—C22—C23—S1 −14.3 (2)
C19—C3—C4—C5 102.97 (19) N1—C22—C23—S1 166.62 (12)
O1—C4—C5—C6 151.13 (19) O2—C22—N1—C6 −179.37 (15)
C3—C4—C5—C6 −30.8 (2) C23—C22—N1—C6 −0.3 (2)
C4—C5—C6—N1 45.1 (2) O2—C22—N1—C2 9.8 (2)
C4—C5—C6—C7 170.36 (15) C23—C22—N1—C2 −171.18 (14)
N1—C6—C7—C8 −135.30 (16) C7—C6—N1—C22 61.59 (19)
C5—C6—C7—C8 101.58 (18) C5—C6—N1—C22 −176.13 (14)
N1—C6—C7—C12 47.8 (2) C7—C6—N1—C2 −127.61 (15)
C5—C6—C7—C12 −75.3 (2) C5—C6—N1—C2 −5.3 (2)
C12—C7—C8—C9 0.9 (3) C13—C2—N1—C22 −107.47 (17)
C6—C7—C8—C9 −176.10 (17) C3—C2—N1—C22 124.49 (16)
C7—C8—C9—C10 −0.2 (3) C13—C2—N1—C6 81.48 (17)
C8—C9—C10—C11 −0.7 (3) C3—C2—N1—C6 −46.55 (19)
C9—C10—C11—C12 1.0 (3) N5—C24—N2—N3 0.1 (2)
C10—C11—C12—C7 −0.3 (3) S1—C24—N2—N3 −179.61 (17)
C8—C7—C12—C11 −0.7 (3) C24—N2—N3—N4 0.3 (3)
C6—C7—C12—C11 176.30 (17) N2—N3—N4—N5 −0.6 (3)
N1—C2—C13—C14 55.1 (2) N2—C24—N5—N4 −0.4 (2)
C3—C2—C13—C14 −179.87 (17) S1—C24—N5—N4 179.29 (15)
N1—C2—C13—C18 −125.88 (19) N2—C24—N5—C25 177.7 (2)
C3—C2—C13—C18 −0.8 (3) S1—C24—N5—C25 −2.5 (3)
C18—C13—C14—C15 2.1 (3) N3—N4—N5—C24 0.6 (3)
C2—C13—C14—C15 −178.76 (19) N3—N4—N5—C25 −177.7 (2)
C13—C14—C15—C16 −1.1 (4) N2—C24—S1—C23 −19.8 (2)
C14—C15—C16—C17 −0.4 (4) N5—C24—S1—C23 160.54 (17)
C15—C16—C17—C18 0.7 (4) C22—C23—S1—C24 −176.64 (13)
C14—C13—C18—C17 −1.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C25—H25C···O1i 0.96 2.47 3.406 (3) 166
C18—H18···O1ii 0.93 2.54 3.312 (2) 140
C25—H25B···N4iii 0.96 2.54 3.472 (3) 165

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6930).

References

  1. Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577–592. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2008). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813026500/bt6930sup1.cif

e-69-o1598-sup1.cif (24.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813026500/bt6930Isup2.hkl

e-69-o1598-Isup2.hkl (294.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813026500/bt6930Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES