Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 19;69(Pt 11):o1671. doi: 10.1107/S1600536813028031

1-[4-(4-Hy­droxy­phen­yl)piperazin-1-yl]ethanone

Channappa N Kavitha a, Jerry P Jasinski b,*, Brian J Anderson b, H S Yathirajan a, Manpreet Kaur a
PMCID: PMC3884329  PMID: 24454105

Abstract

In the title compound, C12H16N2O2, the piperazine ring has a chair conformation. The dihedral angle between the mean planes of the benzene ring and the acetyl group is 48.7 (1)°. In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds, forming chains propagating along [010].

Related literature  

For the biological activity of piperazine derivatives, see: Bogatcheva et al. (2006); Brockunier et al. (2004); Elliott (2011); Kharb et al. (2012). For the crystal structures of related compounds, see: Dayananda et al. (2012); Kavitha et al. (2013a ,b ); Peeters et al. (1979, 2004). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-69-o1671-scheme1.jpg

Experimental  

Crystal data  

  • C12H16N2O2

  • M r = 220.27

  • Monoclinic, Inline graphic

  • a = 6.13183 (19) Å

  • b = 12.0106 (4) Å

  • c = 14.8704 (5) Å

  • β = 94.025 (3)°

  • V = 1092.46 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.75 mm−1

  • T = 173 K

  • 0.48 × 0.46 × 0.32 mm

Data collection  

  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) T min = 0.833, T max = 1.000

  • 6224 measured reflections

  • 2134 independent reflections

  • 1944 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.113

  • S = 1.07

  • 2134 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813028031/su2656sup1.cif

e-69-o1671-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028031/su2656Isup2.hkl

e-69-o1671-Isup2.hkl (117.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813028031/su2656Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.88 2.6953 (14) 170

Symmetry code: (i) Inline graphic.

Acknowledgments

CNK thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani’s Science College for Women, Mysore, for permission to carry out research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

1. Comment

The title compound is used to synthesize ketoconazole which is a antifungal agent. A valuable insight into recent advances on antimicrobial activity of piperazine derivatives has been reported by (Kharb et al., 2012). Many currently notable drugs contain a piperazine ring as part of their molecular structure. Piperazines are also among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006). A review on the current pharmacological and toxicological information for piperazine derivatives is described (Elliott, 2011). The crystal structures of some related compounds, viz., cis-1-acetyl-4-(4-{[2-(2,4-dichlorophenyl)-2-(1H-1-imidazolyl methyl)-1,3-dioxolan-4-yl]methoxy}phenyl) piperazine: ketoconazole. A crystal structure with disorder (Peeters et al., 1979), (+)-cis-1-acetyl-4-(4-{[(2R,4S)-2-(2,4-dichlorophenyl)-2-(1H- imidazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy}phenyl)piperazine [(2R,4S)-(+)-ketoconazole] (Peeters et al., 2004), 1-{4-[bis (4-fluorophenyl)methyl]piperazin-1-yl}ethanone (Dayananda et al. , 2012), cinnarizinium bis(p-toluenesulfonate)dihydrate (Kavitha et al., 2013a) and flunarizinium hydrogen maleate (Kavitha et al., 2013b) have been reported. In view of the importance of the title compound this paper reports its crystal structure.

The molecular structure of the title compound is illustrated in Fig. 1. The piperazine ring has a chair conformation with puckering parameters (Cremer & Pople, 1975), Q, θ, and φ = 0.5661 (13) Å, 174.05 (12)° and 0.9 (13)°, respectively. The dihedral angle between the mean planes of the benzene ring (C6-C11) and the acetyl group (N1/C1/C12/O1) is 48.7 (1)°. Bond lengths are in normal ranges (Allen et al., 1987).

In the crystal, O—H···O hydrogen bonds (Table 1) are observed which link the molecules into chains along [0 1 0], as shown in Fig. 2.

2. Experimental

The title compound was purchased from Sigma-Aldrich and was recrystallized from ethanol by slow evaporation to give irregular block-like colourless crystals (M.p. = 453 K).

3. Refinement

All of the H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93 Å (CH), 0.97 Å (CH2), 0.96 Å (CH3), and O-H = 0.82 Å, with Uiso(H) = 1.5Ueq(C-methyl and O) and = 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view along the a axis of the crystal packing of the title compound. The O—H···O hydrogen bonds, linking the molecules into chains along [0 1 0], are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

Crystal data

C12H16N2O2 F(000) = 472
Mr = 220.27 Dx = 1.339 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 6.13183 (19) Å Cell parameters from 3201 reflections
b = 12.0106 (4) Å θ = 3.7–72.1°
c = 14.8704 (5) Å µ = 0.75 mm1
β = 94.025 (3)° T = 173 K
V = 1092.46 (6) Å3 Block, colourless
Z = 4 0.48 × 0.46 × 0.32 mm

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer 2134 independent reflections
Radiation source: Enhance (Cu) X-ray Source 1944 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1 Rint = 0.025
ω scans θmax = 72.3°, θmin = 4.7°
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) h = −7→5
Tmin = 0.833, Tmax = 1.000 k = −14→14
6224 measured reflections l = −17→18

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.063P)2 + 0.2496P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2134 reflections Δρmax = 0.22 e Å3
147 parameters Δρmin = −0.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.76473 (18) −0.03376 (8) 0.41180 (7) 0.0420 (3)
O2 0.92639 (18) 0.80536 (7) 0.30904 (7) 0.0375 (3)
H2 0.8626 0.8514 0.3383 0.056*
N1 0.62601 (17) 0.13923 (9) 0.41758 (7) 0.0273 (3)
N2 0.71764 (16) 0.37192 (8) 0.41491 (7) 0.0244 (3)
C1 0.6095 (2) 0.03108 (10) 0.39631 (8) 0.0285 (3)
C2 0.44858 (19) 0.22001 (10) 0.40349 (9) 0.0299 (3)
H2A 0.3914 0.2384 0.4608 0.036*
H2B 0.3309 0.1879 0.3649 0.036*
C3 0.5312 (2) 0.32459 (10) 0.36038 (9) 0.0305 (3)
H3A 0.5754 0.3072 0.3006 0.037*
H3B 0.4143 0.3791 0.3542 0.037*
C4 0.89577 (19) 0.29095 (10) 0.42176 (8) 0.0262 (3)
H4A 1.0203 0.3222 0.4569 0.031*
H4B 0.9407 0.2738 0.3620 0.031*
C5 0.8215 (2) 0.18508 (10) 0.46652 (9) 0.0290 (3)
H5A 0.9381 0.1304 0.4680 0.035*
H5B 0.7897 0.2012 0.5282 0.035*
C6 0.77423 (19) 0.48149 (10) 0.38735 (8) 0.0238 (3)
C7 0.6271 (2) 0.56832 (10) 0.39795 (8) 0.0276 (3)
H7 0.4959 0.5540 0.4235 0.033*
C8 0.6738 (2) 0.67575 (10) 0.37087 (8) 0.0293 (3)
H8 0.5713 0.7319 0.3766 0.035*
C9 0.8717 (2) 0.70046 (10) 0.33537 (8) 0.0275 (3)
C10 1.0194 (2) 0.61483 (11) 0.32474 (9) 0.0315 (3)
H10 1.1523 0.6299 0.3008 0.038*
C11 0.9702 (2) 0.50671 (10) 0.34968 (9) 0.0290 (3)
H11 1.0700 0.4500 0.3411 0.035*
C12 0.3937 (2) −0.01011 (11) 0.35382 (10) 0.0366 (3)
H12A 0.4010 −0.0892 0.3450 0.055*
H12B 0.3631 0.0260 0.2967 0.055*
H12C 0.2796 0.0067 0.3927 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0495 (6) 0.0251 (5) 0.0499 (6) 0.0119 (4) −0.0068 (5) −0.0033 (4)
O2 0.0524 (6) 0.0219 (5) 0.0390 (5) −0.0023 (4) 0.0087 (4) 0.0006 (4)
N1 0.0268 (5) 0.0210 (5) 0.0336 (6) 0.0034 (4) −0.0010 (4) −0.0004 (4)
N2 0.0215 (5) 0.0200 (5) 0.0314 (5) 0.0030 (4) −0.0008 (4) 0.0000 (4)
C1 0.0396 (7) 0.0221 (6) 0.0238 (6) 0.0032 (5) 0.0016 (5) 0.0015 (4)
C2 0.0229 (6) 0.0235 (6) 0.0431 (7) 0.0027 (5) −0.0002 (5) −0.0042 (5)
C3 0.0257 (6) 0.0229 (6) 0.0415 (7) 0.0045 (5) −0.0071 (5) 0.0006 (5)
C4 0.0226 (6) 0.0232 (6) 0.0323 (6) 0.0048 (5) −0.0021 (5) 0.0008 (5)
C5 0.0281 (6) 0.0233 (6) 0.0348 (6) 0.0034 (5) −0.0045 (5) 0.0023 (5)
C6 0.0259 (6) 0.0209 (6) 0.0239 (6) 0.0026 (4) −0.0028 (4) −0.0013 (4)
C7 0.0286 (6) 0.0249 (6) 0.0294 (6) 0.0048 (5) 0.0037 (5) −0.0004 (5)
C8 0.0363 (7) 0.0226 (6) 0.0290 (6) 0.0077 (5) 0.0023 (5) −0.0015 (5)
C9 0.0383 (7) 0.0204 (6) 0.0233 (6) −0.0009 (5) −0.0023 (5) −0.0011 (4)
C10 0.0274 (6) 0.0299 (7) 0.0371 (7) −0.0019 (5) 0.0024 (5) 0.0008 (5)
C11 0.0246 (6) 0.0235 (6) 0.0386 (7) 0.0041 (5) 0.0013 (5) −0.0006 (5)
C12 0.0500 (8) 0.0229 (6) 0.0354 (7) −0.0018 (6) −0.0080 (6) −0.0012 (5)

Geometric parameters (Å, º)

O1—C1 1.2387 (16) C4—C5 1.5200 (17)
O2—H2 0.8200 C5—H5A 0.9700
O2—C9 1.3681 (15) C5—H5B 0.9700
N1—C1 1.3391 (16) C6—C7 1.3950 (17)
N1—C2 1.4618 (15) C6—C11 1.3943 (18)
N1—C5 1.4651 (16) C7—H7 0.9300
N2—C3 1.4688 (15) C7—C8 1.3875 (18)
N2—C4 1.4607 (14) C8—H8 0.9300
N2—C6 1.4284 (15) C8—C9 1.3888 (19)
C1—C12 1.5096 (18) C9—C10 1.3869 (18)
C2—H2A 0.9700 C10—H10 0.9300
C2—H2B 0.9700 C10—C11 1.3896 (18)
C2—C3 1.5136 (18) C11—H11 0.9300
C3—H3A 0.9700 C12—H12A 0.9600
C3—H3B 0.9700 C12—H12B 0.9600
C4—H4A 0.9700 C12—H12C 0.9600
C4—H4B 0.9700
C9—O2—H2 109.5 N1—C5—H5A 109.5
C1—N1—C2 124.54 (11) N1—C5—H5B 109.5
C1—N1—C5 121.83 (10) C4—C5—H5A 109.5
C2—N1—C5 113.35 (10) C4—C5—H5B 109.5
C4—N2—C3 109.27 (9) H5A—C5—H5B 108.0
C6—N2—C3 113.18 (9) C7—C6—N2 118.97 (11)
C6—N2—C4 115.97 (9) C11—C6—N2 123.30 (10)
O1—C1—N1 121.45 (13) C11—C6—C7 117.74 (11)
O1—C1—C12 120.76 (12) C6—C7—H7 119.5
N1—C1—C12 117.78 (11) C8—C7—C6 120.95 (12)
N1—C2—H2A 109.6 C8—C7—H7 119.5
N1—C2—H2B 109.6 C7—C8—H8 119.6
N1—C2—C3 110.09 (10) C7—C8—C9 120.83 (11)
H2A—C2—H2B 108.2 C9—C8—H8 119.6
C3—C2—H2A 109.6 O2—C9—C8 122.96 (11)
C3—C2—H2B 109.6 O2—C9—C10 118.35 (12)
N2—C3—C2 110.98 (10) C10—C9—C8 118.68 (11)
N2—C3—H3A 109.4 C9—C10—H10 119.8
N2—C3—H3B 109.4 C9—C10—C11 120.45 (12)
C2—C3—H3A 109.4 C11—C10—H10 119.8
C2—C3—H3B 109.4 C6—C11—H11 119.3
H3A—C3—H3B 108.0 C10—C11—C6 121.31 (11)
N2—C4—H4A 109.7 C10—C11—H11 119.3
N2—C4—H4B 109.7 C1—C12—H12A 109.5
N2—C4—C5 109.99 (10) C1—C12—H12B 109.5
H4A—C4—H4B 108.2 C1—C12—H12C 109.5
C5—C4—H4A 109.7 H12A—C12—H12B 109.5
C5—C4—H4B 109.7 H12A—C12—H12C 109.5
N1—C5—C4 110.90 (10) H12B—C12—H12C 109.5
O2—C9—C10—C11 −179.37 (11) C4—N2—C6—C7 −166.26 (11)
N1—C2—C3—N2 −56.20 (14) C4—N2—C6—C11 14.00 (16)
N2—C4—C5—N1 56.23 (13) C5—N1—C1—O1 −4.88 (19)
N2—C6—C7—C8 −179.02 (11) C5—N1—C1—C12 174.25 (11)
N2—C6—C11—C10 −179.29 (11) C5—N1—C2—C3 52.56 (14)
C1—N1—C2—C3 −133.46 (13) C6—N2—C3—C2 −168.28 (10)
C1—N1—C5—C4 132.86 (12) C6—N2—C4—C5 170.42 (10)
C2—N1—C1—O1 −178.37 (12) C6—C7—C8—C9 −2.28 (19)
C2—N1—C1—C12 0.76 (18) C7—C6—C11—C10 0.97 (19)
C2—N1—C5—C4 −52.98 (14) C7—C8—C9—O2 −178.98 (11)
C3—N2—C4—C5 −60.23 (13) C7—C8—C9—C10 2.06 (19)
C3—N2—C6—C7 66.31 (14) C8—C9—C10—C11 −0.36 (19)
C3—N2—C6—C11 −113.43 (13) C9—C10—C11—C6 −1.2 (2)
C4—N2—C3—C2 60.86 (13) C11—C6—C7—C8 0.74 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.82 1.88 2.6953 (14) 170

Symmetry code: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2656).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048. [DOI] [PMC free article] [PubMed]
  4. Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766. [DOI] [PubMed]
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Dayananda, A. S., Yathirajan, H. S., Keeley, A. C. & Jasinski, J. P. (2012). Acta Cryst. E68, o2237. [DOI] [PMC free article] [PubMed]
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Elliott, S. (2011). Drug Test Anal. 3, 430–438. [DOI] [PubMed]
  9. Kavitha, C. N., Butcher, R. J., Jasinski, J. P., Yathirajan, H. S. & Dayananda, A. S. (2013a). Acta Cryst. E69, o485–o486. [DOI] [PMC free article] [PubMed]
  10. Kavitha, C. N., Jasinski, J. P., Matar, S. M., Yathirajan, H. S. & Ramesha, A. R. (2013b). Acta Cryst. E69, o1344. [DOI] [PMC free article] [PubMed]
  11. Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470–2488.
  12. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  13. Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2461–2464.
  14. Peeters, O. M., Blaton, N. M., Gerber, J. G. & Gal, J. (2004). Acta Cryst. E60, o367–o369.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813028031/su2656sup1.cif

e-69-o1671-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028031/su2656Isup2.hkl

e-69-o1671-Isup2.hkl (117.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813028031/su2656Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES