Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 16;69(Pt 11):o1646–o1647. doi: 10.1107/S1600536813027931

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo­[2,3-d]pyrimidin-7-yl)-5-methyl­tetra­hydro­furan-3,4-diol

Ulrich Flörke a,*, Birte Drewes b
PMCID: PMC3884313  PMID: 24454089

Abstract

The mol­ecular structure of the title compound, C11H13IN4O3, shows a ribo­furanos­yl–pyrrolo O—C—N—C torsion angle of 59.1 (3)°, with the central C—N bond length being 1.446 (3) Å. The C—I bond length is 2.072 (2) Å. The amino group is coplanar with the attached aromatic ring [C—N—C—N torsion angle = −178.8 (2)°] and forms an intra­molecular N—H⋯I hydrogen bond. In the crystal, O—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules into puckered layers parallel to (001). These layers are bound to each other by secondary I⋯O inter­actions [3.2250 (17) Å], forming a three-dimensional framework.

Related literature  

For background to the use of marine natural products as therapeutic agents, see: Kazlauskas et al. (1983); Mitchell et al. (1996); Wiesner et al. (1999); Ugarkar et al. (2000); Song et al. (2011). For the structures of related compounds, see: Seela et al. (1996, 1999, 2008).graphic file with name e-69-o1646-scheme1.jpg

Experimental  

Crystal data  

  • C11H13IN4O3

  • M r = 376.15

  • Orthorhombic, Inline graphic

  • a = 4.9164 (2) Å

  • b = 14.6490 (5) Å

  • c = 18.0130 (6) Å

  • V = 1297.30 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.48 mm−1

  • T = 130 K

  • 0.49 × 0.08 × 0.08 mm

Data collection  

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.376, T max = 0.826

  • 12307 measured reflections

  • 3103 independent reflections

  • 3056 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.051

  • S = 1.06

  • 3103 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983), 1274 Friedel pairs

  • Absolute structure parameter: −0.015 (17)

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813027931/kq2009sup1.cif

e-69-o1646-sup1.cif (24.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813027931/kq2009Isup2.hkl

e-69-o1646-Isup2.hkl (152.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813027931/kq2009Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2i 0.84 1.94 2.759 (3) 165
O3—H3⋯N1ii 0.84 2.16 2.907 (3) 149
N4—H4A⋯O2iii 0.88 2.07 2.915 (3) 160
N4—H4B⋯I1 0.88 2.92 3.636 (2) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

1. Comment

Marine natural products provide a rich source of chemical diversity that can be used to develop new, potentially useful therapeutic agents. Nucleosides from marine organisms show great potential as lead compounds in medicinal chemistry research. 5'-Deoxy-5-iodotubercidin (5'd-5IT, 4-amino-5-iodo-7-(5-deoxy-β-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine) was isolated from the marine red alga Hypnea vanlendiae (Kazlauskas et al., 1983) and from the marine ascidian Didemnum voeltzkowi (Mitchell et al., 1996). In vitro, all 5'-deoxytubercidin marine nucleosides show strong inhibitory activity for human adenosine kinase with 5'd-5IT being the most potent one. Therapeutic success of adenosine kinase inhibitors as active agents in animal models is documented for epilepsy and pain and as antiseizure agents (Wiesner et al., 1999; Ugarkar et al., 2000). The molecular structure is related to the derivatives studied previously (Seela et al., 1996, 1999, 2008) and shows no unexpected geometric parameters.

2. Experimental

The title compound was synthesized according to a known procedure (Song et al., 2011). Recrystallization from ethanol-water (1:1) yielded crystals suitable for X-ray analysis. Spectroscopic analysis: 1H NMR (250 MHz, DMSO-d6, δ): 1.29 (d, J = 6.16 Hz, 3H, CHCH3), 3.87–3.95 [m, 2H, H-3', H-4'], 4.41 (m, 1H, H-2'), 5.11 (s, 1H, 3'-OH), 5.33 (s, 1H, 2'-OH), 6.02 (d, J = 5.28 Hz, 1H, H-1'), 6.69 (s, 2H, 4-NH2), 7.63 (s, 1H, H-6), 8.14 (s, 1H, H-2); 13C NMR (250 MHz, DMSO-d6, δ): 19.6 (CH3, C-5'), 52.8 (C—I, C-5), 73.8 (CH, C-2'), 75.0 (CH, C-3'), 79.8 (CH, C-4'), 87.4 (CH, C-1'), 103.6 (C═C, C-4a), 127.4 (CH, C-6), 150.8 (C═C, C-7a), 152.5 (CH, C-2), 157.6 (C—NH2, C-4).

3. Refinement

Hydrogen atoms were clearly identified in difference syntheses, refined at idealized positions riding on the carbon, nitrogen or oxygen atoms with C—H 0.95–1.00, N—H 0.88, O—H 0.84 Å and with isotropic displacement parameters Uiso(H) = 1.2Ueq(C/N) or 1.5Ueq(—CH3 and —OH H atoms). All CH3 and OH hydrogen atoms were allowed to rotate but not to tip. The max. electron density residual is close (0.9 Å) to the I1 position.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with anisotropic displacement parameters drawn at the 50% probability level. The intramolecular N4–H4b···I1 hydrogen bond depicted as dashed line.

Fig. 2.

Fig. 2.

Crystal packing viewed along a axis with intermolecular I···O interaction as well as hydrogen bonds as dashed lines.

Crystal data

C11H13IN4O3 F(000) = 736
Mr = 376.15 Dx = 1.926 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 8237 reflections
a = 4.9164 (2) Å θ = 2.7–28.3°
b = 14.6490 (5) Å µ = 2.48 mm1
c = 18.0130 (6) Å T = 130 K
V = 1297.30 (8) Å3 Needle, colourless
Z = 4 0.49 × 0.08 × 0.08 mm

Data collection

Bruker SMART APEX diffractometer 3103 independent reflections
Radiation source: sealed tube 3056 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
φ and ω scans θmax = 27.9°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −6→6
Tmin = 0.376, Tmax = 0.826 k = −19→19
12307 measured reflections l = −23→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0319P)2 + 0.5639P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
3103 reflections Δρmax = 1.05 e Å3
175 parameters Δρmin = −0.30 e Å3
0 restraints Absolute structure: Flack (1983), 1274 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.015 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.89717 (3) 0.148805 (10) 0.080859 (9) 0.02262 (6)
O1 0.5927 (4) 0.52637 (11) 0.01354 (9) 0.0194 (3)
O2 1.0140 (4) 0.58588 (12) 0.16890 (10) 0.0197 (4)
H2 1.1212 0.5464 0.1858 0.030*
O3 0.7492 (4) 0.71478 (11) 0.08382 (10) 0.0228 (4)
H3 0.8160 0.7236 0.1261 0.034*
N1 0.2124 (5) 0.28946 (15) 0.26704 (12) 0.0224 (4)
N2 0.3108 (4) 0.43351 (14) 0.20816 (11) 0.0189 (4)
N3 0.6561 (4) 0.42430 (13) 0.11225 (11) 0.0162 (4)
N4 0.4171 (5) 0.15312 (15) 0.23436 (11) 0.0243 (4)
H4A 0.3194 0.1255 0.2686 0.029*
H4B 0.5318 0.1215 0.2070 0.029*
C1 0.8108 (5) 0.35459 (17) 0.08162 (13) 0.0192 (4)
H1A 0.9408 0.3619 0.0430 0.023*
C2 0.7476 (5) 0.27404 (16) 0.11546 (14) 0.0191 (5)
C3 0.5438 (5) 0.29313 (16) 0.17014 (13) 0.0160 (5)
C4 0.3910 (6) 0.24402 (16) 0.22372 (12) 0.0185 (5)
C5 0.1823 (5) 0.37938 (18) 0.25567 (14) 0.0223 (5)
H5A 0.0501 0.4085 0.2860 0.027*
C6 0.4924 (5) 0.38688 (16) 0.16605 (13) 0.0164 (5)
C7 0.6628 (5) 0.51898 (15) 0.08971 (13) 0.0154 (4)
H7A 0.5302 0.5547 0.1202 0.018*
C8 0.9424 (5) 0.56288 (15) 0.09505 (12) 0.0150 (5)
H8A 1.0830 0.5217 0.0730 0.018*
C9 0.9025 (5) 0.64656 (15) 0.04619 (12) 0.0178 (4)
H9A 1.0796 0.6710 0.0274 0.021*
C10 0.7272 (5) 0.60780 (16) −0.01690 (13) 0.0182 (5)
H10A 0.5861 0.6538 −0.0312 0.022*
C11 0.8868 (6) 0.58060 (18) −0.08480 (14) 0.0274 (5)
H11A 1.0502 0.5471 −0.0697 0.041*
H11B 0.9398 0.6355 −0.1124 0.041*
H11C 0.7742 0.5415 −0.1165 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.02487 (8) 0.01568 (8) 0.02731 (8) 0.00340 (6) −0.00081 (7) −0.00292 (6)
O1 0.0223 (8) 0.0186 (8) 0.0174 (7) −0.0041 (7) −0.0021 (8) 0.0033 (6)
O2 0.0225 (9) 0.0172 (8) 0.0193 (8) 0.0048 (7) −0.0047 (7) −0.0027 (7)
O3 0.0320 (10) 0.0158 (7) 0.0207 (8) 0.0065 (7) −0.0005 (9) −0.0020 (7)
N1 0.0230 (11) 0.0239 (10) 0.0203 (10) −0.0025 (9) 0.0016 (9) 0.0048 (8)
N2 0.0217 (10) 0.0181 (10) 0.0170 (9) 0.0027 (8) 0.0005 (8) 0.0030 (8)
N3 0.0177 (11) 0.0120 (9) 0.0191 (9) 0.0006 (7) 0.0022 (8) 0.0007 (7)
N4 0.0286 (11) 0.0227 (10) 0.0216 (10) −0.0061 (12) 0.0010 (9) 0.0076 (8)
C1 0.0192 (10) 0.0170 (10) 0.0213 (10) 0.0002 (9) 0.0033 (9) −0.0001 (11)
C2 0.0207 (13) 0.0160 (11) 0.0206 (11) 0.0005 (9) −0.0014 (10) 0.0000 (9)
C3 0.0162 (12) 0.0145 (10) 0.0174 (10) −0.0010 (8) −0.0018 (9) 0.0019 (8)
C4 0.0209 (12) 0.0172 (10) 0.0175 (10) −0.0019 (10) −0.0055 (11) 0.0043 (8)
C5 0.0231 (12) 0.0227 (11) 0.0210 (12) 0.0039 (10) 0.0030 (10) 0.0017 (9)
C6 0.0167 (10) 0.0174 (11) 0.0149 (10) −0.0008 (9) −0.0026 (9) 0.0042 (9)
C7 0.0150 (10) 0.0130 (9) 0.0182 (11) −0.0019 (8) −0.0009 (9) 0.0020 (8)
C8 0.0154 (12) 0.0135 (10) 0.0161 (11) 0.0006 (8) 0.0007 (8) −0.0024 (8)
C9 0.0205 (10) 0.0116 (9) 0.0212 (10) −0.0014 (12) 0.0032 (9) −0.0001 (8)
C10 0.0233 (12) 0.0136 (10) 0.0177 (11) −0.0011 (9) 0.0018 (10) 0.0027 (9)
C11 0.0375 (14) 0.0256 (12) 0.0190 (11) −0.0042 (12) 0.0058 (15) 0.0001 (10)

Geometric parameters (Å, º)

I1—C2 2.072 (2) C1—C2 1.364 (3)
O1—C7 1.419 (3) C1—H1A 0.9500
O1—C10 1.470 (3) C2—C3 1.433 (4)
O2—C8 1.417 (3) C3—C6 1.398 (3)
O2—H2 0.8400 C3—C4 1.419 (3)
O3—C9 1.423 (3) C5—H5A 0.9500
O3—H3 0.8400 C7—C8 1.521 (3)
N1—C5 1.341 (3) C7—H7A 1.0000
N1—C4 1.350 (3) C8—C9 1.522 (3)
N2—C5 1.327 (3) C8—H8A 1.0000
N2—C6 1.356 (3) C9—C10 1.535 (3)
N3—C6 1.374 (3) C9—H9A 1.0000
N3—C1 1.388 (3) C10—C11 1.507 (3)
N3—C7 1.446 (3) C10—H10A 1.0000
N4—C4 1.351 (3) C11—H11A 0.9800
N4—H4A 0.8800 C11—H11B 0.9800
N4—H4B 0.8800 C11—H11C 0.9800
C7—O1—C10 108.28 (17) O1—C7—C8 104.37 (18)
C8—O2—H2 109.5 N3—C7—C8 114.11 (19)
C9—O3—H3 109.5 O1—C7—H7A 109.5
C5—N1—C4 117.9 (2) N3—C7—H7A 109.5
C5—N2—C6 111.9 (2) C8—C7—H7A 109.5
C6—N3—C1 107.93 (19) O2—C8—C7 112.61 (19)
C6—N3—C7 126.5 (2) O2—C8—C9 112.55 (18)
C1—N3—C7 125.6 (2) C7—C8—C9 100.81 (18)
C4—N4—H4A 120.0 O2—C8—H8A 110.2
C4—N4—H4B 120.0 C7—C8—H8A 110.2
H4A—N4—H4B 120.0 C9—C8—H8A 110.2
C2—C1—N3 109.5 (2) O3—C9—C8 111.00 (18)
C2—C1—H1A 125.2 O3—C9—C10 108.4 (2)
N3—C1—H1A 125.2 C8—C9—C10 101.68 (18)
C1—C2—C3 107.3 (2) O3—C9—H9A 111.8
C1—C2—I1 123.41 (19) C8—C9—H9A 111.8
C3—C2—I1 128.88 (18) C10—C9—H9A 111.8
C6—C3—C4 116.0 (2) O1—C10—C11 108.81 (19)
C6—C3—C2 106.4 (2) O1—C10—C9 106.05 (18)
C4—C3—C2 137.6 (2) C11—C10—C9 114.0 (2)
N1—C4—N4 117.7 (2) O1—C10—H10A 109.3
N1—C4—C3 119.2 (2) C11—C10—H10A 109.3
N4—C4—C3 123.1 (2) C9—C10—H10A 109.3
N2—C5—N1 129.3 (2) C10—C11—H11A 109.5
N2—C5—H5A 115.4 C10—C11—H11B 109.5
N1—C5—H5A 115.4 H11A—C11—H11B 109.5
N2—C6—N3 125.4 (2) C10—C11—H11C 109.5
N2—C6—C3 125.7 (2) H11A—C11—H11C 109.5
N3—C6—C3 108.9 (2) H11B—C11—H11C 109.5
O1—C7—N3 109.84 (18)
C6—N3—C1—C2 −0.2 (3) C2—C3—C6—N2 179.6 (2)
C7—N3—C1—C2 −178.7 (2) C4—C3—C6—N3 179.7 (2)
N3—C1—C2—C3 −0.1 (3) C2—C3—C6—N3 −0.4 (3)
N3—C1—C2—I1 173.35 (17) C10—O1—C7—N3 −151.81 (19)
C1—C2—C3—C6 0.3 (3) C10—O1—C7—C8 −29.1 (2)
I1—C2—C3—C6 −172.66 (19) C6—N3—C7—O1 −119.2 (2)
C1—C2—C3—C4 −179.9 (3) C1—N3—C7—O1 59.1 (3)
I1—C2—C3—C4 7.2 (5) C6—N3—C7—C8 124.0 (2)
C5—N1—C4—N4 −178.8 (2) C1—N3—C7—C8 −57.7 (3)
C5—N1—C4—C3 1.9 (4) O1—C7—C8—O2 162.92 (18)
C6—C3—C4—N1 −0.8 (3) N3—C7—C8—O2 −77.2 (2)
C2—C3—C4—N1 179.3 (3) O1—C7—C8—C9 42.8 (2)
C6—C3—C4—N4 179.9 (2) N3—C7—C8—C9 162.66 (19)
C2—C3—C4—N4 0.1 (5) O2—C8—C9—O3 −44.0 (3)
C6—N2—C5—N1 1.1 (4) C7—C8—C9—O3 76.2 (2)
C4—N1—C5—N2 −2.2 (4) O2—C8—C9—C10 −159.10 (19)
C5—N2—C6—N3 −179.8 (2) C7—C8—C9—C10 −38.9 (2)
C5—N2—C6—C3 0.2 (4) C7—O1—C10—C11 126.7 (2)
C1—N3—C6—N2 −179.6 (2) C7—O1—C10—C9 3.7 (2)
C7—N3—C6—N2 −1.1 (4) O3—C9—C10—O1 −94.2 (2)
C1—N3—C6—C3 0.3 (3) C8—C9—C10—O1 22.8 (2)
C7—N3—C6—C3 178.9 (2) O3—C9—C10—C11 146.1 (2)
C4—C3—C6—N2 −0.3 (4) C8—C9—C10—C11 −96.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···N2i 0.84 1.94 2.759 (3) 165
O3—H3···N1ii 0.84 2.16 2.907 (3) 149
N4—H4A···O2iii 0.88 2.07 2.915 (3) 160
N4—H4B···I1 0.88 2.92 3.636 (2) 139

Symmetry codes: (i) x+1, y, z; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KQ2009).

References

  1. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Kazlauskas, R., Muphy, P. T., Wells, R. J., Baird-Lambert, J. A. & Jamieson, D. D. (1983). Aust. J. Chem. 36, 165–170.
  4. Mitchell, S. S., Pomerantz, S. C., Conception, G. P. & Ireland, C. M. (1996). J. Nat. Prod. 59, 1000–1001. [DOI] [PubMed]
  5. Seela, F., Ming, X., Budow, S., Eickmeier, H. & Reuter, H. (2008). Acta Cryst. C64, o293–o295. [DOI] [PubMed]
  6. Seela, F., Zulauf, M., Reuter, H. & Kastner, G. (1999). Acta Cryst. C55, 1560–1562. [DOI] [PubMed]
  7. Seela, F., Zulauf, M., Rosemeyer, H. & Reuter, H. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 2373–2376.
  8. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Song, Y., Ding, H. X., Dou, Y. H., Yang, R. C., Sun, Q., Xiao, Q. & Ju, Y. (2011). Synthesis, 9, 1442–1446.
  11. Ugarkar, B. G., DaRe, J. M., Kopcho, J. J., Browne, C. E., Schanzer, J. M., Wiesner, J. B. & Erion, M. D. (2000). J. Med. Chem. 43, 2883–2893. [DOI] [PubMed]
  12. Wiesner, J. B., Ugarkar, B. G., Castellino, A. J., Barankiewicz, J., Dumas, D. P., Gruber, H. E., Foster, A. C. & Erion, M. D. (1999). J. Pharmacol. Exp. Ther. 289, 1669–1677. [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813027931/kq2009sup1.cif

e-69-o1646-sup1.cif (24.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813027931/kq2009Isup2.hkl

e-69-o1646-Isup2.hkl (152.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813027931/kq2009Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES