Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 23;69(Pt 11):o1687–o1688. doi: 10.1107/S1600536813028493

4-Methyl-N-(4-nitro­benzyl­idene)piperazin-1-amine

Channappa N Kavitha a, Jerry P Jasinski b,*, Brian J Anderson b, HS Yathirajan a, Manpreet Kaur a
PMCID: PMC3884341  PMID: 24454117

Abstract

In the title compound, C12H16N4O2, the piperazine ring is in a slightly distorted chair conformation. In the mol­ecule, the mean plane of the nitro group is twisted by 8.0 (3)° from that of the benzene ring. Also, the mean plane of the 2-nitro­benzyl ring is twisted slightly from that of the piperazine ring, with an N—N=C—C torsion angle of −176.24 (11)°. In the crystal, pairs of weak C—H⋯O inter­actions link the mol­ecules into dimers approximately along [010].

Related literature  

For the biological activity of Schiff base piperzine derivatives, see: Kharb et al. (2012); Savaliya et al. (2010); Xu et al. (2009); Zhou et al. (2011). For therapeutic areas related to piperazines as drug mol­ecules, see: Bogatcheva et al. (2006); Brockunier et al. (2004); Cai et al. (2009); Choudhary et al. (2006); Upadhayaya et al. (2004). For a review of current pharmacological and toxicological information for piperazine derivatives, see: Elliott (2011). For the synthesis of related piperazine compounds and their medicinal and pharmaceutical activity, see: Capuano et al. (2002); Contreras et al. (2001). For related structures, see: Guo (2007); Ming-Lin et al. (2007); Xu et al. (2012); Zhou et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-69-o1687-scheme1.jpg

Experimental  

Crystal data  

  • C12H16N4O2

  • M r = 248.29

  • Monoclinic, Inline graphic

  • a = 27.9353 (14) Å

  • b = 5.9247 (3) Å

  • c = 18.7763 (7) Å

  • β = 126.527 (3)°

  • V = 2497.2 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 173 K

  • 0.38 × 0.32 × 0.22 mm

Data collection  

  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) T min = 0.868, T max = 1.000

  • 7200 measured reflections

  • 2439 independent reflections

  • 2022 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.119

  • S = 1.02

  • 2439 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813028493/zl2568sup1.cif

e-69-o1687-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028493/zl2568Isup2.hkl

e-69-o1687-Isup2.hkl (134.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813028493/zl2568Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O1i 0.99 2.47 3.4052 (19) 158

Symmetry code: (i) Inline graphic.

Acknowledgments

CNK thanks University of Mysore for research facilities and is also grateful to the Principal, Maharani’s Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

1. Comment

Schiff base ligands derived from 1-amino-4-methylpiperazine have attracted interest due to diverse biological activities associated with the piperazine moiety. Schiff base piperazine derivatives have been designed to study their antimicrobial (Savaliya et al., 2010; Kharb et al., 2012)) and antibacterial activity (Xu et al., 2012). In addition, many drugs contain a piperazine ring as part of their molecular structure (Cai et al., 2009). Piperazines are among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006) such as antifungal (Upadhayaya et al., 2004), anti-bacterial, antimalarial activity and as in antipsychotic agents (Choudhary et al., 2006). A review on the current pharmacological and toxicological information for piperazine derivatives has been recently presented (Elliott, 2011). The synthesis of related piperazine compounds and their medicinal and pharmaceutical activity have also been reported (Contreras et al., 2001; Capuano et al., 2002). The crystal structures of some related compounds, viz., 2-[(4-methylpiperazin-1-yl)iminomethyl]phenol (Guo, 2007), 1,4-bis{3-[4-(dimethylamino)benzylideneamino] propyl}piperazine (Xu et al., 2009), 2-methoxy-4-[(4-methylpiperazin-1-yl)- iminomethyl]phenol (Zhou et al., 2011) and 2,4-dibromo-6- [(4-methylpiperazin-1-yl)iminomethyl]phenol (Ming-Lin et al., 2007) have been reported. In view of the above importance of N-piperazinyl Schiff bases, the title compound, (I), C12H16N4O2 has been synthesized and the crystal structure is reported herin.

In the title compound, (I), the piperazine ring is in a slightly distorted chair conformation with puckering parameters Q, θ, and φ = 0.5646Å, 170.8 (5)° and 187.961 (8)° (Cremer & Pople, 1975) (Fig. 1). In the molecule, the mean plane of the nitro group is twisted by 8.0 (3)° from that of the phenyl ring. Also, the mean plane of the 2-nitrobenzyl ring is twisted slightly from that of the piperazine ring with an N1/N2/C5/C6 torsion angle of -176.24 (11)°. Bond lengths are in normal ranges (Allen et al., 1987). Weak C—H···O intermolecular interactions are observed which lead to formation of dimers approximately along [010] and influence crystal packing (Fig. 2).

2. Experimental

To a solution of o-nitrobenzaldehyde (0.75 g, 0.005 mol) in 10 ml of methanol, an equimolar amount of (1-amino-4-methyl)piperazine (0.57 g, 0.005 mol) is added dropwise with constant stirring. The mixture was refluxed for 8 hours to obtain an orange solution. The solution was evaporated to a small volume at room temperature and allowed to stand. Yellow crystals were formed in one day (m.p.: 358–360 K) and were used as such for x-ray diffraction studies.

3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2) or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me were refined as rotating groups.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of (I) (C12H16N4O2 ) showing the labeling scheme with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Molecular packing for (I) viewed along the a axis. Dashed lines indicate weak C—H···O intermolecular intereactions linking the molecules into dimers along [0 1 0]. H atoms not involved in hydrogen bonding have been removed for clarity.

Crystal data

C12H16N4O2 F(000) = 1056
Mr = 248.29 Dx = 1.321 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54184 Å
a = 27.9353 (14) Å Cell parameters from 2934 reflections
b = 5.9247 (3) Å θ = 3.2–72.3°
c = 18.7763 (7) Å µ = 0.77 mm1
β = 126.527 (3)° T = 173 K
V = 2497.2 (2) Å3 Irregular, yellow
Z = 8 0.38 × 0.32 × 0.22 mm

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer 2439 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2022 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1 Rint = 0.031
ω scans θmax = 72.3°, θmin = 3.9°
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) h = −34→32
Tmin = 0.868, Tmax = 1.000 k = −7→7
7200 measured reflections l = −15→22

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.9105P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119 (Δ/σ)max = 0.001
S = 1.02 Δρmax = 0.22 e Å3
2439 reflections Δρmin = −0.18 e Å3
165 parameters Extinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00056 (10)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.93562 (6) 1.1504 (2) 1.26970 (8) 0.0636 (4)
O2 0.96924 (5) 0.8095 (2) 1.29508 (7) 0.0509 (3)
N1 0.60437 (5) 0.7685 (2) 0.55865 (7) 0.0301 (3)
N2 0.66959 (5) 0.80238 (19) 0.74619 (7) 0.0282 (3)
N3 0.71366 (5) 0.8675 (2) 0.83118 (7) 0.0290 (3)
N4 0.93437 (5) 0.9567 (3) 1.24576 (8) 0.0403 (3)
C1 0.58784 (6) 0.9349 (2) 0.59774 (9) 0.0328 (3)
H1A 0.5570 0.8709 0.6023 0.039*
H1B 0.5710 1.0702 0.5594 0.039*
C2 0.64208 (6) 1.0007 (2) 0.68894 (9) 0.0329 (3)
H2A 0.6714 1.0761 0.6836 0.039*
H2B 0.6302 1.1090 0.7160 0.039*
C3 0.68086 (6) 0.6183 (2) 0.70644 (9) 0.0311 (3)
H3A 0.6928 0.4816 0.7438 0.037*
H3B 0.7140 0.6601 0.7037 0.037*
C4 0.62582 (6) 0.5677 (2) 0.61410 (9) 0.0317 (3)
H4A 0.6352 0.4494 0.5868 0.038*
H4B 0.5941 0.5090 0.6177 0.038*
C5 0.75644 (6) 0.7311 (2) 0.88472 (8) 0.0290 (3)
H5 0.7586 0.5880 0.8640 0.035*
C6 0.80153 (6) 0.7948 (2) 0.97695 (9) 0.0282 (3)
C7 0.80100 (6) 1.0039 (2) 1.01127 (9) 0.0317 (3)
H7 0.7706 1.1101 0.9737 0.038*
C8 0.84416 (6) 1.0572 (3) 1.09893 (9) 0.0336 (3)
H8 0.8438 1.1991 1.1221 0.040*
C9 0.88821 (6) 0.8997 (3) 1.15268 (9) 0.0326 (3)
C10 0.89029 (6) 0.6922 (3) 1.12129 (9) 0.0344 (3)
H10 0.9208 0.5867 1.1594 0.041*
C11 0.84702 (6) 0.6411 (2) 1.03298 (9) 0.0330 (3)
H11 0.8482 0.4998 1.0101 0.040*
C12 0.55353 (7) 0.7136 (3) 0.46826 (9) 0.0387 (4)
H12A 0.5211 0.6537 0.4689 0.058*
H12B 0.5654 0.6002 0.4436 0.058*
H12C 0.5400 0.8502 0.4317 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0527 (8) 0.0698 (9) 0.0412 (7) 0.0008 (6) 0.0132 (6) −0.0240 (6)
O2 0.0326 (6) 0.0792 (9) 0.0295 (6) 0.0096 (6) 0.0123 (5) 0.0014 (6)
N1 0.0278 (6) 0.0347 (6) 0.0256 (6) −0.0026 (5) 0.0146 (5) −0.0031 (5)
N2 0.0279 (6) 0.0289 (6) 0.0245 (6) −0.0001 (4) 0.0138 (5) −0.0035 (4)
N3 0.0278 (6) 0.0326 (6) 0.0257 (6) −0.0038 (5) 0.0154 (5) −0.0042 (4)
N4 0.0280 (6) 0.0624 (9) 0.0287 (6) −0.0011 (6) 0.0159 (6) −0.0066 (6)
C1 0.0290 (7) 0.0327 (7) 0.0301 (7) 0.0031 (5) 0.0140 (6) −0.0005 (5)
C2 0.0335 (7) 0.0274 (7) 0.0310 (7) 0.0027 (5) 0.0156 (6) −0.0022 (6)
C3 0.0312 (7) 0.0286 (7) 0.0284 (7) 0.0021 (5) 0.0150 (6) −0.0031 (5)
C4 0.0334 (7) 0.0291 (7) 0.0302 (7) −0.0029 (5) 0.0177 (6) −0.0061 (5)
C5 0.0291 (7) 0.0304 (7) 0.0290 (7) −0.0023 (5) 0.0181 (6) −0.0026 (5)
C6 0.0271 (7) 0.0331 (7) 0.0278 (7) −0.0036 (5) 0.0183 (6) −0.0010 (5)
C7 0.0291 (7) 0.0354 (7) 0.0289 (7) 0.0009 (6) 0.0163 (6) −0.0002 (6)
C8 0.0325 (7) 0.0365 (8) 0.0330 (7) −0.0035 (6) 0.0202 (6) −0.0065 (6)
C9 0.0261 (7) 0.0467 (8) 0.0264 (7) −0.0050 (6) 0.0165 (6) −0.0041 (6)
C10 0.0282 (7) 0.0437 (8) 0.0295 (7) 0.0037 (6) 0.0161 (6) 0.0037 (6)
C11 0.0325 (7) 0.0341 (7) 0.0334 (7) 0.0004 (6) 0.0201 (6) −0.0018 (6)
C12 0.0333 (8) 0.0498 (9) 0.0265 (7) −0.0039 (6) 0.0142 (6) −0.0052 (6)

Geometric parameters (Å, º)

O1—N4 1.2253 (19) C4—H4A 0.9900
O2—N4 1.2219 (18) C4—H4B 0.9900
N1—C1 1.4586 (17) C5—H5 0.9500
N1—C4 1.4546 (18) C5—C6 1.4598 (19)
N1—C12 1.4608 (17) C6—C7 1.401 (2)
N2—N3 1.3682 (15) C6—C11 1.400 (2)
N2—C2 1.4639 (17) C7—H7 0.9500
N2—C3 1.4580 (16) C7—C8 1.379 (2)
N3—C5 1.2889 (18) C8—H8 0.9500
N4—C9 1.4657 (18) C8—C9 1.388 (2)
C1—H1A 0.9900 C9—C10 1.379 (2)
C1—H1B 0.9900 C10—H10 0.9500
C1—C2 1.5137 (19) C10—C11 1.384 (2)
C2—H2A 0.9900 C11—H11 0.9500
C2—H2B 0.9900 C12—H12A 0.9800
C3—H3A 0.9900 C12—H12B 0.9800
C3—H3B 0.9900 C12—H12C 0.9800
C3—C4 1.5122 (18)
C1—N1—C12 110.78 (11) C3—C4—H4A 109.4
C4—N1—C1 108.16 (10) C3—C4—H4B 109.4
C4—N1—C12 110.55 (11) H4A—C4—H4B 108.0
N3—N2—C2 110.17 (10) N3—C5—H5 119.7
N3—N2—C3 119.30 (10) N3—C5—C6 120.54 (13)
C3—N2—C2 113.80 (10) C6—C5—H5 119.7
C5—N3—N2 120.39 (12) C7—C6—C5 122.44 (13)
O1—N4—C9 117.78 (14) C11—C6—C5 118.67 (13)
O2—N4—O1 123.67 (13) C11—C6—C7 118.89 (13)
O2—N4—C9 118.55 (14) C6—C7—H7 119.6
N1—C1—H1A 109.7 C8—C7—C6 120.72 (14)
N1—C1—H1B 109.7 C8—C7—H7 119.6
N1—C1—C2 109.86 (11) C7—C8—H8 120.6
H1A—C1—H1B 108.2 C7—C8—C9 118.76 (13)
C2—C1—H1A 109.7 C9—C8—H8 120.6
C2—C1—H1B 109.7 C8—C9—N4 118.83 (13)
N2—C2—C1 111.02 (11) C10—C9—N4 118.94 (13)
N2—C2—H2A 109.4 C10—C9—C8 122.22 (13)
N2—C2—H2B 109.4 C9—C10—H10 120.7
C1—C2—H2A 109.4 C9—C10—C11 118.56 (13)
C1—C2—H2B 109.4 C11—C10—H10 120.7
H2A—C2—H2B 108.0 C6—C11—H11 119.6
N2—C3—H3A 109.5 C10—C11—C6 120.84 (13)
N2—C3—H3B 109.5 C10—C11—H11 119.6
N2—C3—C4 110.69 (11) N1—C12—H12A 109.5
H3A—C3—H3B 108.1 N1—C12—H12B 109.5
C4—C3—H3A 109.5 N1—C12—H12C 109.5
C4—C3—H3B 109.5 H12A—C12—H12B 109.5
N1—C4—C3 111.29 (11) H12A—C12—H12C 109.5
N1—C4—H4A 109.4 H12B—C12—H12C 109.5
N1—C4—H4B 109.4
O1—N4—C9—C8 −7.5 (2) C3—N2—N3—C5 −21.56 (18)
O1—N4—C9—C10 171.92 (14) C3—N2—C2—C1 50.72 (15)
O2—N4—C9—C8 172.30 (13) C4—N1—C1—C2 62.44 (14)
O2—N4—C9—C10 −8.2 (2) C5—C6—C7—C8 179.56 (12)
N1—C1—C2—N2 −56.86 (15) C5—C6—C11—C10 −179.02 (12)
N2—N3—C5—C6 −176.24 (11) C6—C7—C8—C9 0.0 (2)
N2—C3—C4—N1 55.30 (15) C7—C6—C11—C10 1.1 (2)
N3—N2—C2—C1 −172.24 (11) C7—C8—C9—N4 179.59 (12)
N3—N2—C3—C4 177.74 (11) C7—C8—C9—C10 0.1 (2)
N3—C5—C6—C7 −0.5 (2) C8—C9—C10—C11 0.4 (2)
N3—C5—C6—C11 179.62 (12) C9—C10—C11—C6 −1.0 (2)
N4—C9—C10—C11 −179.07 (12) C11—C6—C7—C8 −0.6 (2)
C1—N1—C4—C3 −62.15 (14) C12—N1—C1—C2 −176.25 (11)
C2—N2—N3—C5 −155.91 (12) C12—N1—C4—C3 176.40 (11)
C2—N2—C3—C4 −49.44 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2B···O1i 0.99 2.47 3.4052 (19) 158

Symmetry code: (i) −x+3/2, −y+5/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2568).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048. [DOI] [PMC free article] [PubMed]
  4. Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766. [DOI] [PubMed]
  5. Cai, J.-L., Lu, Y.-H., Gan, L.-L. & Zhou, C.-H. (2009). Chin. J. Antibiot. 34, 454–462.
  6. Capuano, B., Crosby, I. T., Lloyd, E. J. & Taylor, D. A. (2002). Aust. J. Chem. 55, 565–576.
  7. Choudhary, P., Kumar, R. & Verma, K. (2006). Bioorg. Med. Chem. 14, 1819–1826. [DOI] [PubMed]
  8. Contreras, J. M., Parrot, I., Sippl, W., Rival, Y. M. & Wermuth, C. G. (2001). J. Med. Chem. 44, 2707–2718. [DOI] [PubMed]
  9. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  10. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  11. Elliott, S. (2011). Drug Test Anal. 3, 430–438 [DOI] [PubMed]
  12. Guo, M.-L. (2007). Acta Cryst. E63, o1788–o1789.
  13. Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470–2488.
  14. Ming-Lin, G. & You-Nong, Q. (2007). Acta Cryst. E63, o4641.
  15. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  16. Savaliya, M. D., Dobaria, J. G. & Purohit, D. M. (2010). An Indian J. 6, 267–271.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Upadhayaya, P. S., Sinha, N. & Jain, S. (2004). Bioorg. Med. Chem. 12, 2225–2238. [DOI] [PubMed]
  19. Xu, R.-B., Xu, X.-Y., Wang, D.-Q., Yang, X.-J. & Li, S. (2009). Acta Cryst. E65, o2997. [DOI] [PMC free article] [PubMed]
  20. Xu, R.-B., Zhang, N., Zhou, H.-Y., Yang, S. P., Li, Y.-Y., Shi, D.-H., Ma, W.-X. & Xu, X.-Y. (2012). J. Chem. Crystallogr. 42, 928–932.
  21. Zhou, L.-N., Yan, L., Zhou, H.-L., Yang, Q.-F. & Hu, Q.-L. (2011). Acta Cryst. E67, o100. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813028493/zl2568sup1.cif

e-69-o1687-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028493/zl2568Isup2.hkl

e-69-o1687-Isup2.hkl (134.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813028493/zl2568Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES