Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 12;69(Pt 11):o1633–o1634. doi: 10.1107/S1600536813027505

4,4′-Oxybis(2,6-di­methyl­pyridinium) bis­(tri­fluoro­methane­sulfonate)

Amanda W Stubbs a, James A Golen b, Arnold L Rheingold b, David R Manke a,*
PMCID: PMC3884303  PMID: 24454079

Abstract

In the asymmetric unit of the title salt, C14H18N2O2+·2CF3O3S, the components are linked by two N—H⋯O and one C—H⋯O hydrogen bonds. The dipyridinium salt demonstrates a skew conformation based upon C—O—C—C torsion angles of 61.5 (3) and 15.1 (4)°. A C—O—C angle of 119.3 (2)° and C—O bond distances of 1.364 (3) and 1.389 (3) Å are consistent with other dipyridyl ethers. The planes of the pyridyl rings exhibit a twist angle of 67.89 (8)°. One of the tri­fluoro­methane­sulfonate ions shows disorder of the F atoms [in a 0.52 (7):0.48 (7) occupancy ratio] and an O atom [0.64 (8):0.36 (8) occupancy ratio]. In the crystal, the components are linked by C—H⋯O inter­actions, which form chains along [101].

Related literature  

For the structure of the unsubstituted 4,4′-oxybisdi­pyridine, see: Dunne et al. (1996). For the structure of bis­[4′-(2,2′:6′,2′′-terpyridin­yl)]ether, see: Constable et al. (1995). For the stuctures of the neutral ether 9,9′-oxybisacridine and its dication, see: Maas (1985). For a description of conformations in bridged di­phenyls, see: van der Heijden et al. (1975).graphic file with name e-69-o1633-scheme1.jpg

Experimental  

Crystal data  

  • C14H18N2O2+·2CF3O3S

  • M r = 528.44

  • Monoclinic, Inline graphic

  • a = 12.7397 (18) Å

  • b = 11.3610 (16) Å

  • c = 15.611 (2) Å

  • β = 101.405 (4)°

  • V = 2214.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100 K

  • 0.24 × 0.18 × 0.10 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.925, T max = 0.968

  • 15390 measured reflections

  • 4360 independent reflections

  • 3546 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.125

  • S = 1.09

  • 4360 reflections

  • 316 parameters

  • 53 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.94 e Å−3

  • Δρmin = −1.04 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813027505/ff2121sup1.cif

e-69-o1633-sup1.cif (30.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813027505/ff2121Isup2.hkl

e-69-o1633-Isup2.hkl (213.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813027505/ff2121Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4 0.86 (2) 1.93 (2) 2.783 (3) 171 (3)
N2—H2N⋯O7 0.87 (2) 1.97 (2) 2.826 (3) 169 (3)
C2—H2A⋯O6i 0.95 2.36 3.170 (4) 142
C6—H6B⋯O6i 0.98 2.50 3.383 (4) 149
C7—H7B⋯O3ii 0.98 2.47 3.421 (4) 164
C9—H9A⋯O3iii 0.95 2.44 3.293 (4) 149
C12—H12A⋯O5iv 0.95 2.26 3.168 (4) 160
C14—H14A⋯O6 0.98 2.52 3.436 (4) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

AWS thanks the Jean Dreyfus Boissevain Lectureship for Undergraduate Institutions, the UMass Dartmouth Office of Undergraduate Research Award, the Urban Massachusetts Louis Stokes Alliance for Minority Participation (UMLSAMP), the UMass Dartmouth Honors Program and the Northeast Section of the American Chemical Society Norris/Richards Summer Research Scholarship for funding. DRM gratefully acknowledges support from the UMass Dartmouth Chancellor’s Research Fund, the Joseph P. Healey Endowment and the National Science Foundation (CHE-1229339).

supplementary crystallographic information

1. Comment

The structures of bridged diaryls have been examined for many years and here we submit another structure into this data set. Based upon dissimilar C–O–C–C torsion angles of 61.5 (3)° and 15.1 (4)°, this structure exhibits a skew conformation (van der Heijden et al. 1975). The previously reported structures of 4,4'-oxybisdipyridyls and their cations (Dunne et al. 1996, Maas, 1985, Constable et al., 1995) have shown a twist structure, with torsion angles that are closer in size. Otherwise, the C–O–C angle of 119.3 (2)° and C–O bond distances of 1.364 (3) Å and 1.389 (3) Å are consistent with reported dipyridyl ethers

The structure of the title salt is shown in Figure 1. N–H···O hydrogen bonds between the dication and the two anions are seen between N1–H1N···O4 and N2–H2N···O7. There are no π-π interactions between pyridinium rings of the dications observed. One of the trifluoromethanesulfonate ions shows a disorder at the fluorines with a 52.0:48.0 percentage distribution and at one oxygen with a 64:36 percentage distribution.

2. Experimental

Colorless crystals of the title compound formed from the slow decomposition of neat 2,6-dimethyl-4-triflatopyridine.

3. Refinement

All non-hydrogen atoms were refined anisotropically by full matrix least squares on F2. Fluorine atoms F1, F2, and F3 were disordered over two positions (52.0/48.0) and were refined anisotropically with similar distances and amplitudes using SADI restraints and EADP constraints. Oxygen atom O2 was found to be disordered over two sites (63.5/36.5) and was refined with DFIX restraints for S–O bond length of 1.44(0.01) Å and O–O distances of 2.41(0.02) Å and ISOR restraint for O2 and O2'. Hydrogen atoms H1N and H2N were found from a Fourier difference map and were refined isotropically with N—H distance of 0.87 (2) Å and 1.20 Ueq of parent N atom. All other hydrogen atoms were placed in calculated positions with appropriate carbon hydrogen bond lengths; C—H(Ar) 0.950 Å and CH3 0.980 Å and 1.20 and 1.50 Ueq of parent C atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom labeling scheme, with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as spheres of arbitrary radius. Hydrogen bonding is shown with dashed lines.

Crystal data

C14H18N2O2+·2CF3O3S F(000) = 1080
Mr = 528.44 Dx = 1.585 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5851 reflections
a = 12.7397 (18) Å θ = 2.4–26.2°
b = 11.3610 (16) Å µ = 0.33 mm1
c = 15.611 (2) Å T = 100 K
β = 101.405 (4)° Block, colourless
V = 2214.8 (6) Å3 0.24 × 0.18 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 4360 independent reflections
Radiation source: fine-focus sealed tube 3546 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
φ and ω scans θmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −15→15
Tmin = 0.925, Tmax = 0.968 k = −14→10
15390 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0486P)2 + 3.6577P] where P = (Fo2 + 2Fc2)/3
4360 reflections (Δ/σ)max = 0.023
316 parameters Δρmax = 0.94 e Å3
53 restraints Δρmin = −1.04 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.30074 (6) 0.21804 (7) 0.30451 (5) 0.0244 (2)
S2 1.28559 (6) 0.28663 (8) 0.84123 (5) 0.0261 (2)
F1 0.2582 (5) −0.0159 (3) 0.3316 (4) 0.0595 (7) 0.520 (7)
F2 0.3592 (5) 0.0635 (5) 0.4423 (4) 0.0595 (7) 0.520 (7)
F3 0.1942 (4) 0.1172 (5) 0.4014 (4) 0.0595 (7) 0.520 (7)
F1' 0.2686 (5) 0.0044 (4) 0.3063 (4) 0.0595 (7) 0.480 (7)
F2' 0.3863 (4) 0.0710 (5) 0.4133 (4) 0.0595 (7) 0.480 (7)
F3' 0.2151 (5) 0.0891 (5) 0.4199 (3) 0.0595 (7) 0.480 (7)
F4 1.45831 (17) 0.3944 (2) 0.92267 (16) 0.0540 (7)
F5 1.33893 (18) 0.36761 (19) 1.00127 (13) 0.0429 (6)
F6 1.3158 (2) 0.5016 (2) 0.90176 (19) 0.0642 (8)
O1 0.81802 (15) 0.55937 (18) 0.51520 (13) 0.0198 (5)
O2 0.3883 (10) 0.178 (3) 0.268 (2) 0.065 (4) 0.64 (8)
O2' 0.3796 (13) 0.206 (3) 0.2489 (14) 0.039 (5) 0.36 (8)
O3 0.19673 (19) 0.2307 (2) 0.24973 (15) 0.0349 (6)
O4 0.32838 (16) 0.30914 (19) 0.36998 (14) 0.0247 (5)
O5 1.33183 (18) 0.1762 (2) 0.87294 (14) 0.0283 (5)
O6 1.3101 (2) 0.3260 (3) 0.75980 (16) 0.0445 (7)
O7 1.17400 (17) 0.3012 (2) 0.84615 (16) 0.0322 (6)
N1 0.53677 (19) 0.3908 (2) 0.42520 (15) 0.0166 (5)
H1N 0.4755 (19) 0.358 (3) 0.408 (2) 0.020*
N2 1.05589 (19) 0.4233 (2) 0.70080 (15) 0.0180 (5)
H2N 1.099 (2) 0.386 (3) 0.7421 (18) 0.022*
C1 0.7249 (2) 0.4988 (3) 0.48821 (18) 0.0163 (6)
C2 0.6599 (2) 0.5394 (3) 0.41160 (18) 0.0184 (6)
H2A 0.6811 0.6052 0.3815 0.022*
C3 0.5646 (2) 0.4833 (3) 0.38005 (18) 0.0177 (6)
C4 0.5987 (2) 0.3485 (3) 0.49946 (18) 0.0164 (6)
C5 0.6942 (2) 0.4040 (3) 0.53340 (18) 0.0167 (6)
H5A 0.7379 0.3778 0.5865 0.020*
C6 0.4891 (2) 0.5170 (3) 0.29786 (19) 0.0244 (7)
H6A 0.4711 0.4472 0.2610 0.037*
H6B 0.5230 0.5759 0.2664 0.037*
H6C 0.4237 0.5499 0.3123 0.037*
C7 0.5605 (2) 0.2412 (3) 0.5387 (2) 0.0255 (7)
H7A 0.4840 0.2490 0.5389 0.038*
H7B 0.6003 0.2319 0.5988 0.038*
H7C 0.5722 0.1721 0.5042 0.038*
C8 0.8979 (2) 0.5106 (3) 0.57885 (18) 0.0164 (6)
C9 0.9320 (2) 0.5738 (3) 0.65427 (19) 0.0197 (6)
H9A 0.9006 0.6475 0.6631 0.024*
C10 1.0135 (2) 0.5270 (3) 0.71692 (19) 0.0204 (6)
C11 1.0248 (2) 0.3602 (3) 0.62686 (19) 0.0184 (6)
C12 0.9443 (2) 0.4049 (3) 0.56316 (19) 0.0178 (6)
H12A 0.9212 0.3640 0.5097 0.021*
C13 1.0564 (3) 0.5851 (3) 0.8025 (2) 0.0358 (9)
H13A 1.0534 0.5298 0.8501 0.054*
H13B 1.0131 0.6547 0.8088 0.054*
H13C 1.1308 0.6089 0.8046 0.054*
C14 1.0780 (3) 0.2449 (3) 0.6199 (2) 0.0268 (7)
H14A 1.1537 0.2503 0.6483 0.040*
H14B 1.0725 0.2247 0.5581 0.040*
H14C 1.0429 0.1839 0.6485 0.040*
C15 0.2854 (2) 0.0901 (3) 0.3686 (2) 0.0548 (13)
C16 1.3531 (3) 0.3933 (3) 0.9209 (3) 0.0378 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0170 (4) 0.0248 (4) 0.0308 (4) −0.0001 (3) 0.0029 (3) −0.0091 (3)
S2 0.0188 (4) 0.0357 (5) 0.0208 (4) −0.0053 (3) −0.0038 (3) 0.0133 (3)
F1 0.0720 (13) 0.0293 (11) 0.0614 (17) −0.0171 (9) −0.0252 (11) 0.0380 (11)
F2 0.0720 (13) 0.0293 (11) 0.0614 (17) −0.0171 (9) −0.0252 (11) 0.0380 (11)
F3 0.0720 (13) 0.0293 (11) 0.0614 (17) −0.0171 (9) −0.0252 (11) 0.0380 (11)
F1' 0.0720 (13) 0.0293 (11) 0.0614 (17) −0.0171 (9) −0.0252 (11) 0.0380 (11)
F2' 0.0720 (13) 0.0293 (11) 0.0614 (17) −0.0171 (9) −0.0252 (11) 0.0380 (11)
F3' 0.0720 (13) 0.0293 (11) 0.0614 (17) −0.0171 (9) −0.0252 (11) 0.0380 (11)
F4 0.0295 (12) 0.0722 (17) 0.0517 (14) −0.0213 (12) −0.0126 (10) 0.0118 (12)
F5 0.0547 (14) 0.0371 (12) 0.0327 (11) 0.0026 (10) −0.0012 (10) −0.0034 (9)
F6 0.0656 (17) 0.0273 (13) 0.084 (2) −0.0100 (12) −0.0240 (14) 0.0171 (12)
O1 0.0126 (9) 0.0218 (11) 0.0226 (11) −0.0023 (8) −0.0029 (8) 0.0070 (9)
O2 0.050 (4) 0.060 (7) 0.096 (8) 0.011 (4) 0.041 (4) −0.024 (6)
O2' 0.035 (6) 0.039 (8) 0.047 (8) 0.003 (4) 0.017 (5) −0.011 (5)
O3 0.0352 (13) 0.0293 (13) 0.0318 (13) −0.0027 (11) −0.0139 (10) −0.0049 (10)
O4 0.0194 (11) 0.0242 (12) 0.0279 (12) −0.0032 (9) −0.0019 (9) −0.0056 (9)
O5 0.0270 (12) 0.0356 (13) 0.0202 (11) 0.0024 (10) −0.0002 (9) 0.0045 (10)
O6 0.0331 (14) 0.071 (2) 0.0257 (13) −0.0148 (13) −0.0037 (10) 0.0244 (13)
O7 0.0202 (11) 0.0377 (14) 0.0354 (13) −0.0016 (10) −0.0024 (10) 0.0132 (11)
N1 0.0118 (11) 0.0201 (13) 0.0165 (12) −0.0003 (10) −0.0004 (9) −0.0007 (10)
N2 0.0136 (11) 0.0239 (14) 0.0152 (12) 0.0018 (10) −0.0004 (9) 0.0021 (10)
C1 0.0118 (13) 0.0184 (14) 0.0181 (14) 0.0011 (11) 0.0013 (11) −0.0007 (11)
C2 0.0161 (13) 0.0225 (16) 0.0168 (14) 0.0015 (12) 0.0040 (11) 0.0058 (12)
C3 0.0162 (14) 0.0213 (15) 0.0157 (13) 0.0042 (12) 0.0035 (11) 0.0019 (12)
C4 0.0155 (13) 0.0184 (15) 0.0148 (13) 0.0021 (11) 0.0020 (11) 0.0012 (11)
C5 0.0147 (13) 0.0213 (15) 0.0130 (13) 0.0023 (11) 0.0003 (10) 0.0024 (11)
C6 0.0175 (14) 0.0340 (18) 0.0191 (15) 0.0005 (13) −0.0026 (12) 0.0071 (13)
C7 0.0218 (15) 0.0262 (17) 0.0250 (16) −0.0054 (13) −0.0037 (12) 0.0070 (13)
C8 0.0104 (12) 0.0207 (15) 0.0175 (14) −0.0027 (11) 0.0012 (10) 0.0050 (11)
C9 0.0162 (14) 0.0205 (15) 0.0228 (15) 0.0015 (12) 0.0049 (11) −0.0001 (12)
C10 0.0172 (14) 0.0264 (16) 0.0172 (14) −0.0002 (12) 0.0028 (11) −0.0020 (12)
C11 0.0143 (13) 0.0212 (15) 0.0190 (14) −0.0019 (12) 0.0012 (11) 0.0005 (12)
C12 0.0138 (13) 0.0236 (16) 0.0150 (13) −0.0028 (12) 0.0002 (11) −0.0018 (12)
C13 0.0367 (19) 0.042 (2) 0.0243 (17) 0.0095 (16) −0.0037 (15) −0.0122 (15)
C14 0.0226 (15) 0.0240 (17) 0.0303 (17) 0.0034 (13) −0.0033 (13) −0.0024 (14)
C15 0.040 (2) 0.025 (2) 0.080 (3) −0.0091 (18) −0.033 (2) 0.004 (2)
C16 0.0332 (19) 0.032 (2) 0.041 (2) −0.0067 (16) −0.0092 (16) 0.0111 (16)

Geometric parameters (Å, º)

S1—O2 1.422 (6) C1—C2 1.392 (4)
S1—O3 1.435 (2) C2—C3 1.373 (4)
S1—O4 1.448 (2) C2—H2A 0.9500
S1—O2' 1.459 (9) C3—C6 1.493 (4)
S1—C15 1.797 (4) C4—C5 1.380 (4)
S2—O5 1.432 (2) C4—C7 1.488 (4)
S2—O6 1.439 (2) C5—H5A 0.9500
S2—O7 1.448 (2) C6—H6A 0.9800
S2—C16 1.825 (4) C6—H6B 0.9800
F1—C15 1.352 (4) C6—H6C 0.9800
F2—C15 1.368 (4) C7—H7A 0.9800
F3—C15 1.393 (4) C7—H7B 0.9800
F1'—C15 1.364 (4) C7—H7C 0.9800
F2'—C15 1.353 (4) C8—C9 1.374 (4)
F3'—C15 1.314 (4) C8—C12 1.382 (4)
F4—C16 1.335 (4) C9—C10 1.384 (4)
F5—C16 1.334 (4) C9—H9A 0.9500
F6—C16 1.332 (4) C10—C13 1.493 (4)
O1—C1 1.364 (3) C11—C12 1.376 (4)
O1—C8 1.389 (3) C11—C14 1.489 (4)
N1—C3 1.351 (4) C12—H12A 0.9500
N1—C4 1.354 (4) C13—H13A 0.9800
N1—H1N 0.86 (2) C13—H13B 0.9800
N2—C10 1.340 (4) C13—H13C 0.9800
N2—C11 1.350 (4) C14—H14A 0.9800
N2—H2N 0.87 (2) C14—H14B 0.9800
C1—C5 1.386 (4) C14—H14C 0.9800
O2—S1—O3 120.0 (12) H7A—C7—H7C 109.5
O2—S1—O4 114.2 (5) H7B—C7—H7C 109.5
O3—S1—O4 114.57 (14) C9—C8—C12 122.1 (3)
O3—S1—O2' 108.6 (9) C9—C8—O1 117.9 (3)
O4—S1—O2' 112.7 (8) C12—C8—O1 119.9 (3)
O2—S1—C15 98.1 (16) C8—C9—C10 118.1 (3)
O3—S1—C15 102.94 (14) C8—C9—H9A 121.0
O4—S1—C15 102.87 (14) C10—C9—H9A 121.0
O2'—S1—C15 114.8 (13) N2—C10—C9 118.6 (3)
O5—S2—O6 115.54 (17) N2—C10—C13 117.8 (3)
O5—S2—O7 115.02 (14) C9—C10—C13 123.6 (3)
O6—S2—O7 113.47 (15) N2—C11—C12 118.2 (3)
O5—S2—C16 103.86 (15) N2—C11—C14 118.0 (3)
O6—S2—C16 103.92 (17) C12—C11—C14 123.8 (3)
O7—S2—C16 102.88 (17) C11—C12—C8 118.4 (3)
C1—O1—C8 119.3 (2) C11—C12—H12A 120.8
C3—N1—C4 123.6 (2) C8—C12—H12A 120.8
C3—N1—H1N 119 (2) C10—C13—H13A 109.5
C4—N1—H1N 117 (2) C10—C13—H13B 109.5
C10—N2—C11 124.5 (3) H13A—C13—H13B 109.5
C10—N2—H2N 120 (2) C10—C13—H13C 109.5
C11—N2—H2N 114 (2) H13A—C13—H13C 109.5
O1—C1—C5 123.4 (2) H13B—C13—H13C 109.5
O1—C1—C2 115.6 (3) C11—C14—H14A 109.5
C5—C1—C2 121.0 (3) C11—C14—H14B 109.5
C3—C2—C1 119.2 (3) H14A—C14—H14B 109.5
C3—C2—H2A 120.4 C11—C14—H14C 109.5
C1—C2—H2A 120.4 H14A—C14—H14C 109.5
N1—C3—C2 118.6 (3) H14B—C14—H14C 109.5
N1—C3—C6 117.2 (3) F3'—C15—F2' 112.1 (4)
C2—C3—C6 124.2 (3) F3'—C15—F1' 113.4 (4)
N1—C4—C5 119.1 (3) F2'—C15—F1' 104.6 (4)
N1—C4—C7 117.4 (3) F1—C15—F2 103.8 (4)
C5—C4—C7 123.4 (3) F1—C15—F3 101.0 (4)
C4—C5—C1 118.4 (3) F2—C15—F3 102.9 (4)
C4—C5—H5A 120.8 F3'—C15—S1 120.6 (3)
C1—C5—H5A 120.8 F1—C15—S1 122.0 (3)
C3—C6—H6A 109.5 F2'—C15—S1 102.7 (3)
C3—C6—H6B 109.5 F1'—C15—S1 101.5 (3)
H6A—C6—H6B 109.5 F2—C15—S1 121.0 (3)
C3—C6—H6C 109.5 F3—C15—S1 102.5 (3)
H6A—C6—H6C 109.5 F6—C16—F5 107.7 (3)
H6B—C6—H6C 109.5 F6—C16—F4 107.9 (3)
C4—C7—H7A 109.5 F5—C16—F4 107.7 (3)
C4—C7—H7B 109.5 F6—C16—S2 111.2 (2)
H7A—C7—H7B 109.5 F5—C16—S2 111.3 (2)
C4—C7—H7C 109.5 F4—C16—S2 110.9 (3)
C8—O1—C1—C5 15.1 (4) O2'—S1—C15—F3' −178.5 (8)
C8—O1—C1—C2 −165.8 (3) O2—S1—C15—F1 −63.4 (9)
O1—C1—C2—C3 −180.0 (3) O3—S1—C15—F1 60.0 (4)
C5—C1—C2—C3 −0.9 (4) O4—S1—C15—F1 179.4 (4)
C4—N1—C3—C2 −1.3 (4) O2'—S1—C15—F1 −57.7 (9)
C4—N1—C3—C6 178.2 (3) O2—S1—C15—F2' 50.2 (9)
C1—C2—C3—N1 0.6 (4) O3—S1—C15—F2' 173.7 (4)
C1—C2—C3—C6 −178.8 (3) O4—S1—C15—F2' −67.0 (4)
C3—N1—C4—C5 2.1 (4) O2'—S1—C15—F2' 55.9 (9)
C3—N1—C4—C7 −176.1 (3) O2—S1—C15—F1' −57.8 (8)
N1—C4—C5—C1 −2.2 (4) O3—S1—C15—F1' 65.6 (3)
C7—C4—C5—C1 175.8 (3) O4—S1—C15—F1' −175.0 (3)
O1—C1—C5—C4 −179.3 (3) O2'—S1—C15—F1' −52.2 (8)
C2—C1—C5—C4 1.6 (4) O2—S1—C15—F2 71.3 (9)
C1—O1—C8—C9 −121.9 (3) O3—S1—C15—F2 −165.3 (4)
C1—O1—C8—C12 61.5 (3) O4—S1—C15—F2 −45.9 (4)
C12—C8—C9—C10 −1.9 (4) O2'—S1—C15—F2 76.9 (9)
O1—C8—C9—C10 −178.4 (2) O2—S1—C15—F3 −175.1 (8)
C11—N2—C10—C9 0.1 (4) O3—S1—C15—F3 −51.7 (3)
C11—N2—C10—C13 179.5 (3) O4—S1—C15—F3 67.7 (3)
C8—C9—C10—N2 0.7 (4) O2'—S1—C15—F3 −169.4 (8)
C8—C9—C10—C13 −178.6 (3) O5—S2—C16—F6 −178.0 (3)
C10—N2—C11—C12 0.3 (4) O6—S2—C16—F6 60.8 (3)
C10—N2—C11—C14 −178.4 (3) O7—S2—C16—F6 −57.8 (3)
N2—C11—C12—C8 −1.4 (4) O5—S2—C16—F5 −57.9 (3)
C14—C11—C12—C8 177.2 (3) O6—S2—C16—F5 −179.2 (3)
C9—C8—C12—C11 2.3 (4) O7—S2—C16—F5 62.3 (3)
O1—C8—C12—C11 178.7 (2) O5—S2—C16—F4 62.0 (3)
O2—S1—C15—F3' 175.9 (9) O6—S2—C16—F4 −59.3 (3)
O3—S1—C15—F3' −60.7 (4) O7—S2—C16—F4 −177.8 (2)
O4—S1—C15—F3' 58.7 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O4 0.86 (2) 1.93 (2) 2.783 (3) 171 (3)
N2—H2N···O7 0.87 (2) 1.97 (2) 2.826 (3) 169 (3)
C2—H2A···O6i 0.95 2.36 3.170 (4) 142
C6—H6B···O6i 0.98 2.50 3.383 (4) 149
C7—H7B···O3ii 0.98 2.47 3.421 (4) 164
C9—H9A···O3iii 0.95 2.44 3.293 (4) 149
C12—H12A···O5iv 0.95 2.26 3.168 (4) 160
C14—H14A···O6 0.98 2.52 3.436 (4) 155

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x+1, −y+1, −z+1; (iv) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2121).

References

  1. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Constable, E. C., Cargill Thompson, A. M. W., Harveson, P., Macko, L. & Zehnder, M. (1995). Chem. Eur. J. 1, 360–367.
  3. Dunne, S. J., von Nagy-Felsobuki, E. I. & Mackay, M. F. (1996). Acta Cryst. C52, 2040–2042.
  4. Heijden, S. P. N. van der, Griffith, E. A. H., Chandler, W. D. & Robertson, B. E. (1975). Can. J. Chem. 53, 2084–2092.
  5. Maas, G. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1985–1988.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813027505/ff2121sup1.cif

e-69-o1633-sup1.cif (30.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813027505/ff2121Isup2.hkl

e-69-o1633-Isup2.hkl (213.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813027505/ff2121Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES