Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 23;69(Pt 11):o1682. doi: 10.1107/S1600536813028274

2,4,6-Tri­nitro­phenyl furan-2-carboxyl­ate

Rodolfo Moreno-Fuquen a,*, Fabricio Mosquera a, Alan R Kennedy b
PMCID: PMC3884337  PMID: 24454113

Abstract

In the title carboxyl­ate derivative, C11H5N3O9, the picryl ring forms an angle of 75.79 (7)° with the ester fragment, indicating a near perpendicular disposition. The nitro substituents are variously oriented with respect to the picryl ring [dihedral angles = 3.22 (10), 16.03 (12) and 36.63 (10)°]. In the crystal, mol­ecules form helical chains sustained by C—H⋯O inter­actions along [010]. The furanyl residue is disordered, having two coplanar slightly displaced orientations [major component = 0.730 (9)].

Related literature  

For similar esters, see: Moreno-Fuquen et al. (2012, 2013). For hydrogen bonding, see: Nardelli (1995).graphic file with name e-69-o1682-scheme1.jpg

Experimental  

Crystal data  

  • C11H5N3O9

  • M r = 323.18

  • Orthorhombic, Inline graphic

  • a = 7.0982 (3) Å

  • b = 8.4931 (4) Å

  • c = 20.4970 (9) Å

  • V = 1235.68 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 123 K

  • 0.35 × 0.22 × 0.11 mm

Data collection  

  • Oxford Diffraction Xcalibur E diffractometer

  • 4861 measured reflections

  • 2669 independent reflections

  • 2395 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.095

  • S = 1.06

  • 2669 reflections

  • 224 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813028274/tk5263sup1.cif

e-69-o1682-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028274/tk5263Isup2.hkl

e-69-o1682-Isup2.hkl (128.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813028274/tk5263Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O8i 0.95 2.32 3.270 (2) 180

Symmetry code: (i) Inline graphic.

Acknowledgments

RMF thanks the Universidad del Valle, Colombia, for partial financial support.

supplementary crystallographic information

1. Comment

In the present work, the structure of the 2,4,6-trinitrophenyl furan 2-carboxylate (I) has been determined as a part of an in-depth study of picryl substituted-esters carried out in our research group. Descriptions of similar structures have been published recently: 2,4,6-trinitrophenyl 3-chlorobenzoate (Moreno-Fuquen et al., 2013), and 2,4,6-trinitrophenyl benzoate (Moreno-Fuquen et al., 2012). The molecular structure of (I) is shown in Fig. 1. Bond distances and angles agree with the molecular features exhibited by other picryl substituted-esters, as described in detail in previous work (Moreno-Fuquen et al., 2012 and 2013). The picryl ring forms an angle of 75.79 (7)° with the ester fragment. The nitro groups form dihedral angles with the adjacent benzene ring of 3.22 (10), 16.03 (12) and 36.63 (10)° for O1—N1—O2, O3—N2—O4 and O5—N3—O6, respectively. The atoms at the furanyl ring are disordered over two positions with occupancies refined to 0.730 (9) and 0.270 (9) for C8A–C11A/O9A and C8B–C11B/O9B, respectively. Appropriate restraints were required (see experimental section) to give chemically acceptable geometries for these fragments. In the crystal the molecules are linked by weak C—H···O interactions, forming one-dimensional helical chains running along [010], as shown in Fig. 2 & Table 1. The C5 atom of the benzene ring at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O8 at (-x+1, +y-1/2, -z+1/2) (see Nardelli, 1995).

2. Experimental

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The title molecule was synthesized using equimolar quantities of 2-furoyl chloride (0.252 g, 1.931 mmol) and picric acid (0.442 g). The reagents were dissolved in acetonitrile and the solution was taken to reflux for about an hour. A pale-yellow solid was obtained after leaving the solvent to evaporate. The solid was washed with distilled water and cold methanol to eliminate impurities. Crystals of good quality and suitable for single-crystal X-ray diffraction were grown from its acetonitrile solution. IR spectra were recorded on a FT—IR SHIMADZU IR-Affinity-1 spectrophotometer. Pale Yellow crystals; yield 52%; m.p 383 (1) K. IR (KBr) 3088.17 cm-1 (aromatic C—H); 1764.94 cm-1 (ester C=O); 1544.08 cm-1, 1343.48 cm-1 (–NO2); 1234.50 cm-1 (C(=O)—O).

3. Refinement

Bond lengths of the disordered furanyl ring were restrained to 1.37 (1) Å for C—O and 1.325 (20) and 1.45 (2) Å for the formally double and single C—C bonds, respectively. Restraints were also applied to force equivalence of displacement parameters for each pair of disordered atoms. All H-atoms were positioned at geometrically idealized positions with C—H distances of 0.95 Å, and with Uiso(H) = 1.2Ueq of the parent C-atoms.

Figures

Fig. 1.

Fig. 1.

Molecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. In the disordered furanyl residue, the atoms labelled with an "a" have site occupancy factors of 0.730 (9).

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), showing the formation of helical chains which running along [010]. Symmetry code: (i) -x, +y-1/2, -z+1/2. The C—H···O interactions are shown as dashed lines.

Crystal data

C11H5N3O9 Dx = 1.737 Mg m3
Mr = 323.18 Melting point: 435(1) K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 4861 reflections
a = 7.0982 (3) Å θ = 3.0–27.0°
b = 8.4931 (4) Å µ = 0.16 mm1
c = 20.4970 (9) Å T = 123 K
V = 1235.68 (10) Å3 Block, pale-yellow
Z = 4 0.35 × 0.22 × 0.11 mm
F(000) = 656

Data collection

Oxford Diffraction Xcalibur E diffractometer 2395 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.022
Graphite monochromator θmax = 27.0°, θmin = 3.0°
ω scans h = −9→9
4861 measured reflections k = −10→8
2669 independent reflections l = −26→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.1241P] where P = (Fo2 + 2Fc2)/3
2669 reflections (Δ/σ)max < 0.001
224 parameters Δρmax = 0.27 e Å3
12 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 −0.18433 (19) 0.8534 (2) 0.26898 (7) 0.0305 (4)
O2 −0.1529 (2) 0.8749 (2) 0.37311 (8) 0.0363 (5)
O3 0.4160 (2) 0.7394 (3) 0.48267 (7) 0.0428 (5)
O4 0.6111 (2) 0.5845 (2) 0.43352 (8) 0.0375 (4)
O5 0.5765 (2) 0.53627 (19) 0.19586 (8) 0.0293 (4)
O6 0.4404 (2) 0.7359 (2) 0.15032 (7) 0.0401 (5)
O7 0.08707 (19) 0.73046 (16) 0.19797 (6) 0.0204 (3)
O8 0.11722 (19) 0.99352 (16) 0.18492 (7) 0.0215 (3)
N1 −0.0930 (2) 0.8411 (2) 0.31894 (8) 0.0215 (4)
N2 0.4759 (2) 0.6722 (2) 0.43417 (8) 0.0253 (4)
N3 0.4676 (2) 0.6478 (2) 0.19627 (8) 0.0225 (4)
C1 0.1840 (3) 0.7368 (2) 0.25609 (9) 0.0164 (4)
C2 0.1026 (3) 0.7816 (2) 0.31521 (9) 0.0178 (4)
C3 0.1979 (3) 0.7648 (3) 0.37363 (10) 0.0194 (4)
H3 0.1425 0.7973 0.4136 0.023*
C4 0.3760 (3) 0.6994 (2) 0.37219 (9) 0.0199 (4)
C5 0.4643 (3) 0.6543 (2) 0.31504 (9) 0.0188 (4)
H5 0.5859 0.6077 0.3153 0.023*
C6 0.3678 (3) 0.6802 (2) 0.25754 (9) 0.0182 (4)
C7 0.0627 (3) 0.8691 (2) 0.16480 (9) 0.0169 (4)
C8A −0.032 (7) 0.8401 (19) 0.1031 (12) 0.020 (2) 0.730 (9)
O9A −0.0526 (9) 0.9683 (6) 0.0630 (3) 0.0319 (8) 0.730 (9)
C9A −0.1062 (9) 0.7071 (7) 0.0776 (2) 0.0194 (10) 0.730 (9)
H9 −0.1115 0.6058 0.0972 0.023* 0.730 (9)
C10A −0.1754 (5) 0.7519 (7) 0.0143 (2) 0.0298 (12) 0.730 (9)
H10 −0.2333 0.6848 −0.0169 0.036* 0.730 (9)
C11A −0.1425 (7) 0.9074 (7) 0.0077 (2) 0.0316 (11) 0.730 (9)
H11 −0.1758 0.9678 −0.0296 0.038* 0.730 (9)
C8B −0.044 (19) 0.835 (5) 0.105 (3) 0.020 (2) 0.270 (9)
O9B −0.077 (3) 0.9350 (19) 0.0532 (8) 0.0319 (8) 0.270 (9)
C9B −0.103 (3) 0.687 (2) 0.0960 (7) 0.0194 (10) 0.270 (9)
H9B −0.0902 0.5978 0.1238 0.023* 0.270 (9)
C10B −0.1880 (18) 0.6968 (18) 0.0363 (6) 0.0298 (12) 0.270 (9)
H10B −0.2524 0.6115 0.0163 0.036* 0.270 (9)
C11B −0.171 (2) 0.840 (2) 0.0088 (7) 0.0316 (11) 0.270 (9)
H11B −0.2151 0.8698 −0.0332 0.038* 0.270 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0175 (7) 0.0428 (11) 0.0313 (8) 0.0018 (8) −0.0020 (6) 0.0103 (8)
O2 0.0285 (8) 0.0485 (12) 0.0320 (9) 0.0119 (8) 0.0068 (7) −0.0089 (9)
O3 0.0451 (10) 0.0646 (13) 0.0187 (8) 0.0105 (11) −0.0038 (7) −0.0073 (9)
O4 0.0357 (9) 0.0426 (11) 0.0341 (9) 0.0117 (9) −0.0114 (8) 0.0043 (8)
O5 0.0273 (7) 0.0241 (8) 0.0364 (9) 0.0105 (7) 0.0031 (7) −0.0032 (7)
O6 0.0455 (10) 0.0491 (11) 0.0256 (8) 0.0213 (10) 0.0083 (7) 0.0133 (9)
O7 0.0236 (7) 0.0165 (7) 0.0212 (7) 0.0004 (6) −0.0081 (6) −0.0001 (6)
O8 0.0218 (7) 0.0184 (8) 0.0243 (8) −0.0004 (6) −0.0002 (7) −0.0004 (7)
N1 0.0178 (8) 0.0186 (8) 0.0280 (9) −0.0005 (7) 0.0033 (7) 0.0012 (9)
N2 0.0263 (10) 0.0300 (11) 0.0196 (9) −0.0045 (8) −0.0051 (7) 0.0023 (9)
N3 0.0205 (8) 0.0255 (10) 0.0215 (9) 0.0041 (8) −0.0007 (7) −0.0002 (8)
C1 0.0185 (9) 0.0115 (10) 0.0191 (9) −0.0028 (8) −0.0032 (8) 0.0023 (8)
C2 0.0148 (8) 0.0128 (9) 0.0257 (10) −0.0009 (7) 0.0016 (8) 0.0030 (8)
C3 0.0214 (10) 0.0171 (10) 0.0198 (9) −0.0040 (8) 0.0033 (8) −0.0019 (9)
C4 0.0209 (9) 0.0180 (11) 0.0208 (10) −0.0039 (8) −0.0048 (8) 0.0027 (8)
C5 0.0158 (8) 0.0159 (9) 0.0247 (10) −0.0013 (7) −0.0035 (8) 0.0022 (10)
C6 0.0192 (9) 0.0154 (10) 0.0200 (10) −0.0006 (8) 0.0018 (8) 0.0010 (8)
C7 0.0127 (8) 0.0189 (11) 0.0191 (9) 0.0027 (8) 0.0016 (7) 0.0009 (8)
C8A 0.017 (6) 0.0232 (14) 0.0196 (17) 0.0038 (12) 0.002 (3) 0.0022 (11)
O9A 0.039 (2) 0.032 (3) 0.025 (2) 0.0024 (17) −0.0090 (14) −0.0029 (16)
C9A 0.0214 (10) 0.018 (2) 0.018 (3) 0.0009 (13) −0.009 (2) −0.004 (2)
C10A 0.0299 (14) 0.036 (3) 0.023 (3) 0.002 (2) −0.0067 (18) −0.005 (2)
C11A 0.034 (2) 0.042 (3) 0.0184 (14) 0.006 (2) −0.0097 (13) −0.001 (2)
C8B 0.017 (6) 0.0232 (14) 0.0196 (17) 0.0038 (12) 0.002 (3) 0.0022 (11)
O9B 0.039 (2) 0.032 (3) 0.025 (2) 0.0024 (17) −0.0090 (14) −0.0029 (16)
C9B 0.0214 (10) 0.018 (2) 0.018 (3) 0.0009 (13) −0.009 (2) −0.004 (2)
C10B 0.0299 (14) 0.036 (3) 0.023 (3) 0.002 (2) −0.0067 (18) −0.005 (2)
C11B 0.034 (2) 0.042 (3) 0.0184 (14) 0.006 (2) −0.0097 (13) −0.001 (2)

Geometric parameters (Å, º)

O1—N1 1.216 (2) C5—H5 0.9500
O2—N1 1.223 (2) C7—C8A 1.453 (7)
O3—N2 1.223 (2) C7—C8B 1.471 (17)
O4—N2 1.215 (2) C8A—C9A 1.352 (7)
O5—N3 1.223 (2) C8A—O9A 1.372 (6)
O6—N3 1.218 (2) O9A—C11A 1.400 (5)
O7—C7 1.371 (2) C9A—C10A 1.439 (5)
O7—C1 1.377 (2) C9A—H9 0.9500
O8—C7 1.198 (2) C10A—C11A 1.348 (5)
N1—C2 1.479 (2) C10A—H10 0.9500
N2—C4 1.473 (2) C11A—H11 0.9500
N3—C6 1.468 (2) C8B—C9B 1.345 (18)
C1—C6 1.391 (3) C8B—O9B 1.376 (10)
C1—C2 1.395 (3) O9B—C11B 1.388 (9)
C2—C3 1.383 (3) C9B—C10B 1.365 (12)
C3—C4 1.381 (3) C9B—H9B 0.9500
C3—H3 0.9500 C10B—C11B 1.344 (13)
C4—C5 1.383 (3) C10B—H10B 0.9500
C5—C6 1.381 (3) C11B—H11B 0.9500
C7—O7—C1 117.29 (15) O7—C7—C8A 110.1 (4)
O1—N1—O2 123.95 (16) O8—C7—C8B 128.7 (12)
O1—N1—C2 119.09 (16) O7—C7—C8B 108.1 (10)
O2—N1—C2 116.96 (16) C9A—C8A—O9A 113.0 (5)
O4—N2—O3 124.75 (18) C9A—C8A—C7 131.2 (6)
O4—N2—C4 117.84 (17) O9A—C8A—C7 115.8 (6)
O3—N2—C4 117.40 (18) C8A—O9A—C11A 103.9 (5)
O6—N3—O5 124.81 (17) C8A—C9A—C10A 105.1 (4)
O6—N3—C6 118.03 (17) C8A—C9A—H9 127.5
O5—N3—C6 117.13 (17) C10A—C9A—H9 127.5
O7—C1—C6 118.28 (17) C11A—C10A—C9A 106.9 (4)
O7—C1—C2 123.73 (17) C11A—C10A—H10 126.6
C6—C1—C2 117.64 (17) C9A—C10A—H10 126.6
C3—C2—C1 121.45 (17) C10A—C11A—O9A 111.1 (4)
C3—C2—N1 116.71 (17) C10A—C11A—H11 124.5
C1—C2—N1 121.77 (17) O9A—C11A—H11 124.5
C4—C3—C2 118.07 (18) C9B—C8B—O9B 114.8 (15)
C4—C3—H3 121.0 C9B—C8B—C7 117.3 (16)
C2—C3—H3 121.0 O9B—C8B—C7 127.7 (18)
C3—C4—C5 123.00 (18) C8B—O9B—C11B 103.2 (13)
C3—C4—N2 119.04 (18) C8B—C9B—C10B 101.5 (13)
C5—C4—N2 117.95 (17) C8B—C9B—H9B 129.3
C6—C5—C4 117.01 (16) C10B—C9B—H9B 129.3
C6—C5—H5 121.5 C11B—C10B—C9B 113.3 (13)
C4—C5—H5 121.5 C11B—C10B—H10B 123.4
C5—C6—C1 122.59 (18) C9B—C10B—H10B 123.4
C5—C6—N3 117.46 (16) C10B—C11B—O9B 107.1 (13)
C1—C6—N3 119.95 (17) C10B—C11B—H11B 126.5
O8—C7—O7 123.08 (17) O9B—C11B—H11B 126.5
O8—C7—C8A 126.8 (4)
C7—O7—C1—C6 −105.5 (2) C1—O7—C7—O8 −1.9 (3)
C7—O7—C1—C2 81.4 (2) C1—O7—C7—C8A 177 (2)
O7—C1—C2—C3 170.67 (19) C1—O7—C7—C8B −180 (6)
C6—C1—C2—C3 −2.5 (3) O8—C7—C8A—C9A −176 (3)
O7—C1—C2—N1 −6.0 (3) O7—C7—C8A—C9A 5 (6)
C6—C1—C2—N1 −179.10 (17) C8B—C7—C8A—C9A −55 (71)
O1—N1—C2—C3 −177.87 (19) O8—C7—C8A—O9A 3 (5)
O2—N1—C2—C3 2.0 (3) O7—C7—C8A—O9A −175 (3)
O1—N1—C2—C1 −1.1 (3) C8B—C7—C8A—O9A 125 (80)
O2—N1—C2—C1 178.8 (2) C9A—C8A—O9A—C11A −2 (4)
C1—C2—C3—C4 −1.2 (3) C7—C8A—O9A—C11A 179 (3)
N1—C2—C3—C4 175.64 (18) O9A—C8A—C9A—C10A 2 (4)
C2—C3—C4—C5 1.8 (3) C7—C8A—C9A—C10A −178 (4)
C2—C3—C4—N2 −176.63 (19) C8A—C9A—C10A—C11A −2 (3)
O4—N2—C4—C3 164.0 (2) C9A—C10A—C11A—O9A 0.8 (6)
O3—N2—C4—C3 −15.7 (3) C8A—O9A—C11A—C10A 0 (2)
O4—N2—C4—C5 −14.5 (3) O8—C7—C8B—C9B −174 (6)
O3—N2—C4—C5 165.8 (2) O7—C7—C8B—C9B 4 (13)
C3—C4—C5—C6 1.3 (3) C8A—C7—C8B—C9B 125 (87)
N2—C4—C5—C6 179.71 (18) O8—C7—C8B—O9B 12 (18)
C4—C5—C6—C1 −5.2 (3) O7—C7—C8B—O9B −170 (11)
C4—C5—C6—N3 173.92 (19) C8A—C7—C8B—O9B −49 (64)
O7—C1—C6—C5 −167.74 (19) C9B—C8B—O9B—C11B 2 (12)
C2—C1—C6—C5 5.8 (3) C7—C8B—O9B—C11B 176 (11)
O7—C1—C6—N3 13.2 (3) O9B—C8B—C9B—C10B −3 (12)
C2—C1—C6—N3 −173.29 (18) C7—C8B—C9B—C10B −178 (9)
O6—N3—C6—C5 −142.3 (2) C8B—C9B—C10B—C11B 4 (7)
O5—N3—C6—C5 35.7 (3) C9B—C10B—C11B—O9B −3 (2)
O6—N3—C6—C1 36.8 (3) C8B—O9B—C11B—C10B 1 (7)
O5—N3—C6—C1 −145.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···O8i 0.95 2.32 3.270 (2) 180

Symmetry code: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5263).

References

  1. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  2. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  3. Moreno-Fuquen, R., Mosquera, F., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013). Acta Cryst. E69, o966. [DOI] [PMC free article] [PubMed]
  4. Moreno-Fuquen, R., Mosquera, F., Kennedy, A. R., Morrison, C. A. & De Almeida Santos, R. H. (2012). Acta Cryst. E68, o3493. [DOI] [PMC free article] [PubMed]
  5. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  6. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813028274/tk5263sup1.cif

e-69-o1682-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028274/tk5263Isup2.hkl

e-69-o1682-Isup2.hkl (128.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813028274/tk5263Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES