Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 5;69(Pt 11):o1619. doi: 10.1107/S1600536813026706

8-Meth­oxy-3-methyl-3,4-di­hydro-2H-1,3-benzoxazine

Jing Zhu a,*, Xiang-Xiang Yang a, Long-Yu Xu a, Zhi-Dong Ren a, Ling-Bo Qu a
PMCID: PMC3884293  PMID: 24454069

Abstract

The title compound, C10H13NO2, crystallizes with two crystallographically independent mol­ecules of similar geometry in the asymmetric unit; the six-membered oxazine rings adopts a half-chair conformation. Neither hydrogen bonds nor π–π inter­actions are observed in the crystal structure.

Related literature  

For the synthesis and applications of 1,3-benzoxazines, see: Holly & Cope (1944); Gu et al. (1998); Zheng et al. (2011); Rimdusit & Ishida (2000); Stewart (2009); Ning & Ishida (1994). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-69-o1619-scheme1.jpg

Experimental  

Crystal data  

  • C10H13NO2

  • M r = 179.21

  • Monoclinic, Inline graphic

  • a = 23.4234 (14) Å

  • b = 5.0054 (3) Å

  • c = 15.9408 (10) Å

  • β = 97.210 (6)°

  • V = 1854.2 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 291 K

  • 0.22 × 0.20 × 0.18 mm

Data collection  

  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.783, T max = 1.000

  • 6857 measured reflections

  • 3281 independent reflections

  • 2471 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.114

  • S = 1.02

  • 3281 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813026706/rz5083sup1.cif

e-69-o1619-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813026706/rz5083Isup2.hkl

e-69-o1619-Isup2.hkl (161KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813026706/rz5083Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Ms Y. Zhu for technical assistance. This research was supported by the Science and Technology Department of Henan Province of the People’s Republic of China (grant No. 122102210111) and the Doctoral Scientific Fund Project of Henan University of Technology.

supplementary crystallographic information

1. Comment

Benzo[e][1,3]oxazines, which are synthesized by an amine, a phenolic compound and formaldehyde via Mannich reaction (Holly & Cope, 1944), are a useful class of heterocyclic compounds. They can be cured via thermal ring-opening polymerization to construct a novel class of thermosetting resins called polybenzoxazins (Ning & Ishida, 1994). Polybenzoxazines have been widely used as automobile braking materials (Gu et al., 1998), copper clad laminates (Zheng et al., 2011), electronic packaging materials (Rimdusit & Ishida, 2000), aircraft cabin sidewalls (Stewart, 2009). The title compound was prepared by reaction of 2-methoxyphenol, formaldehyde and methylamine and its crystal structure is described herein.

The asymmetric unit of the title compound consists of two crystallographically independent molecules of similar geometry (Fig. 1). In both molecules the six-membered oxazine rings adopt a half-chair conformation, with atoms N1, C1 and N1', C1' displaced on opposite sides of the C2-C4/O1 (r.m.s deviation 0.0017 Å) and C2'-C4'/O1' (r.m.s deviation 0.0024 Å) mean planes by 0.4941 (15), 0.2019 (17) Å and 0.3664 (16), 0.351 (2) Å, respectively. The puckering parameters (Cremer & Pople, 1975) are Q = 0.4664 (16) Å, θ = 129.48 (19)°, φ = -75.7 (2)° for ring O1/C1/N1/C2–C4, and Q = 0.4722 (17) Å, θ = 128.97 (18)°, φ = -89.0 (3)° for ring O1'/C1'/N1'/C2'–C4'. In the crystal structure, no hydrogen bonding or π–π stacking interactions are observed.

2. Experimental

Methylamine (40 wt% in water; 3.9 g, 0.05 mol), formaldehyde (37% wt in water; 8.1 g, 0.1 mol), 4-methoxyphenol (6.2 g, 0.05 mol) and 1, 4-dioxine (50 ml) were added to a 250 ml flask equipped with a condenser. The mixture was stirred at 90 °C for 5 h. After condensed by rotary evaporator, a yellowish-brown viscous liquid was obtained and set at room temperature for a few hours. After washing several times with methanol, a yellowish powder was precipitated. Anhydrous ether was used to dissolve the powder, and colourless crystals suitable for X-ray diffraction analysis were obtained by slow evoporation of the solvent.

3. Refinement

All H atoms were refined using a riding model approximation, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title complound with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C10H13NO2 F(000) = 768
Mr = 179.21 Dx = 1.284 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybc Cell parameters from 2369 reflections
a = 23.4234 (14) Å θ = 3.2–66.9°
b = 5.0054 (3) Å µ = 0.73 mm1
c = 15.9408 (10) Å T = 291 K
β = 97.210 (6)° Prism, colourless
V = 1854.2 (2) Å3 0.22 × 0.20 × 0.18 mm
Z = 8

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer 3281 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2471 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
Detector resolution: 16.2312 pixels mm-1 θmax = 67.1°, θmin = 3.8°
ω scans h = −19→27
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −3→5
Tmin = 0.783, Tmax = 1.000 l = −18→19
6857 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0524P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
3281 reflections Δρmax = 0.15 e Å3
240 parameters Δρmin = −0.16 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0041 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.93754 (5) 0.7027 (2) 0.81029 (8) 0.0481 (3)
O2 0.93639 (5) 1.0466 (3) 0.93130 (8) 0.0507 (3)
N1 0.89328 (8) 0.5131 (3) 0.67831 (9) 0.0538 (4)
C1 0.93598 (8) 0.4853 (3) 0.74936 (12) 0.0526 (4)
H1A 0.9734 0.4725 0.7294 0.063*
H1B 0.9293 0.3192 0.7779 0.063*
C2 0.83649 (9) 0.5122 (4) 0.70753 (12) 0.0549 (5)
H2A 0.8282 0.3343 0.7268 0.066*
H2B 0.8075 0.5574 0.6607 0.066*
C3 0.83340 (7) 0.7092 (3) 0.77871 (10) 0.0429 (4)
C4 0.88444 (7) 0.7904 (3) 0.82559 (10) 0.0384 (3)
C5 0.88378 (7) 0.9799 (3) 0.89037 (9) 0.0395 (3)
C6 0.83181 (8) 1.0838 (4) 0.90755 (11) 0.0498 (4)
H6 0.8309 1.2096 0.9503 0.060*
C7 0.78089 (8) 1.0000 (4) 0.86090 (12) 0.0566 (5)
H7 0.7460 1.0694 0.8729 0.068*
C8 0.78165 (8) 0.8159 (4) 0.79739 (12) 0.0540 (5)
H8 0.7472 0.7620 0.7665 0.065*
C9 0.90299 (11) 0.7484 (4) 0.62759 (12) 0.0672 (6)
H9A 0.8977 0.9070 0.6595 0.101*
H9B 0.8761 0.7481 0.5769 0.101*
H9C 0.9415 0.7445 0.6131 0.101*
C10 0.93882 (9) 1.2585 (4) 0.99146 (12) 0.0551 (5)
H10D 0.9778 1.2823 1.0170 0.083*
H10E 0.9150 1.2153 1.0343 0.083*
H10F 0.9253 1.4206 0.9635 0.083*
O1' 0.33443 (5) 0.5282 (3) 0.32961 (8) 0.0572 (4)
O2' 0.28466 (6) 0.1922 (3) 0.42062 (9) 0.0659 (4)
N1' 0.41648 (7) 0.7858 (3) 0.30046 (10) 0.0520 (4)
C1' 0.35547 (8) 0.7584 (4) 0.28753 (13) 0.0590 (5)
H1'A 0.3430 0.7444 0.2273 0.071*
H1'B 0.3383 0.9184 0.3078 0.071*
C2' 0.43450 (8) 0.8338 (4) 0.39037 (12) 0.0521 (4)
H2'A 0.4257 1.0171 0.4037 0.063*
H2'B 0.4759 0.8107 0.4020 0.063*
C3' 0.40554 (7) 0.6489 (3) 0.44663 (11) 0.0435 (4)
C4' 0.35742 (7) 0.5065 (3) 0.41245 (10) 0.0426 (4)
C5' 0.33050 (7) 0.3264 (4) 0.46242 (11) 0.0467 (4)
C6' 0.35111 (8) 0.2984 (4) 0.54686 (12) 0.0547 (5)
H6' 0.3334 0.1806 0.5806 0.066*
C7' 0.39836 (9) 0.4464 (4) 0.58138 (12) 0.0622 (5)
H7' 0.4118 0.4299 0.6386 0.075*
C8' 0.42559 (8) 0.6174 (4) 0.53176 (12) 0.0566 (5)
H8' 0.4577 0.7129 0.5555 0.068*
C9' 0.44587 (9) 0.5579 (4) 0.26797 (13) 0.0611 (5)
H9'A 0.4335 0.5381 0.2086 0.092*
H9'B 0.4367 0.3986 0.2971 0.092*
H9'C 0.4867 0.5870 0.2769 0.092*
C10' 0.25623 (10) 0.0001 (5) 0.46693 (16) 0.0750 (7)
H10A 0.2276 −0.0919 0.4292 0.113*
H10B 0.2381 0.0892 0.5099 0.113*
H10C 0.2839 −0.1262 0.4929 0.113*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0447 (6) 0.0478 (7) 0.0533 (7) 0.0041 (5) 0.0126 (5) −0.0065 (5)
O2 0.0476 (6) 0.0544 (8) 0.0491 (7) −0.0022 (5) 0.0019 (5) −0.0106 (5)
N1 0.0802 (11) 0.0369 (8) 0.0467 (8) −0.0029 (7) 0.0177 (7) −0.0041 (6)
C1 0.0652 (11) 0.0365 (9) 0.0600 (11) 0.0048 (8) 0.0233 (9) −0.0010 (8)
C2 0.0696 (11) 0.0432 (10) 0.0512 (10) −0.0098 (9) 0.0047 (8) −0.0056 (8)
C3 0.0495 (9) 0.0367 (9) 0.0425 (8) −0.0048 (7) 0.0052 (7) 0.0024 (7)
C4 0.0429 (8) 0.0342 (8) 0.0395 (8) 0.0005 (6) 0.0107 (6) 0.0052 (6)
C5 0.0440 (8) 0.0382 (8) 0.0367 (8) −0.0009 (6) 0.0070 (6) 0.0029 (6)
C6 0.0524 (9) 0.0531 (11) 0.0462 (9) 0.0048 (8) 0.0149 (7) −0.0062 (8)
C7 0.0420 (9) 0.0655 (13) 0.0641 (11) 0.0074 (8) 0.0137 (8) −0.0021 (9)
C8 0.0421 (9) 0.0594 (12) 0.0592 (11) −0.0060 (8) 0.0018 (7) 0.0027 (9)
C9 0.1094 (18) 0.0485 (11) 0.0476 (10) −0.0042 (11) 0.0247 (11) 0.0001 (8)
C10 0.0690 (12) 0.0457 (10) 0.0487 (10) −0.0082 (9) 0.0007 (8) −0.0047 (8)
O1' 0.0515 (7) 0.0706 (9) 0.0478 (7) −0.0120 (6) −0.0001 (5) 0.0058 (6)
O2' 0.0581 (8) 0.0701 (10) 0.0703 (9) −0.0205 (7) 0.0115 (7) 0.0027 (7)
N1' 0.0555 (9) 0.0455 (9) 0.0569 (9) 0.0002 (7) 0.0140 (7) 0.0066 (7)
C1' 0.0571 (11) 0.0656 (13) 0.0535 (10) 0.0049 (9) 0.0038 (8) 0.0141 (9)
C2' 0.0529 (10) 0.0394 (10) 0.0649 (11) −0.0051 (8) 0.0106 (8) −0.0029 (8)
C3' 0.0427 (8) 0.0380 (9) 0.0500 (9) 0.0045 (7) 0.0067 (7) −0.0041 (7)
C4' 0.0410 (8) 0.0437 (9) 0.0435 (8) 0.0047 (7) 0.0065 (6) 0.0002 (7)
C5' 0.0431 (8) 0.0435 (9) 0.0552 (9) 0.0022 (7) 0.0129 (7) 0.0000 (8)
C6' 0.0588 (10) 0.0534 (11) 0.0543 (10) 0.0077 (8) 0.0162 (8) 0.0108 (8)
C7' 0.0679 (12) 0.0727 (14) 0.0452 (10) 0.0100 (10) 0.0034 (8) 0.0042 (9)
C8' 0.0542 (10) 0.0595 (12) 0.0539 (10) −0.0021 (9) −0.0019 (8) −0.0070 (9)
C9' 0.0687 (12) 0.0534 (11) 0.0647 (12) −0.0026 (10) 0.0224 (9) −0.0002 (9)
C10' 0.0768 (14) 0.0602 (14) 0.0950 (17) −0.0200 (11) 0.0375 (13) −0.0054 (12)

Geometric parameters (Å, º)

O1—C1 1.456 (2) O1'—C1' 1.451 (2)
O1—C4 1.3695 (19) O1'—C4' 1.366 (2)
O2—C5 1.362 (2) O2'—C5' 1.367 (2)
O2—C10 1.426 (2) O2'—C10' 1.427 (2)
N1—C1 1.421 (3) N1'—C1' 1.425 (2)
N1—C2 1.464 (2) N1'—C2' 1.462 (2)
N1—C9 1.463 (2) N1'—C9' 1.461 (2)
C1—H1A 0.9700 C1'—H1'A 0.9700
C1—H1B 0.9700 C1'—H1'B 0.9700
C2—H2A 0.9700 C2'—H2'A 0.9700
C2—H2B 0.9700 C2'—H2'B 0.9700
C2—C3 1.512 (2) C2'—C3' 1.508 (2)
C3—C4 1.389 (2) C3'—C4' 1.386 (2)
C3—C8 1.391 (2) C3'—C8' 1.388 (3)
C4—C5 1.404 (2) C4'—C5' 1.404 (2)
C5—C6 1.382 (2) C5'—C6' 1.379 (3)
C6—H6 0.9300 C6'—H6' 0.9300
C6—C7 1.389 (3) C6'—C7' 1.387 (3)
C7—H7 0.9300 C7'—H7' 0.9300
C7—C8 1.370 (3) C7'—C8' 1.375 (3)
C8—H8 0.9300 C8'—H8' 0.9300
C9—H9A 0.9600 C9'—H9'A 0.9600
C9—H9B 0.9600 C9'—H9'B 0.9600
C9—H9C 0.9600 C9'—H9'C 0.9600
C10—H10D 0.9600 C10'—H10A 0.9600
C10—H10E 0.9600 C10'—H10B 0.9600
C10—H10F 0.9600 C10'—H10C 0.9600
C4—O1—C1 114.28 (13) C4'—O1'—C1' 113.24 (14)
C5—O2—C10 117.51 (14) C5'—O2'—C10' 117.90 (17)
C1—N1—C2 108.85 (14) C1'—N1'—C2' 108.58 (15)
C1—N1—C9 112.13 (16) C1'—N1'—C9' 112.47 (16)
C9—N1—C2 112.88 (17) C9'—N1'—C2' 112.64 (15)
O1—C1—H1A 108.6 O1'—C1'—H1'A 108.8
O1—C1—H1B 108.6 O1'—C1'—H1'B 108.8
N1—C1—O1 114.52 (14) N1'—C1'—O1' 113.74 (15)
N1—C1—H1A 108.6 N1'—C1'—H1'A 108.8
N1—C1—H1B 108.6 N1'—C1'—H1'B 108.8
H1A—C1—H1B 107.6 H1'A—C1'—H1'B 107.7
N1—C2—H2A 109.3 N1'—C2'—H2'A 109.0
N1—C2—H2B 109.3 N1'—C2'—H2'B 109.0
N1—C2—C3 111.61 (15) N1'—C2'—C3' 112.71 (14)
H2A—C2—H2B 108.0 H2'A—C2'—H2'B 107.8
C3—C2—H2A 109.3 C3'—C2'—H2'A 109.0
C3—C2—H2B 109.3 C3'—C2'—H2'B 109.0
C4—C3—C2 118.41 (16) C4'—C3'—C2' 119.09 (15)
C4—C3—C8 119.13 (16) C4'—C3'—C8' 118.99 (17)
C8—C3—C2 122.45 (16) C8'—C3'—C2' 121.92 (16)
O1—C4—C3 123.36 (15) O1'—C4'—C3' 122.78 (16)
O1—C4—C5 116.23 (14) O1'—C4'—C5' 116.67 (15)
C3—C4—C5 120.36 (15) C3'—C4'—C5' 120.54 (16)
O2—C5—C4 115.17 (14) O2'—C5'—C4' 114.85 (16)
O2—C5—C6 125.41 (15) O2'—C5'—C6' 125.68 (17)
C6—C5—C4 119.42 (15) C6'—C5'—C4' 119.48 (17)
C5—C6—H6 120.0 C5'—C6'—H6' 120.1
C5—C6—C7 119.92 (16) C5'—C6'—C7' 119.81 (18)
C7—C6—H6 120.0 C7'—C6'—H6' 120.1
C6—C7—H7 119.7 C6'—C7'—H7' 119.7
C8—C7—C6 120.57 (17) C8'—C7'—C6' 120.59 (18)
C8—C7—H7 119.7 C8'—C7'—H7' 119.7
C3—C8—H8 119.7 C3'—C8'—H8' 119.7
C7—C8—C3 120.59 (16) C7'—C8'—C3' 120.55 (18)
C7—C8—H8 119.7 C7'—C8'—H8' 119.7
N1—C9—H9A 109.5 N1'—C9'—H9'A 109.5
N1—C9—H9B 109.5 N1'—C9'—H9'B 109.5
N1—C9—H9C 109.5 N1'—C9'—H9'C 109.5
H9A—C9—H9B 109.5 H9'A—C9'—H9'B 109.5
H9A—C9—H9C 109.5 H9'A—C9'—H9'C 109.5
H9B—C9—H9C 109.5 H9'B—C9'—H9'C 109.5
O2—C10—H10D 109.5 O2'—C10'—H10A 109.5
O2—C10—H10E 109.5 O2'—C10'—H10B 109.5
O2—C10—H10F 109.5 O2'—C10'—H10C 109.5
H10D—C10—H10E 109.5 H10A—C10'—H10B 109.5
H10D—C10—H10F 109.5 H10A—C10'—H10C 109.5
H10E—C10—H10F 109.5 H10B—C10'—H10C 109.5
O1—C4—C5—O2 −1.7 (2) O1'—C4'—C5'—O2' 0.8 (2)
O1—C4—C5—C6 177.98 (15) O1'—C4'—C5'—C6' −179.01 (16)
O2—C5—C6—C7 179.74 (17) O2'—C5'—C6'—C7' 179.68 (18)
N1—C2—C3—C4 −21.6 (2) N1'—C2'—C3'—C4' −15.2 (2)
N1—C2—C3—C8 156.76 (17) N1'—C2'—C3'—C8' 164.96 (17)
C1—O1—C4—C3 −9.1 (2) C1'—O1'—C4'—C3' −14.7 (2)
C1—O1—C4—C5 173.47 (14) C1'—O1'—C4'—C5' 166.48 (16)
C1—N1—C2—C3 50.6 (2) C1'—N1'—C2'—C3' 45.4 (2)
C2—N1—C1—O1 −62.57 (19) C2'—N1'—C1'—O1' −64.2 (2)
C2—C3—C4—O1 0.5 (2) C2'—C3'—C4'—O1' −0.7 (2)
C2—C3—C4—C5 177.80 (15) C2'—C3'—C4'—C5' 178.01 (16)
C2—C3—C8—C7 −178.06 (18) C2'—C3'—C8'—C7' −179.74 (18)
C3—C4—C5—O2 −179.24 (14) C3'—C4'—C5'—O2' −177.96 (15)
C3—C4—C5—C6 0.5 (2) C3'—C4'—C5'—C6' 2.2 (3)
C4—O1—C1—N1 41.2 (2) C4'—O1'—C1'—N1' 48.5 (2)
C4—C3—C8—C7 0.3 (3) C4'—C3'—C8'—C7' 0.4 (3)
C4—C5—C6—C7 0.1 (3) C4'—C5'—C6'—C7' −0.5 (3)
C5—C6—C7—C8 −0.4 (3) C5'—C6'—C7'—C8' −1.2 (3)
C6—C7—C8—C3 0.2 (3) C6'—C7'—C8'—C3' 1.3 (3)
C8—C3—C4—O1 −178.00 (15) C8'—C3'—C4'—O1' 179.13 (16)
C8—C3—C4—C5 −0.7 (2) C8'—C3'—C4'—C5' −2.1 (3)
C9—N1—C1—O1 63.0 (2) C9'—N1'—C1'—O1' 61.2 (2)
C9—N1—C2—C3 −74.6 (2) C9'—N1'—C2'—C3' −79.85 (19)
C10—O2—C5—C4 173.49 (14) C10'—O2'—C5'—C4' 178.22 (17)
C10—O2—C5—C6 −6.2 (2) C10'—O2'—C5'—C6' −1.9 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5083).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies Inc., Santa Clara, CA, USA.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Gu, Y., Xie, M. L., Liu, X. H., Li, Y., Zhang, J. H., Ling, H., Huang, Y. & Hu, Z. (1998). Chem. Ind. Eng. Prog. pp. 43–47.
  5. Holly, F. W. & Cope, A. C. (1944). J. Am. Chem. Soc. 66, 1875–1879.
  6. Ning, X. & Ishida, H. (1994). J. Polym. Sci. Part A Polym. Chem. 32, 1121–1129.
  7. Rimdusit, S. & Ishida, H. (2000). Polymer, 41, 7941–7949.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Stewart, R. (2009). Reinforced Plastics, 53, 28–33.
  10. Zheng, L., Zhang, C., Wang, Z., Zhao, P., Liu, X. & Gu, Y. (2011). J. Aero. Mater. 31, 62–66.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813026706/rz5083sup1.cif

e-69-o1619-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813026706/rz5083Isup2.hkl

e-69-o1619-Isup2.hkl (161KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813026706/rz5083Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES