Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 19;69(Pt 11):o1662. doi: 10.1107/S1600536813027207

4-Acetyl-3-[2-(eth­oxy­carbon­yl)phen­yl]sydnone

David Grossie a,*, Leanna Harrison a, Kenneth Turnbull a
PMCID: PMC3884322  PMID: 24454098

Abstract

Sydnones, which contain a mesoionic five-membered heterocyclic ring, are more stable if synthesized with an aromatic substutuent at the N3 position. In the title compound {sys­tematic name: 4-acetyl-3-[2-(eth­oxy­carbon­yl)phen­yl]-1,2,3-oxa­diazol-3-ylium-5-olate}, C13H12N2O5, the aromatic substitutent is 2-(eth­oxy­carbon­yl)phenyl. Intra- and inter­molecular hydrogen bonds are observed. The inter­planar angle between the sydnone and benzene rings is 71.94 (8)°. π-ring⋯carbon­yl inter­actions of 3.2038 (16) Å arise between the sydnone ring and a symmetry-related C=O group.

Related literature  

For more information on the sydnone family of compounds, see: Ohta & Kato (1969). For synthesis and structure information, see: Grossie & Turnbull (1992); Grossie et al. (2001, 2007); Hope & Thiessen (1969); Hodson & Turnbull (1985); Riddle et al. (2004a ,b ,c ); Hanley et al. (1976). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-69-o1662-scheme1.jpg

Experimental  

Crystal data  

  • C13H12N2O5

  • M r = 276.25

  • Monoclinic, Inline graphic

  • a = 11.353 (3) Å

  • b = 8.093 (2) Å

  • c = 14.607 (4) Å

  • β = 112.582 (4)°

  • V = 1239.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 173 K

  • 0.22 × 0.20 × 0.17 mm

Data collection  

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.90, T max = 0.98

  • 13826 measured reflections

  • 3718 independent reflections

  • 2783 reflections with I > 2σ(I)

  • R int = 0.038

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.121

  • S = 0.96

  • 3718 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813027207/gg2123sup1.cif

e-69-o1662-sup1.cif (16.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813027207/gg2123Isup2.hkl

e-69-o1662-Isup2.hkl (186.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813027207/gg2123Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C36—H361⋯O5i 0.95 2.51 3.253 (2) 136
C40—H401⋯O41ii 0.97 2.46 3.116 (2) 124
C42—H423⋯O5 0.96 2.51 3.065 (2) 117

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the diffractometer time granted by A. Hunter, Youngstown State University, USA.

supplementary crystallographic information

1. Comment

The bond distances and angles were within expected values. The sydnone ring (O1 – C5) and phenyl ring (C31 – C36) of the structure are planar as expected, with all deviations less than 0.1 Å. The angle between the planes of the sydnone (O1 – C5) and phenyl ring (C31 – C36) is 71.94 (8)°. π-atom interactions are seen between the sydnone ring and a symmetry-related O(5) with a distance of 3.2038 (16) Å. Numerous short intra and inter-molecular contacts are noted within the structure. The potential H bonds in the structure are tabulated below.

2. Experimental

4-Acetyl-3-(2-ethoxycarbonylphenyl)sydnone was synthesized in 47% yield by heating 3-[2-(ethoxycarbonyl)phenyl]sydnone, acetic anhydride (5 eq), bismuth trifluoromethanesulfonate (25 mole %), and lithium perchlorate (25 mole %) in acetonitrile (2 ml) in a sealed tube at 140°C for 5 h.

3. Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Crystal data

C13H12N2O5 F(000) = 576
Mr = 276.25 Dx = 1.481 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2783 reflections
a = 11.353 (3) Å θ = 6–60°
b = 8.093 (2) Å µ = 0.12 mm1
c = 14.607 (4) Å T = 173 K
β = 112.582 (4)° Block, colourless
V = 1239.1 (6) Å3 0.22 × 0.20 × 0.17 mm
Z = 4

Data collection

Bruker Kappa APEXII diffractometer 2783 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
ω scans θmax = 30.6°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −15→15
Tmin = 0.90, Tmax = 0.98 k = −11→11
13826 measured reflections l = −20→20
3718 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H-atom parameters constrained
S = 0.96 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.05P)2 + 0.68P], where P = (max(Fo2,0) + 2Fc2)/3
3718 reflections (Δ/σ)max = 0.0001892
181 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.
Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)Sydnone:O1—C50.6390 (6) x - 0.6043 (6) y - 0.4760 (7) z = -0.206 (6) (11)* 0.005 (1) O1 * 0.003 (1) N2 * -0.010 (1) N3 * 0.012 (1) C4 *- 0.010 (2) C50.1671 (6) x - 0.0840 (6) y + 0.9824 (1) z = 5.3188 (17)Attached phenyl ring: C31–36* -0.003 (1) C31 * 0.004 (1) C32 * -0.002 (1) C33 * -0.001 (2) C34 * 0.002 (2) C35 * 0.000 (2) C36Angle to previous plane (with approximate e.s.d.) = 71.94 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O41 0.40593 (10) 0.21460 (14) 0.17007 (8) 0.0279
C41 0.49814 (14) 0.30225 (18) 0.18948 (11) 0.0208
C4 0.60889 (13) 0.28357 (17) 0.28115 (10) 0.0175
N3 0.62198 (11) 0.16639 (15) 0.35007 (9) 0.0189
N2 0.72926 (12) 0.16842 (18) 0.42560 (10) 0.0265
O1 0.79450 (10) 0.29896 (15) 0.40892 (9) 0.0296
C5 0.72170 (14) 0.37830 (19) 0.31878 (11) 0.0222
O5 0.76294 (11) 0.49824 (14) 0.29284 (9) 0.0293
C31 0.53744 (14) 0.03347 (17) 0.35081 (11) 0.0190
C36 0.57526 (15) −0.12260 (18) 0.33667 (12) 0.0242
C35 0.50160 (16) −0.25590 (18) 0.34078 (12) 0.0267
C34 0.39295 (15) −0.23188 (19) 0.35861 (12) 0.0253
C33 0.35629 (14) −0.07463 (18) 0.37287 (11) 0.0218
C32 0.42817 (14) 0.06187 (17) 0.36981 (10) 0.0191
C37 0.39015 (14) 0.23053 (18) 0.38796 (11) 0.0203
O38 0.28355 (10) 0.22771 (13) 0.40506 (8) 0.0243
C40 0.23638 (15) 0.38788 (19) 0.42045 (13) 0.0264
C39 0.12669 (18) 0.3580 (2) 0.45073 (15) 0.0354
O37 0.44855 (11) 0.35433 (13) 0.38822 (9) 0.0296
C42 0.50663 (16) 0.4341 (2) 0.12175 (12) 0.0296
H361 0.6494 −0.1359 0.3224 0.0288*
H351 0.5251 −0.3639 0.3321 0.0328*
H341 0.3441 −0.3213 0.3614 0.0302*
H331 0.2821 −0.0586 0.3855 0.0256*
H402 0.3053 0.4420 0.4736 0.0308*
H401 0.2089 0.4494 0.3586 0.0317*
H393 0.0942 0.4636 0.4613 0.0530*
H392 0.1546 0.2974 0.5114 0.0523*
H391 0.0588 0.2989 0.3991 0.0514*
H423 0.5461 0.5316 0.1577 0.0481*
H422 0.5591 0.3955 0.0874 0.0479*
H421 0.4258 0.4594 0.0745 0.0459*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O41 0.0226 (5) 0.0250 (6) 0.0288 (6) −0.0055 (4) 0.0018 (4) 0.0058 (5)
C41 0.0232 (7) 0.0167 (6) 0.0234 (7) 0.0017 (5) 0.0099 (6) 0.0009 (5)
C4 0.0181 (6) 0.0150 (6) 0.0211 (6) −0.0005 (5) 0.0094 (5) 0.0016 (5)
N3 0.0186 (5) 0.0172 (5) 0.0208 (6) 0.0000 (4) 0.0075 (5) 0.0015 (5)
N2 0.0213 (6) 0.0296 (7) 0.0245 (6) −0.0027 (5) 0.0043 (5) 0.0058 (5)
O1 0.0226 (5) 0.0320 (6) 0.0296 (6) −0.0068 (5) 0.0048 (5) 0.0055 (5)
C5 0.0211 (7) 0.0237 (7) 0.0231 (7) −0.0016 (5) 0.0100 (6) 0.0006 (6)
O5 0.0289 (6) 0.0269 (6) 0.0348 (6) −0.0090 (5) 0.0153 (5) 0.0016 (5)
C31 0.0221 (7) 0.0149 (6) 0.0195 (6) −0.0020 (5) 0.0075 (5) 0.0025 (5)
C36 0.0276 (7) 0.0192 (7) 0.0280 (8) 0.0029 (6) 0.0130 (6) 0.0031 (6)
C35 0.0367 (9) 0.0134 (6) 0.0319 (8) 0.0022 (6) 0.0154 (7) 0.0020 (6)
C34 0.0322 (8) 0.0155 (7) 0.0297 (8) −0.0040 (6) 0.0135 (7) 0.0011 (6)
C33 0.0252 (7) 0.0172 (6) 0.0249 (7) −0.0023 (5) 0.0118 (6) 0.0020 (6)
C32 0.0239 (7) 0.0145 (6) 0.0194 (7) −0.0010 (5) 0.0089 (6) 0.0014 (5)
C37 0.0245 (7) 0.0166 (6) 0.0221 (7) −0.0004 (5) 0.0115 (6) 0.0003 (5)
O38 0.0268 (5) 0.0162 (5) 0.0356 (6) −0.0010 (4) 0.0185 (5) −0.0018 (4)
C40 0.0307 (8) 0.0163 (7) 0.0380 (9) 0.0002 (6) 0.0195 (7) −0.0032 (6)
C39 0.0397 (10) 0.0244 (8) 0.0538 (11) −0.0024 (7) 0.0311 (9) −0.0041 (8)
O37 0.0375 (6) 0.0160 (5) 0.0455 (7) −0.0042 (4) 0.0274 (6) −0.0040 (5)
C42 0.0307 (8) 0.0287 (8) 0.0266 (8) −0.0010 (6) 0.0081 (7) 0.0090 (6)

Geometric parameters (Å, º)

O41—C41 1.2047 (18) C34—H341 0.922
C41—C4 1.450 (2) C33—C32 1.3842 (19)
C41—C42 1.483 (2) C33—H331 0.938
C4—N3 1.3490 (18) C32—C37 1.486 (2)
C4—C5 1.410 (2) C37—O38 1.3266 (18)
N3—N2 1.2918 (17) C37—O37 1.2006 (18)
N3—C31 1.4445 (18) O38—C40 1.4527 (18)
N2—O1 1.3648 (17) C40—C39 1.493 (2)
O1—C5 1.4118 (19) C40—H402 0.969
C5—O5 1.2006 (18) C40—H401 0.972
C31—C36 1.375 (2) C39—H393 0.967
C31—C32 1.390 (2) C39—H392 0.955
C36—C35 1.380 (2) C39—H391 0.972
C36—H361 0.948 C42—H423 0.958
C35—C34 1.369 (2) C42—H422 0.966
C35—H351 0.937 C42—H421 0.935
C34—C33 1.379 (2)
O41—C41—C4 121.51 (13) C34—C33—H331 120.2
O41—C41—C42 122.68 (14) C32—C33—H331 118.7
C4—C41—C42 115.81 (13) C31—C32—C33 117.18 (13)
C41—C4—N3 124.76 (12) C31—C32—C37 122.01 (12)
C41—C4—C5 129.68 (13) C33—C32—C37 120.81 (13)
N3—C4—C5 105.55 (12) C32—C37—O38 111.49 (12)
C4—N3—N2 115.20 (12) C32—C37—O37 124.70 (13)
C4—N3—C31 130.25 (12) O38—C37—O37 123.80 (13)
N2—N3—C31 114.47 (12) C37—O38—C40 115.53 (11)
N3—N2—O1 104.81 (12) O38—C40—C39 107.47 (13)
N2—O1—C5 110.80 (11) O38—C40—H402 107.1
O1—C5—C4 103.58 (12) C39—C40—H402 110.2
O1—C5—O5 120.17 (14) O38—C40—H401 108.6
C4—C5—O5 136.25 (15) C39—C40—H401 110.6
N3—C31—C36 115.86 (13) H402—C40—H401 112.7
N3—C31—C32 121.65 (13) C40—C39—H393 108.5
C36—C31—C32 122.40 (13) C40—C39—H392 109.9
C31—C36—C35 118.82 (14) H393—C39—H392 108.5
C31—C36—H361 119.5 C40—C39—H391 110.7
C35—C36—H361 121.7 H393—C39—H391 108.8
C36—C35—C34 120.17 (14) H392—C39—H391 110.5
C36—C35—H351 120.9 C41—C42—H423 111.3
C34—C35—H351 118.9 C41—C42—H422 108.9
C35—C34—C33 120.39 (14) H423—C42—H422 107.4
C35—C34—H341 119.9 C41—C42—H421 110.7
C33—C34—H341 119.7 H423—C42—H421 110.1
C34—C33—C32 121.04 (14) H422—C42—H421 108.3

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C36—H361···O5i 0.95 2.51 3.253 (2) 136
C40—H401···O41ii 0.97 2.46 3.116 (2) 124
C33—H331···O38 0.94 2.33 2.681 (2) 101
C42—H423···O5 0.96 2.51 3.065 (2) 117

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2123).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  3. Bruker (2006). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Grossie, D. A., Sun, L. & Turnbull, K. (2007). Acta Cryst. E63, o2042–o2043.
  6. Grossie, D. A. & Turnbull, K. (1992). Acta Cryst. C48, 377–379.
  7. Grossie, D. A., Turnbull, K. & Krein, D. M. (2001). Acta Cryst. E57, o985–o987.
  8. Hanley, R. N., Ollis, W. D. & Ramsden, C. A. (1976). J. Chem. Soc. Chem. Commun. 9, 306–307.
  9. Hodson, S. J. & Turnbull, K. (1985). J. Heterocycl. Chem. 22, 1223–1227.
  10. Hope, H. & Thiessen, W. E. (1969). Acta Cryst. B25, 1237–1247.
  11. Ohta, M. & Kato, H. (1969). Nonbenzenoid Aromatics, edited by J. P. Snyder, pp. 117–248. New York: Academic Press.
  12. Riddle, G. B., Grossie, D. A. & Turnbull, K. (2004a). Acta Cryst. E60, o977–o978.
  13. Riddle, G. B., Grossie, D. A. & Turnbull, K. (2004b). Acta Cryst. E60, o1568–o1570.
  14. Riddle, G. B., Grossie, D. A. & Turnbull, K. (2004c). Acta Cryst. E60, o258–o259.
  15. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  16. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813027207/gg2123sup1.cif

e-69-o1662-sup1.cif (16.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813027207/gg2123Isup2.hkl

e-69-o1662-Isup2.hkl (186.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813027207/gg2123Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES