Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 9;69(Pt 11):o1622. doi: 10.1107/S160053681302730X

N-(1,3-Benzo­thia­zol-2-yl)acetamide

Prakash S Nayak a, B Narayana a, Jerry P Jasinski b,*, H S Yathirajan c, Manpreet Kaur c
PMCID: PMC3884296  PMID: 24454072

Abstract

The title compound, C9H8N2OS, crystallizes with two mol­ecules (A and B) in the asymmetric unit. The dihedral angles between the mean planes of the 1,3-benzo­thia­zol-2-yl ring system and the acetamide group are 2.7 (4) (mol­ecule A) and 7.2 (2) Å (mol­ecule B). In the crystal, pairs of N—H⋯N hydrogen bonds link the A and B mol­ecules into dimers, generating R 2 2(8) loops. The dimers stack along [100].

Related literature  

For the related crystal structure of the acetamide derivatives, see: Jasinski et al. (2013); Fun et al. (2011a ,b , 2012).graphic file with name e-69-o1622-scheme1.jpg

Experimental  

Crystal data  

  • C9H8N2OS

  • M r = 192.24

  • Monoclinic, Inline graphic

  • a = 11.1852 (4) Å

  • b = 7.4037 (4) Å

  • c = 20.9189 (8) Å

  • β = 94.408 (3)°

  • V = 1727.21 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 173 K

  • 0.45 × 0.24 × 0.15 mm

Data collection  

  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012)T min = 0.770, T max = 1.000

  • 20845 measured reflections

  • 5918 independent reflections

  • 4622 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.109

  • S = 1.08

  • 5918 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681302730X/hb7144sup1.cif

e-69-o1622-sup1.cif (25.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681302730X/hb7144Isup2.hkl

e-69-o1622-Isup2.hkl (324.3KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681302730X/hb7144Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A⋯N1B 0.86 2.11 2.9700 (16) 176
N2B—H2B⋯N1A 0.86 2.14 2.9749 (16) 165

Acknowledgments

BN thanks the UGC for financial assistance through BSR one time grant for the purchase of chemicals and DST–PURSE for financial assistance. HSY thanks University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

1. Comment

In continuation of our work on the synthesis of acetamide derivatives (Jasinski et al. 2013), we report herein the crystal structure of the title compound, C9H8N2OS, (I). Some of the related crystal structures of similar acetamide derivatives include, N-(3-chloro-4-fluorophenyl)acetamide, N-(4-bromophenyl)-2-(naphthalen-1- yl)acetamide and N-(3,5-dichlorophenyl)-2-(naphthalen-1-yl)acetamide (Fun et al. 2011a,b, 2012).

The title compound, (I) crystallizes with two independent molecules (A & B) in the asymmetric unit (Fig.1). The dihedral angle between the mean planes of the 1,3-benzothiazol-2-yl ring and the acetamide group is 2.7 (4)° (A) and 7.2 (2)Å (B),(Fig. 2). In the crystal, N—H···N hydrogen bonds forming R22(8) graph set motifs which link the molecules into dimers, which stack along [100].

2. Experimental

2-Aminobenzothiazole (1 mmol) were dissolved in a 30 ml acetic acid and it was refluxed for 3 hrs (Fig.3). The reaction mixture was cooled and poured into ice cold water. The precipitate obtained was obtained by filtration and recrystallized in ethanol. Colorless blocks were grown from methanol solution by the slow evaporation method and was used as such for X-ray studies (M.P.: 453-455 K).

3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.96Å (CH3) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH) or 1.5 (CH3) times Ueq of the parent atom. Idealised methyl were refined as rotating groups.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of (I) showing 50% probability displacement ellipsoids. Dashed lines indicate N—H···N intermolecular hydrogen bonds between A and B forming R22(8) graph set motifs.

Fig. 2.

Fig. 2.

Molecular packing for (I) viewed along the b axis. Dashed lines indicate N—H···N intermolecular hydrogen bonds forming R22(8) graph set motifs which link the molecules into dimers along [100]. H atoms not involved in hydrogen bonding have been removed for clarity.

Fig. 3.

Fig. 3.

Synthesis scheme for (I).

Crystal data

C9H8N2OS Dx = 1.479 Mg m3
Mr = 192.24 Melting point: 453 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.1852 (4) Å Cell parameters from 5326 reflections
b = 7.4037 (4) Å θ = 3.3–32.7°
c = 20.9189 (8) Å µ = 0.33 mm1
β = 94.408 (3)° T = 173 K
V = 1727.21 (13) Å3 Block, colorless
Z = 8 0.45 × 0.24 × 0.15 mm
F(000) = 800

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer 5918 independent reflections
Radiation source: Enhance (Mo) X-ray Source 4622 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1 Rint = 0.033
ω scans θmax = 32.8°, θmin = 3.3°
Absorption correction: multi-scan CrysAlis PRO and CrysAlis RED, Agilent (2012). h = −16→16
Tmin = 0.770, Tmax = 1.000 k = −10→9
20845 measured reflections l = −30→31

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.045P)2 + 0.4973P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
5918 reflections Δρmax = 0.44 e Å3
237 parameters Δρmin = −0.26 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.38148 (3) 0.72688 (5) 0.50197 (2) 0.02464 (9)
O1A 0.45185 (9) 0.64286 (18) 0.62295 (5) 0.0349 (3)
N1A 0.58652 (10) 0.79642 (18) 0.45587 (5) 0.0242 (2)
N2A 0.60552 (10) 0.72112 (17) 0.56435 (5) 0.0232 (2)
H2A 0.6815 0.7393 0.5650 0.028*
C1A 0.53676 (11) 0.75086 (19) 0.50776 (6) 0.0208 (3)
C2A 0.49856 (11) 0.8192 (2) 0.40579 (6) 0.0228 (3)
C3A 0.51887 (13) 0.8704 (2) 0.34317 (7) 0.0301 (3)
H3A 0.5961 0.8949 0.3320 0.036*
C4A 0.42227 (14) 0.8841 (2) 0.29819 (7) 0.0315 (3)
H4A 0.4349 0.9165 0.2563 0.038*
C5A 0.30593 (13) 0.8500 (2) 0.31478 (7) 0.0303 (3)
H5A 0.2423 0.8596 0.2837 0.036*
C6A 0.28360 (13) 0.8024 (2) 0.37647 (7) 0.0284 (3)
H6A 0.2059 0.7813 0.3876 0.034*
C7A 0.38110 (12) 0.7869 (2) 0.42159 (6) 0.0225 (3)
C8A 0.55898 (12) 0.6640 (2) 0.61966 (6) 0.0241 (3)
C9A 0.64887 (14) 0.6310 (2) 0.67511 (7) 0.0312 (3)
H9AA 0.7267 0.6141 0.6597 0.047*
H9AB 0.6268 0.5247 0.6977 0.047*
H9AC 0.6508 0.7329 0.7035 0.047*
S1B 1.06929 (3) 0.76516 (5) 0.50481 (2) 0.02415 (9)
O1B 0.99661 (9) 0.63954 (18) 0.38920 (5) 0.0338 (3)
N1B 0.86730 (10) 0.77933 (17) 0.55907 (5) 0.0230 (2)
N2B 0.84393 (10) 0.70106 (17) 0.45051 (5) 0.0232 (2)
H2B 0.7673 0.7064 0.4517 0.028*
C1B 0.91433 (11) 0.74614 (19) 0.50500 (6) 0.0200 (2)
C2B 0.95787 (11) 0.8261 (2) 0.60567 (6) 0.0210 (3)
C3B 0.94173 (13) 0.8677 (2) 0.66959 (7) 0.0288 (3)
H3B 0.8654 0.8664 0.6844 0.035*
C4B 1.04033 (14) 0.9107 (2) 0.71058 (7) 0.0316 (3)
H4B 1.0302 0.9376 0.7533 0.038*
C5B 1.15469 (13) 0.9140 (2) 0.68865 (7) 0.0303 (3)
H5B 1.2198 0.9446 0.7169 0.036*
C6B 1.17329 (12) 0.8727 (2) 0.62580 (7) 0.0273 (3)
H6B 1.2499 0.8745 0.6114 0.033*
C7B 1.07368 (11) 0.8283 (2) 0.58475 (6) 0.0219 (3)
C8B 0.88922 (12) 0.6480 (2) 0.39429 (6) 0.0242 (3)
C9B 0.79789 (13) 0.5998 (2) 0.34107 (7) 0.0300 (3)
H9BA 0.7214 0.5827 0.3581 0.045*
H9BB 0.8214 0.4902 0.3210 0.045*
H9BC 0.7922 0.6954 0.3100 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.01604 (15) 0.0370 (2) 0.02094 (15) −0.00082 (13) 0.00206 (11) 0.00004 (13)
O1A 0.0235 (5) 0.0539 (8) 0.0277 (5) −0.0055 (5) 0.0038 (4) 0.0070 (5)
N1A 0.0172 (5) 0.0334 (7) 0.0218 (5) −0.0006 (4) 0.0010 (4) 0.0034 (5)
N2A 0.0165 (5) 0.0327 (7) 0.0203 (5) −0.0008 (4) 0.0007 (4) 0.0012 (5)
C1A 0.0166 (5) 0.0248 (7) 0.0211 (6) 0.0002 (5) 0.0012 (4) −0.0005 (5)
C2A 0.0187 (6) 0.0268 (7) 0.0226 (6) 0.0007 (5) 0.0003 (5) 0.0013 (5)
C3A 0.0244 (7) 0.0408 (9) 0.0253 (7) 0.0003 (6) 0.0038 (5) 0.0061 (6)
C4A 0.0329 (8) 0.0394 (9) 0.0222 (6) 0.0038 (6) 0.0014 (5) 0.0054 (6)
C5A 0.0278 (7) 0.0382 (9) 0.0239 (6) 0.0065 (6) −0.0045 (5) −0.0010 (6)
C6A 0.0201 (6) 0.0391 (9) 0.0256 (6) 0.0033 (6) −0.0010 (5) −0.0024 (6)
C7A 0.0192 (6) 0.0273 (7) 0.0210 (6) 0.0017 (5) 0.0015 (4) −0.0012 (5)
C8A 0.0243 (6) 0.0273 (7) 0.0206 (6) −0.0008 (5) 0.0015 (5) −0.0001 (5)
C9A 0.0303 (7) 0.0387 (9) 0.0240 (7) 0.0007 (6) −0.0016 (5) 0.0046 (6)
S1B 0.01533 (15) 0.0370 (2) 0.02013 (15) −0.00067 (12) 0.00165 (11) −0.00226 (13)
O1B 0.0229 (5) 0.0521 (8) 0.0269 (5) −0.0017 (5) 0.0051 (4) −0.0072 (5)
N1B 0.0174 (5) 0.0326 (7) 0.0190 (5) 0.0015 (4) 0.0010 (4) −0.0006 (4)
N2B 0.0154 (5) 0.0346 (7) 0.0193 (5) −0.0008 (4) −0.0010 (4) −0.0007 (5)
C1B 0.0154 (5) 0.0247 (7) 0.0199 (5) 0.0008 (4) 0.0002 (4) 0.0008 (5)
C2B 0.0181 (6) 0.0251 (7) 0.0194 (6) 0.0021 (5) −0.0005 (4) 0.0006 (5)
C3B 0.0244 (7) 0.0398 (9) 0.0223 (6) 0.0002 (6) 0.0030 (5) −0.0037 (6)
C4B 0.0332 (8) 0.0413 (9) 0.0200 (6) −0.0007 (6) −0.0002 (5) −0.0040 (6)
C5B 0.0277 (7) 0.0366 (9) 0.0252 (7) −0.0039 (6) −0.0065 (5) −0.0018 (6)
C6B 0.0194 (6) 0.0369 (9) 0.0249 (6) −0.0025 (5) −0.0020 (5) −0.0010 (6)
C7B 0.0191 (6) 0.0255 (7) 0.0209 (6) 0.0006 (5) 0.0001 (4) 0.0006 (5)
C8B 0.0226 (6) 0.0297 (8) 0.0203 (6) −0.0026 (5) 0.0010 (5) −0.0004 (5)
C9B 0.0310 (7) 0.0377 (9) 0.0208 (6) −0.0051 (6) −0.0014 (5) −0.0038 (6)

Geometric parameters (Å, º)

S1A—C1A 1.7407 (13) S1B—C1B 1.7392 (13)
S1A—C7A 1.7390 (14) S1B—C7B 1.7333 (13)
O1A—C8A 1.2156 (17) O1B—C8B 1.2157 (16)
N1A—C1A 1.3018 (17) N1B—C1B 1.3068 (16)
N1A—C2A 1.3913 (17) N1B—C2B 1.3945 (17)
N2A—H2A 0.8600 N2B—H2B 0.8600
N2A—C1A 1.3791 (17) N2B—C1B 1.3757 (16)
N2A—C8A 1.3715 (17) N2B—C8B 1.3733 (17)
C2A—C3A 1.3989 (19) C2B—C3B 1.3974 (18)
C2A—C7A 1.3997 (18) C2B—C7B 1.3988 (18)
C3A—H3A 0.9300 C3B—H3B 0.9300
C3A—C4A 1.381 (2) C3B—C4B 1.381 (2)
C4A—H4A 0.9300 C4B—H4B 0.9300
C4A—C5A 1.395 (2) C4B—C5B 1.392 (2)
C5A—H5A 0.9300 C5B—H5B 0.9300
C5A—C6A 1.379 (2) C5B—C6B 1.381 (2)
C6A—H6A 0.9300 C6B—H6B 0.9300
C6A—C7A 1.3910 (19) C6B—C7B 1.3928 (18)
C8A—C9A 1.4957 (19) C8B—C9B 1.4952 (19)
C9A—H9AA 0.9600 C9B—H9BA 0.9600
C9A—H9AB 0.9600 C9B—H9BB 0.9600
C9A—H9AC 0.9600 C9B—H9BC 0.9600
C7A—S1A—C1A 88.25 (6) C7B—S1B—C1B 88.51 (6)
C1A—N1A—C2A 109.66 (11) C1B—N1B—C2B 109.42 (11)
C1A—N2A—H2A 118.3 C1B—N2B—H2B 118.2
C8A—N2A—H2A 118.3 C8B—N2B—H2B 118.2
C8A—N2A—C1A 123.41 (12) C8B—N2B—C1B 123.62 (11)
N1A—C1A—S1A 117.17 (10) N1B—C1B—S1B 117.01 (10)
N1A—C1A—N2A 120.74 (12) N1B—C1B—N2B 121.32 (12)
N2A—C1A—S1A 122.08 (10) N2B—C1B—S1B 121.66 (10)
N1A—C2A—C3A 125.57 (12) N1B—C2B—C3B 125.69 (12)
N1A—C2A—C7A 115.07 (12) N1B—C2B—C7B 115.13 (11)
C3A—C2A—C7A 119.36 (12) C3B—C2B—C7B 119.18 (12)
C2A—C3A—H3A 120.6 C2B—C3B—H3B 120.4
C4A—C3A—C2A 118.89 (13) C4B—C3B—C2B 119.29 (13)
C4A—C3A—H3A 120.6 C4B—C3B—H3B 120.4
C3A—C4A—H4A 119.6 C3B—C4B—H4B 119.7
C3A—C4A—C5A 120.87 (13) C3B—C4B—C5B 120.63 (13)
C5A—C4A—H4A 119.6 C5B—C4B—H4B 119.7
C4A—C5A—H5A 119.4 C4B—C5B—H5B 119.4
C6A—C5A—C4A 121.23 (13) C6B—C5B—C4B 121.29 (13)
C6A—C5A—H5A 119.4 C6B—C5B—H5B 119.4
C5A—C6A—H6A 121.1 C5B—C6B—H6B 121.1
C5A—C6A—C7A 117.84 (13) C5B—C6B—C7B 117.86 (13)
C7A—C6A—H6A 121.1 C7B—C6B—H6B 121.1
C2A—C7A—S1A 109.84 (10) C2B—C7B—S1B 109.90 (10)
C6A—C7A—S1A 128.36 (11) C6B—C7B—S1B 128.35 (10)
C6A—C7A—C2A 121.80 (12) C6B—C7B—C2B 121.74 (12)
O1A—C8A—N2A 121.82 (13) O1B—C8B—N2B 121.45 (12)
O1A—C8A—C9A 122.81 (13) O1B—C8B—C9B 123.07 (13)
N2A—C8A—C9A 115.37 (12) N2B—C8B—C9B 115.48 (12)
C8A—C9A—H9AA 109.5 C8B—C9B—H9BA 109.5
C8A—C9A—H9AB 109.5 C8B—C9B—H9BB 109.5
C8A—C9A—H9AC 109.5 C8B—C9B—H9BC 109.5
H9AA—C9A—H9AB 109.5 H9BA—C9B—H9BB 109.5
H9AA—C9A—H9AC 109.5 H9BA—C9B—H9BC 109.5
H9AB—C9A—H9AC 109.5 H9BB—C9B—H9BC 109.5
N1A—C2A—C3A—C4A 178.73 (15) N1B—C2B—C3B—C4B 179.62 (15)
N1A—C2A—C7A—S1A 0.23 (17) N1B—C2B—C7B—S1B −1.33 (16)
N1A—C2A—C7A—C6A −179.33 (14) N1B—C2B—C7B—C6B 179.88 (14)
C1A—S1A—C7A—C2A 0.29 (11) C1B—S1B—C7B—C2B 1.31 (11)
C1A—S1A—C7A—C6A 179.81 (15) C1B—S1B—C7B—C6B 180.00 (15)
C1A—N1A—C2A—C3A 179.14 (15) C1B—N1B—C2B—C3B −178.89 (15)
C1A—N1A—C2A—C7A −0.81 (19) C1B—N1B—C2B—C7B 0.50 (18)
C1A—N2A—C8A—O1A −3.1 (2) C1B—N2B—C8B—O1B −0.8 (2)
C1A—N2A—C8A—C9A 177.18 (14) C1B—N2B—C8B—C9B 178.36 (13)
C2A—N1A—C1A—S1A 1.07 (16) C2B—N1B—C1B—S1B 0.60 (16)
C2A—N1A—C1A—N2A −179.72 (13) C2B—N1B—C1B—N2B −178.39 (13)
C2A—C3A—C4A—C5A 0.9 (3) C2B—C3B—C4B—C5B 0.4 (3)
C3A—C2A—C7A—S1A −179.73 (12) C3B—C2B—C7B—S1B 178.10 (12)
C3A—C2A—C7A—C6A 0.7 (2) C3B—C2B—C7B—C6B −0.7 (2)
C3A—C4A—C5A—C6A 0.3 (3) C3B—C4B—C5B—C6B −0.7 (3)
C4A—C5A—C6A—C7A −0.9 (3) C4B—C5B—C6B—C7B 0.3 (2)
C5A—C6A—C7A—S1A −179.09 (13) C5B—C6B—C7B—S1B −178.14 (13)
C5A—C6A—C7A—C2A 0.4 (2) C5B—C6B—C7B—C2B 0.4 (2)
C7A—S1A—C1A—N1A −0.82 (12) C7B—S1B—C1B—N1B −1.16 (12)
C7A—S1A—C1A—N2A 179.98 (13) C7B—S1B—C1B—N2B 177.82 (12)
C7A—C2A—C3A—C4A −1.3 (2) C7B—C2B—C3B—C4B 0.2 (2)
C8A—N2A—C1A—S1A 2.6 (2) C8B—N2B—C1B—S1B 7.6 (2)
C8A—N2A—C1A—N1A −176.56 (14) C8B—N2B—C1B—N1B −173.46 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2A—H2A···N1B 0.86 2.11 2.9700 (16) 176
N2B—H2B···N1A 0.86 2.14 2.9749 (16) 165

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7144).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Fun, H.-K., Loh, W.-S., Shetty, D. N., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1348. [DOI] [PMC free article] [PubMed]
  4. Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927. [DOI] [PMC free article] [PubMed]
  5. Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942. [DOI] [PMC free article] [PubMed]
  6. Jasinski, J. P., Guild, C. J., Yathirajan, H. S., Narayana, B. & Samshuddin, S. (2013). Acta Cryst. E69, o461. [DOI] [PMC free article] [PubMed]
  7. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681302730X/hb7144sup1.cif

e-69-o1622-sup1.cif (25.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681302730X/hb7144Isup2.hkl

e-69-o1622-Isup2.hkl (324.3KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681302730X/hb7144Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES