Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 16;69(Pt 11):o1643–o1644. doi: 10.1107/S1600536813027475

N,N′-Bis(2-amino­benz­yl)ethane-1,2-diaminium dinitrate

Luis Ángel Garza Rodríguez a, Perla Elizondo Martínez b, Sylvain Bernès b,*, Blanca Nájera Martínez b, Nancy Pérez Rodríguez b
PMCID: PMC3884311  PMID: 24454087

Abstract

In the title salt, C16H24N4 2+·2NO3 , both the cation and anion are placed in general positions, although the cation displays non-crystallographic inversion symmetry, with the aliphatic chain extended in an all-trans conformation. The benzene rings are almost parallel, with a dihedral angle between their mean planes of 3.3 (6)°. The nitrate ions are placed in the vicinity of the protonated amine groups, forming efficient N—H⋯O inter-ion hydrogen bonds. Each nitrate ion in the asymmetric unit bridges two symmetry-related cations, forming an R 4 4(18) ring, a common motif in organic ammonium nitrate salts. This results in the formation of chains along [010] with alternating cations and anions. The neutral amine groups are involved in slightly weaker N—H⋯O hydrogen bonds with the nitrate O atoms, and there are also a number of C—H⋯O hydrogen bonds present. The resulting supra­molecular structure is based on a two-dimensional network extending in the ab plane.

Related literature  

For the structure of the free neutral amine, see: Rodríguez de Barbarín et al. (2007). For the p-toluene­sulfonate salt of the title cation, see: Garza Rodríguez et al. (2011). For related di­ammonium nitrate salts featuring Inline graphic(18) motifs, see: Liu et al. (2007); Yang et al. (2007). For supra­molecular motifs nomenclature, see: Etter (1990). For the synthesis of the title salt, see: Garza Rodríguez (2010).graphic file with name e-69-o1643-scheme1.jpg

Experimental  

Crystal data  

  • C16H24N4 2+·2NO3

  • M r = 396.41

  • Orthorhombic, Inline graphic

  • a = 11.041 (5) Å

  • b = 5.760 (4) Å

  • c = 30.069 (13) Å

  • V = 1912.1 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.60 × 0.20 × 0.20 mm

Data collection  

  • Siemens P4 diffractometer

  • 4371 measured reflections

  • 2473 independent reflections

  • 1501 reflections with I > 2σ(I)

  • R int = 0.053

  • 3 standard reflections every 97 reflections intensity decay: 1.5%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.180

  • S = 1.61

  • 2473 reflections

  • 278 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813027475/rk2415sup1.cif

e-69-o1643-sup1.cif (171.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813027475/rk2415Isup2.hkl

e-69-o1643-Isup2.hkl (136KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813027475/rk2415Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9A⋯O23i 0.94 (4) 1.87 (3) 2.794 (8) 167 (7)
N9—H9B⋯O24 0.95 (5) 1.96 (5) 2.879 (7) 164 (5)
N12—H12A⋯O27 0.92 (3) 1.88 (3) 2.787 (8) 168 (8)
N12—H12B⋯O28i 0.91 (5) 1.95 (5) 2.862 (8) 176 (9)
N1—H1B⋯O22ii 0.90 (7) 2.55 (8) 3.290 (11) 141 (9)
N1—H1B⋯O24ii 0.90 (7) 2.40 (7) 3.272 (10) 166 (9)
N9—H9A⋯O22i 0.94 (4) 2.38 (6) 3.050 (8) 128 (5)
N12—H12A⋯O26 0.92 (3) 2.36 (5) 3.046 (8) 132 (4)
N12—H12B⋯O27i 0.91 (5) 2.49 (5) 3.096 (8) 125 (4)
N20—H20B⋯O26iii 0.91 (7) 2.56 (8) 3.246 (12) 133 (8)
N20—H20B⋯O28iii 0.91 (7) 2.32 (8) 3.204 (11) 165 (8)
C8—H8B⋯O24ii 0.97 2.46 3.327 (9) 149
C10—H10A⋯O24ii 0.97 2.41 3.258 (8) 145
C10—H10B⋯O22iv 0.97 2.58 3.291 (9) 130
C11—H11A⋯O27i 0.97 2.56 3.147 (9) 119
C11—H11A⋯O26v 0.97 2.57 3.285 (9) 131
C11—H11B⋯O28iii 0.97 2.41 3.249 (9) 145
C13—H13A⋯O28iii 0.97 2.46 3.315 (10) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors thank the FCQ–UANL (project No. 03-6375-QMT-08-005) and PAICyT (Project No. IT164-09) for financial support. LAGR acknowledges a grant from the CONACyT program "Dirección de Tesis entre la UANL y la University of Texas at Austin y/o Instituciones de Educación Superior de la ANUIES" (grant N.L.-2006-C09 32658).

supplementary crystallographic information

1. Comment

The title salt crystallized unexpectedly, when attempting the crystallization of a macrocyclic molecule, resulting from the Schiff condensation between 2,6-diacetylpyridine and N,N'-bis(2-aminobenzyl)ethane-1,2-diamine (Garza Rodríguez, 2010). The synthesis was carried out via a template reaction, using Mn2+ as metal center, and analytical data showed that the Mn2+ complex was formed, with nitrate as counter ions. However, this compound is almost insoluble in organic solvents, like MeOH, EtOH, acetone and ethyl acetate, impeding the preparation of single crystals. Only slight solubility was obtained in hot acetonitrile. Slow evaporation of MeCN over 3 weeks afforded a mixture of amorphous brown solids and colourless needle-shaped crystals. We assume that the brown solids should be a mixture of manganese oxides, resulting from the hydrolysis of the complex induced by trace amounts of water and dissolved O2. Minutes amounts of H3O+ are then released, which promote the formation, and finally the crystallization of the nitrate salt of the protonated amine.

Title compound (Fig. 1) crystallizes in a non-centrosymmetric space group, with all atoms placed in general positions. However, the dication (C16H24N4)2+ presents a non-crystallographic inversion center, with the central aliphatic chain extended in the all-trans conformation. This conformation was previously obtained for the same cation crystallized as p-toluenesulfonate salt, although in that case, the dication was placed on a crystallographic inversion center (Garza Rodríguez et al., 2011). The free amine, for which the X-ray structure is also known (Rodríguez de Barbarín et al., 2007) has a different solid state conformation, although preserving the centrosymmetric character. For the nitrate salt reported here, departure from centrosymmetry is small, as reflected, for example, by the dihedral angle between benzene rings, limited to 3.3 (6)°.

Nitrate ions positions are determined by the formation of hydrogen bonds with ammonium NH2+ groups in the cation. All N—H···O angles for these contacts are close to 180°, and H···O separations are in the range 1.87 (3)Å to 1.96 (3)Å. Each independent anion, N21 and N25, bridges two cations related by cell translation in the [0 1 0] direction, forming a R44(18) ring motif (Etter, 1990; Fig. 2). This arrangement seems actually to be common in crystal structures involving ammonium and nitrate species, and R44(18) motifs are also formed in salts closely related to the title compound, for example with N,N'-dibenzylethane-1,2-diammonium (Liu et al., 2007) or N,N'-bis(4-chlorobenzyl)ethane-1,2-diammonium (Yang et al., 2007). For such salts, the crystal structure is invariably based on edge-fused R44(18) rings, which afford a one-dimensional linear supramolecular structure. In the case of the title compound, chains run along the short b axis, and no significant interchain interactions are observed (Fig. 2).

2. Experimental

An amount of 2,6-diacetylpyridine (735 mg, 4.50 mmol) in ethanol (180 ml) was mixed with the templating reagent Mn(NO3)2·xH2O (1.130 g) and refluxed for 30 min. Then, N,N'-bis(2-aminobenzyl)ethane-1,2-diamine (1.302 g, 4.80 mmol, dissolved in 25 ml of ethanol) was slowly added, and the mixture further refluxed for 1 h. The resulting solid was filtered from hot ethanol, washed with cold ethanol, and dried under reduced pressure. A solution of the solid in hot CH3CN was left to crystallize for 3 weeks. After this time, only one product was obtained as single crystals, in low yield, which was identified by X-ray diffraction as the title nitrate salt.

3. Refinement

H atoms for aromatic CH and methylene CH2 groups were placed in idealized positions, and refined with C—H bond lengths fixed to 0.93Å and 0.97Å, respectively, and Uiso(H) = 1.2Ueq(C). Amine and ammonium H atoms were found in a difference map, and refined freely, although the geometry for NH2 group was restrained to sensible target values: bond lengths N—H were restrained to 0.90 (2)Å and H···H separations were restrained to 1.54 (3)Å. Isotropic displacement parameters were computed in this case as Uiso(H) = 1.5Ueq(N).

Figures

Fig. 1.

Fig. 1.

Asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are presented at the 50% probability level. H atoms are shown as stick.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, showing N—H···O(nitrate) H bonds as dashed lines. Two supramolecular R(18)-based chains are shown, which are related by the n glide plane perpendicular to [1 0 0]. No significant contacts are observed between chains.

Crystal data

C16H24N42+·2NO3 Dx = 1.377 Mg m3
Mr = 396.41 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21 Cell parameters from 75 reflections
a = 11.041 (5) Å θ = 4.9–11.7°
b = 5.760 (4) Å µ = 0.11 mm1
c = 30.069 (13) Å T = 298 K
V = 1912.1 (18) Å3 Needle, colourless
Z = 4 0.60 × 0.20 × 0.20 mm
F(000) = 840

Data collection

Siemens P4 diffractometer Rint = 0.053
Radiation source: fine-focus sealed tube, FN4 θmax = 25.5°, θmin = 2.7°
Graphite monochromator h = −13→13
2θ/ω–scans k = −3→6
4371 measured reflections l = −36→36
2473 independent reflections 3 standard reflections every 97 reflections
1501 reflections with I > 2σ(I) intensity decay: 1.5%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.06P)2] where P = (Fo2 + 2Fc2)/3
S = 1.61 (Δ/σ)max < 0.001
2473 reflections Δρmax = 0.34 e Å3
278 parameters Δρmin = −0.31 e Å3
13 restraints Extinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraints Extinction coefficient: 0.010 (2)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.9978 (7) 1.1615 (13) 0.1913 (3) 0.083 (2)
H1A 1.023 (9) 1.261 (14) 0.171 (2) 0.124*
H1B 1.038 (8) 1.148 (19) 0.2170 (18) 0.124*
C2 0.9002 (7) 1.0332 (13) 0.1770 (3) 0.0616 (19)
C3 0.8321 (9) 1.1154 (15) 0.1408 (3) 0.077 (2)
H3A 0.8541 1.2543 0.1272 0.092*
C4 0.7348 (9) 0.9958 (16) 0.1251 (3) 0.087 (3)
H4A 0.6902 1.0542 0.1014 0.104*
C5 0.7024 (8) 0.7886 (18) 0.1444 (3) 0.080 (2)
H5A 0.6364 0.7049 0.1339 0.096*
C6 0.7699 (7) 0.7072 (16) 0.1797 (2) 0.067 (2)
H6A 0.7485 0.5667 0.1928 0.080*
C7 0.8672 (7) 0.8267 (13) 0.1961 (2) 0.0564 (18)
C8 0.9347 (6) 0.7329 (14) 0.2354 (2) 0.0545 (18)
H8A 0.9438 0.5662 0.2322 0.065*
H8B 1.0150 0.8010 0.2363 0.065*
N9 0.8705 (4) 0.7843 (10) 0.27754 (19) 0.0485 (13)
H9A 0.846 (6) 0.937 (5) 0.284 (3) 0.073*
H9B 0.795 (4) 0.706 (10) 0.276 (3) 0.073*
C10 0.9427 (5) 0.7325 (13) 0.3181 (2) 0.0492 (15)
H10A 1.0124 0.8346 0.3195 0.059*
H10B 0.9715 0.5734 0.3171 0.059*
C11 0.8645 (5) 0.7674 (13) 0.3583 (2) 0.0474 (14)
H11A 0.8372 0.9274 0.3597 0.057*
H11B 0.7937 0.6679 0.3566 0.057*
N12 0.9349 (4) 0.7109 (11) 0.39831 (19) 0.0489 (13)
H12A 0.960 (5) 0.559 (5) 0.398 (3) 0.073*
H12B 0.999 (4) 0.810 (9) 0.397 (3) 0.073*
C13 0.8723 (7) 0.7589 (13) 0.4415 (2) 0.0559 (18)
H13A 0.7905 0.6976 0.4406 0.067*
H13B 0.8674 0.9252 0.4463 0.067*
C14 0.9406 (7) 0.6483 (14) 0.4791 (2) 0.056 (2)
C15 1.0413 (8) 0.7526 (16) 0.4955 (2) 0.073 (2)
H15A 1.0652 0.8941 0.4835 0.087*
C16 1.1096 (9) 0.658 (2) 0.5293 (3) 0.093 (3)
H16A 1.1798 0.7300 0.5392 0.112*
C17 1.0704 (10) 0.451 (2) 0.5479 (3) 0.094 (3)
H17A 1.1137 0.3844 0.5711 0.113*
C18 0.9691 (9) 0.3471 (17) 0.5323 (3) 0.085 (3)
H18A 0.9439 0.2083 0.5451 0.102*
C19 0.9016 (7) 0.4411 (14) 0.4977 (3) 0.066 (2)
N20 0.7978 (8) 0.3323 (14) 0.4831 (3) 0.086 (2)
H20A 0.786 (10) 0.185 (8) 0.493 (3) 0.128*
H20B 0.764 (9) 0.363 (17) 0.4563 (19) 0.128*
N21 0.7142 (5) 0.2743 (11) 0.2797 (2) 0.0550 (14)
O22 0.6509 (5) 0.1048 (10) 0.2738 (2) 0.093 (2)
O23 0.8219 (4) 0.2579 (8) 0.28670 (19) 0.0729 (15)
O24 0.6674 (4) 0.4708 (9) 0.27685 (19) 0.0735 (15)
N25 1.0910 (5) 0.2211 (10) 0.3951 (2) 0.0556 (14)
O26 1.1542 (5) 0.3900 (10) 0.3991 (3) 0.099 (2)
O27 0.9825 (4) 0.2383 (9) 0.38897 (19) 0.0702 (16)
O28 1.1372 (5) 0.0215 (9) 0.3989 (2) 0.0750 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.097 (5) 0.055 (5) 0.095 (5) −0.021 (4) −0.007 (4) 0.007 (4)
C2 0.077 (5) 0.041 (4) 0.066 (4) −0.003 (4) 0.006 (4) 0.001 (4)
C3 0.110 (7) 0.055 (5) 0.066 (4) −0.006 (5) −0.004 (5) 0.010 (4)
C4 0.104 (7) 0.085 (7) 0.071 (5) −0.002 (7) −0.015 (5) 0.011 (5)
C5 0.074 (5) 0.100 (7) 0.067 (4) −0.016 (5) −0.012 (4) −0.002 (5)
C6 0.063 (4) 0.069 (6) 0.068 (5) −0.007 (4) −0.006 (4) 0.000 (4)
C7 0.061 (4) 0.051 (5) 0.057 (4) 0.001 (4) 0.005 (3) 0.006 (4)
C8 0.060 (4) 0.047 (4) 0.057 (4) 0.003 (4) 0.009 (3) 0.002 (4)
N9 0.051 (3) 0.036 (3) 0.058 (3) 0.005 (3) −0.006 (3) −0.002 (3)
C10 0.048 (4) 0.039 (4) 0.061 (4) 0.000 (3) −0.003 (3) 0.002 (4)
C11 0.048 (3) 0.040 (4) 0.054 (3) 0.003 (3) −0.005 (3) 0.003 (4)
N12 0.053 (3) 0.037 (3) 0.056 (3) 0.006 (3) 0.003 (3) 0.003 (3)
C13 0.064 (4) 0.042 (4) 0.062 (4) 0.001 (4) 0.005 (3) 0.008 (4)
C14 0.066 (5) 0.047 (5) 0.054 (4) 0.000 (4) 0.001 (3) −0.004 (4)
C15 0.080 (5) 0.079 (6) 0.059 (4) −0.002 (5) −0.005 (4) −0.007 (5)
C16 0.089 (6) 0.119 (9) 0.071 (5) −0.003 (6) −0.009 (5) −0.016 (6)
C17 0.102 (7) 0.120 (9) 0.060 (5) 0.040 (7) −0.005 (5) −0.006 (6)
C18 0.114 (7) 0.077 (7) 0.062 (5) 0.026 (6) 0.015 (5) 0.014 (5)
C19 0.082 (5) 0.050 (5) 0.065 (4) 0.010 (4) 0.012 (4) −0.002 (4)
N20 0.096 (6) 0.057 (5) 0.103 (5) −0.015 (5) 0.002 (5) 0.009 (4)
N21 0.050 (3) 0.041 (4) 0.074 (3) 0.005 (3) 0.001 (3) 0.005 (4)
O22 0.077 (4) 0.049 (3) 0.151 (6) −0.016 (3) −0.005 (4) −0.003 (4)
O23 0.051 (3) 0.043 (3) 0.125 (4) 0.000 (3) −0.014 (3) −0.004 (4)
O24 0.063 (3) 0.047 (3) 0.111 (4) 0.015 (3) 0.002 (3) 0.004 (3)
N25 0.054 (3) 0.037 (4) 0.075 (3) 0.005 (3) 0.003 (3) 0.001 (4)
O26 0.074 (4) 0.050 (4) 0.174 (6) −0.023 (3) −0.001 (4) 0.005 (5)
O27 0.055 (3) 0.039 (3) 0.116 (4) 0.004 (3) −0.013 (3) 0.008 (4)
O28 0.067 (3) 0.045 (3) 0.113 (4) 0.014 (3) 0.001 (3) 0.005 (3)

Geometric parameters (Å, º)

N1—C2 1.376 (10) N12—C13 1.498 (9)
N1—H1A 0.89 (2) N12—H12A 0.92 (2)
N1—H1B 0.90 (2) N12—H12B 0.91 (2)
C2—C7 1.371 (9) C13—C14 1.500 (10)
C2—C3 1.405 (11) C13—H13A 0.9700
C3—C4 1.360 (12) C13—H13B 0.9700
C3—H3A 0.9300 C14—C15 1.356 (11)
C4—C5 1.374 (12) C14—C19 1.386 (11)
C4—H4A 0.9300 C15—C16 1.378 (12)
C5—C6 1.379 (11) C15—H15A 0.9300
C5—H5A 0.9300 C16—C17 1.382 (15)
C6—C7 1.368 (10) C16—H16A 0.9300
C6—H6A 0.9300 C17—C18 1.354 (12)
C7—C8 1.497 (10) C17—H17A 0.9300
C8—N9 1.482 (8) C18—C19 1.389 (12)
C8—H8A 0.9700 C18—H18A 0.9300
C8—H8B 0.9700 C19—N20 1.378 (11)
N9—C10 1.486 (8) N20—H20A 0.91 (2)
N9—H9A 0.94 (2) N20—H20B 0.91 (2)
N9—H9B 0.95 (2) N21—O23 1.212 (6)
C10—C11 1.501 (8) N21—O22 1.213 (7)
C10—H10A 0.9700 N21—O24 1.247 (7)
C10—H10B 0.9700 N25—O26 1.203 (7)
C11—N12 1.468 (9) N25—O27 1.215 (7)
C11—H11A 0.9700 N25—O28 1.263 (7)
C11—H11B 0.9700
C2—N1—H1A 112 (6) N12—C11—H11B 109.9
C2—N1—H1B 128 (6) C10—C11—H11B 109.9
H1A—N1—H1B 120 (5) H11A—C11—H11B 108.3
C7—C2—N1 122.8 (7) C11—N12—C13 115.1 (5)
C7—C2—C3 118.4 (7) C11—N12—H12A 112 (5)
N1—C2—C3 118.8 (8) C13—N12—H12A 109 (5)
C4—C3—C2 121.3 (8) C11—N12—H12B 104 (5)
C4—C3—H3A 119.3 C13—N12—H12B 106 (5)
C2—C3—H3A 119.3 H12A—N12—H12B 111 (4)
C3—C4—C5 120.0 (8) N12—C13—C14 110.1 (6)
C3—C4—H4A 120.0 N12—C13—H13A 109.6
C5—C4—H4A 120.0 C14—C13—H13A 109.6
C4—C5—C6 118.7 (9) N12—C13—H13B 109.6
C4—C5—H5A 120.7 C14—C13—H13B 109.6
C6—C5—H5A 120.7 H13A—C13—H13B 108.2
C7—C6—C5 122.0 (9) C15—C14—C19 119.3 (8)
C7—C6—H6A 119.0 C15—C14—C13 119.9 (7)
C5—C6—H6A 119.0 C19—C14—C13 120.8 (7)
C6—C7—C2 119.6 (7) C14—C15—C16 122.7 (9)
C6—C7—C8 119.6 (7) C14—C15—H15A 118.6
C2—C7—C8 120.8 (7) C16—C15—H15A 118.6
N9—C8—C7 111.4 (5) C15—C16—C17 117.9 (10)
N9—C8—H8A 109.3 C15—C16—H16A 121.1
C7—C8—H8A 109.3 C17—C16—H16A 121.1
N9—C8—H8B 109.3 C18—C17—C16 120.0 (9)
C7—C8—H8B 109.3 C18—C17—H17A 120.0
H8A—C8—H8B 108.0 C16—C17—H17A 120.0
C8—N9—C10 113.9 (5) C17—C18—C19 121.9 (9)
C8—N9—H9A 120 (5) C17—C18—H18A 119.0
C10—N9—H9A 100 (5) C19—C18—H18A 119.0
C8—N9—H9B 107 (5) N20—C19—C14 121.5 (8)
C10—N9—H9B 114 (5) N20—C19—C18 120.4 (9)
H9A—N9—H9B 102 (4) C14—C19—C18 118.1 (8)
N9—C10—C11 109.0 (4) C19—N20—H20A 116 (6)
N9—C10—H10A 109.9 C19—N20—H20B 122 (6)
C11—C10—H10A 109.9 H20A—N20—H20B 115 (5)
N9—C10—H10B 109.9 O23—N21—O22 121.8 (6)
C11—C10—H10B 109.9 O23—N21—O24 119.3 (6)
H10A—C10—H10B 108.3 O22—N21—O24 118.8 (6)
N12—C11—C10 109.0 (4) O26—N25—O27 121.4 (6)
N12—C11—H11A 109.9 O26—N25—O28 119.5 (6)
C10—C11—H11A 109.9 O27—N25—O28 119.1 (6)
C7—C2—C3—C4 0.8 (12) C10—C11—N12—C13 174.5 (5)
N1—C2—C3—C4 179.9 (9) C11—N12—C13—C14 167.8 (7)
C2—C3—C4—C5 −1.0 (14) N12—C13—C14—C15 79.3 (9)
C3—C4—C5—C6 0.4 (14) N12—C13—C14—C19 −101.3 (7)
C4—C5—C6—C7 0.2 (13) C19—C14—C15—C16 2.1 (12)
C5—C6—C7—C2 −0.4 (12) C13—C14—C15—C16 −178.5 (7)
C5—C6—C7—C8 178.2 (7) C14—C15—C16—C17 −2.2 (13)
N1—C2—C7—C6 −179.2 (7) C15—C16—C17—C18 1.2 (13)
C3—C2—C7—C6 −0.1 (11) C16—C17—C18—C19 0.0 (13)
N1—C2—C7—C8 2.2 (11) C15—C14—C19—N20 177.9 (8)
C3—C2—C7—C8 −178.7 (7) C13—C14—C19—N20 −1.6 (11)
C6—C7—C8—N9 −79.6 (9) C15—C14—C19—C18 −0.8 (11)
C2—C7—C8—N9 99.1 (7) C13—C14—C19—C18 179.8 (7)
C7—C8—N9—C10 −169.9 (6) C17—C18—C19—N20 −178.9 (8)
C8—N9—C10—C11 −174.2 (6) C17—C18—C19—C14 −0.2 (12)
N9—C10—C11—N12 178.7 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N9—H9A···O23i 0.94 (4) 1.87 (3) 2.794 (8) 167 (7)
N9—H9B···O24 0.95 (5) 1.96 (5) 2.879 (7) 164 (5)
N12—H12A···O27 0.92 (3) 1.88 (3) 2.787 (8) 168 (8)
N12—H12B···O28i 0.91 (5) 1.95 (5) 2.862 (8) 176 (9)
N1—H1B···O22ii 0.90 (7) 2.55 (8) 3.290 (11) 141 (9)
N1—H1B···O24ii 0.90 (7) 2.40 (7) 3.272 (10) 166 (9)
N9—H9A···O22i 0.94 (4) 2.38 (6) 3.050 (8) 128 (5)
N12—H12A···O26 0.92 (3) 2.36 (5) 3.046 (8) 132 (4)
N12—H12B···O27i 0.91 (5) 2.49 (5) 3.096 (8) 125 (4)
N20—H20B···O26iii 0.91 (7) 2.56 (8) 3.246 (12) 133 (8)
N20—H20B···O28iii 0.91 (7) 2.32 (8) 3.204 (11) 165 (8)
C8—H8B···O24ii 0.97 2.46 3.327 (9) 149
C10—H10A···O24ii 0.97 2.41 3.258 (8) 145
C10—H10B···O22iv 0.97 2.58 3.291 (9) 130
C11—H11A···O27i 0.97 2.56 3.147 (9) 119
C11—H11A···O26v 0.97 2.57 3.285 (9) 131
C11—H11B···O28iii 0.97 2.41 3.249 (9) 145
C13—H13A···O28iii 0.97 2.46 3.315 (10) 147

Symmetry codes: (i) x, y+1, z; (ii) x+1/2, −y+3/2, z; (iii) x−1/2, −y+1/2, z; (iv) x+1/2, −y+1/2, z; (v) x−1/2, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2415).

References

  1. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  2. Garza Rodríguez, L. Á. (2010). PhD thesis, Universidad Autónoma de Nuevo León, Mexico.
  3. Garza Rodríguez, L. Á., Bernès, S., Elizondo Martínez, P., Nájera Martínez, B. & Rodríguez de Luna, S. L. (2011). Acta Cryst. E67, o3235–o3236. [DOI] [PMC free article] [PubMed]
  4. Liu, Y.-F., Xia, H.-T., Wang, D.-Q., Yang, S.-P. & Meng, Y.-L. (2007). Acta Cryst. E63, o3836.
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Rodríguez de Barbarín, C., Bernès, S., Nájera, B., Elizondo, P. & Cerda, P. (2007). Acta Cryst. E63, o549–o550. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  9. Yang, S.-P., Han, L.-J., Wang, D.-Q. & Xia, H.-T. (2007). Acta Cryst. E63, o3880.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813027475/rk2415sup1.cif

e-69-o1643-sup1.cif (171.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813027475/rk2415Isup2.hkl

e-69-o1643-Isup2.hkl (136KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813027475/rk2415Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES