Abstract
In the title compound, C12H16N4O2, the piperazine ring is in a slightly distorted chair conformation. In the molecule, the mean plane of the nitro group is twisted by 8.0 (3)° from that of the benzene ring. Also, the mean plane of the 2-nitrobenzyl ring is twisted slightly from that of the piperazine ring, with an N—N=C—C torsion angle of −176.24 (11)°. In the crystal, pairs of weak C—H⋯O interactions link the molecules into dimers approximately along [010].
Related literature
For the biological activity of Schiff base piperzine derivatives, see: Kharb et al. (2012 ▶); Savaliya et al. (2010 ▶); Xu et al. (2009 ▶); Zhou et al. (2011 ▶). For therapeutic areas related to piperazines as drug molecules, see: Bogatcheva et al. (2006 ▶); Brockunier et al. (2004 ▶); Cai et al. (2009 ▶); Choudhary et al. (2006 ▶); Upadhayaya et al. (2004 ▶). For a review of current pharmacological and toxicological information for piperazine derivatives, see: Elliott (2011 ▶). For the synthesis of related piperazine compounds and their medicinal and pharmaceutical activity, see: Capuano et al. (2002 ▶); Contreras et al. (2001 ▶). For related structures, see: Guo (2007 ▶); Ming-Lin et al. (2007 ▶); Xu et al. (2012 ▶); Zhou et al. (2011 ▶). For puckering parameters, see: Cremer & Pople (1975 ▶). For standard bond lengths, see: Allen et al. (1987 ▶).
Experimental
Crystal data
C12H16N4O2
M r = 248.29
Monoclinic,
a = 27.9353 (14) Å
b = 5.9247 (3) Å
c = 18.7763 (7) Å
β = 126.527 (3)°
V = 2497.2 (2) Å3
Z = 8
Cu Kα radiation
μ = 0.77 mm−1
T = 173 K
0.38 × 0.32 × 0.22 mm
Data collection
Agilent Xcalibur (Eos, Gemini) diffractometer
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012 ▶) T min = 0.868, T max = 1.000
7200 measured reflections
2439 independent reflections
2022 reflections with I > 2σ(I)
R int = 0.031
Refinement
R[F 2 > 2σ(F 2)] = 0.041
wR(F 2) = 0.119
S = 1.02
2439 reflections
165 parameters
H-atom parameters constrained
Δρmax = 0.22 e Å−3
Δρmin = −0.18 e Å−3
Data collection: CrysAlis PRO (Agilent, 2012 ▶); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012 ▶); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007 ▶); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008 ▶); molecular graphics: OLEX2 (Dolomanov et al., 2009 ▶); software used to prepare material for publication: OLEX2.
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813028493/zl2568sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028493/zl2568Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536813028493/zl2568Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C2—H2B⋯O1i | 0.99 | 2.47 | 3.4052 (19) | 158 |
Symmetry code: (i)
.
Acknowledgments
CNK thanks University of Mysore for research facilities and is also grateful to the Principal, Maharani’s Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
supplementary crystallographic information
1. Comment
Schiff base ligands derived from 1-amino-4-methylpiperazine have attracted interest due to diverse biological activities associated with the piperazine moiety. Schiff base piperazine derivatives have been designed to study their antimicrobial (Savaliya et al., 2010; Kharb et al., 2012)) and antibacterial activity (Xu et al., 2012). In addition, many drugs contain a piperazine ring as part of their molecular structure (Cai et al., 2009). Piperazines are among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006) such as antifungal (Upadhayaya et al., 2004), anti-bacterial, antimalarial activity and as in antipsychotic agents (Choudhary et al., 2006). A review on the current pharmacological and toxicological information for piperazine derivatives has been recently presented (Elliott, 2011). The synthesis of related piperazine compounds and their medicinal and pharmaceutical activity have also been reported (Contreras et al., 2001; Capuano et al., 2002). The crystal structures of some related compounds, viz., 2-[(4-methylpiperazin-1-yl)iminomethyl]phenol (Guo, 2007), 1,4-bis{3-[4-(dimethylamino)benzylideneamino] propyl}piperazine (Xu et al., 2009), 2-methoxy-4-[(4-methylpiperazin-1-yl)- iminomethyl]phenol (Zhou et al., 2011) and 2,4-dibromo-6- [(4-methylpiperazin-1-yl)iminomethyl]phenol (Ming-Lin et al., 2007) have been reported. In view of the above importance of N-piperazinyl Schiff bases, the title compound, (I), C12H16N4O2 has been synthesized and the crystal structure is reported herin.
In the title compound, (I), the piperazine ring is in a slightly distorted chair conformation with puckering parameters Q, θ, and φ = 0.5646Å, 170.8 (5)° and 187.961 (8)° (Cremer & Pople, 1975) (Fig. 1). In the molecule, the mean plane of the nitro group is twisted by 8.0 (3)° from that of the phenyl ring. Also, the mean plane of the 2-nitrobenzyl ring is twisted slightly from that of the piperazine ring with an N1/N2/C5/C6 torsion angle of -176.24 (11)°. Bond lengths are in normal ranges (Allen et al., 1987). Weak C—H···O intermolecular interactions are observed which lead to formation of dimers approximately along [010] and influence crystal packing (Fig. 2).
2. Experimental
To a solution of o-nitrobenzaldehyde (0.75 g, 0.005 mol) in 10 ml of methanol, an equimolar amount of (1-amino-4-methyl)piperazine (0.57 g, 0.005 mol) is added dropwise with constant stirring. The mixture was refluxed for 8 hours to obtain an orange solution. The solution was evaporated to a small volume at room temperature and allowed to stand. Yellow crystals were formed in one day (m.p.: 358–360 K) and were used as such for x-ray diffraction studies.
3. Refinement
All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2) or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me were refined as rotating groups.
Figures
Fig. 1.

ORTEP drawing of (I) (C12H16N4O2 ) showing the labeling scheme with 50% probability displacement ellipsoids.
Fig. 2.

Molecular packing for (I) viewed along the a axis. Dashed lines indicate weak C—H···O intermolecular intereactions linking the molecules into dimers along [0 1 0]. H atoms not involved in hydrogen bonding have been removed for clarity.
Crystal data
| C12H16N4O2 | F(000) = 1056 |
| Mr = 248.29 | Dx = 1.321 Mg m−3 |
| Monoclinic, C2/c | Cu Kα radiation, λ = 1.54184 Å |
| a = 27.9353 (14) Å | Cell parameters from 2934 reflections |
| b = 5.9247 (3) Å | θ = 3.2–72.3° |
| c = 18.7763 (7) Å | µ = 0.77 mm−1 |
| β = 126.527 (3)° | T = 173 K |
| V = 2497.2 (2) Å3 | Irregular, yellow |
| Z = 8 | 0.38 × 0.32 × 0.22 mm |
Data collection
| Agilent Xcalibur (Eos, Gemini) diffractometer | 2439 independent reflections |
| Radiation source: Enhance (Cu) X-ray Source | 2022 reflections with I > 2σ(I) |
| Detector resolution: 16.0416 pixels mm-1 | Rint = 0.031 |
| ω scans | θmax = 72.3°, θmin = 3.9° |
| Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | h = −34→32 |
| Tmin = 0.868, Tmax = 1.000 | k = −7→7 |
| 7200 measured reflections | l = −15→22 |
Refinement
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.041 | w = 1/[σ2(Fo2) + (0.0636P)2 + 0.9105P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.119 | (Δ/σ)max = 0.001 |
| S = 1.02 | Δρmax = 0.22 e Å−3 |
| 2439 reflections | Δρmin = −0.18 e Å−3 |
| 165 parameters | Extinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 0 restraints | Extinction coefficient: 0.00056 (10) |
| Primary atom site location: structure-invariant direct methods |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.93562 (6) | 1.1504 (2) | 1.26970 (8) | 0.0636 (4) | |
| O2 | 0.96924 (5) | 0.8095 (2) | 1.29508 (7) | 0.0509 (3) | |
| N1 | 0.60437 (5) | 0.7685 (2) | 0.55865 (7) | 0.0301 (3) | |
| N2 | 0.66959 (5) | 0.80238 (19) | 0.74619 (7) | 0.0282 (3) | |
| N3 | 0.71366 (5) | 0.8675 (2) | 0.83118 (7) | 0.0290 (3) | |
| N4 | 0.93437 (5) | 0.9567 (3) | 1.24576 (8) | 0.0403 (3) | |
| C1 | 0.58784 (6) | 0.9349 (2) | 0.59774 (9) | 0.0328 (3) | |
| H1A | 0.5570 | 0.8709 | 0.6023 | 0.039* | |
| H1B | 0.5710 | 1.0702 | 0.5594 | 0.039* | |
| C2 | 0.64208 (6) | 1.0007 (2) | 0.68894 (9) | 0.0329 (3) | |
| H2A | 0.6714 | 1.0761 | 0.6836 | 0.039* | |
| H2B | 0.6302 | 1.1090 | 0.7160 | 0.039* | |
| C3 | 0.68086 (6) | 0.6183 (2) | 0.70644 (9) | 0.0311 (3) | |
| H3A | 0.6928 | 0.4816 | 0.7438 | 0.037* | |
| H3B | 0.7140 | 0.6601 | 0.7037 | 0.037* | |
| C4 | 0.62582 (6) | 0.5677 (2) | 0.61410 (9) | 0.0317 (3) | |
| H4A | 0.6352 | 0.4494 | 0.5868 | 0.038* | |
| H4B | 0.5941 | 0.5090 | 0.6177 | 0.038* | |
| C5 | 0.75644 (6) | 0.7311 (2) | 0.88472 (8) | 0.0290 (3) | |
| H5 | 0.7586 | 0.5880 | 0.8640 | 0.035* | |
| C6 | 0.80153 (6) | 0.7948 (2) | 0.97695 (9) | 0.0282 (3) | |
| C7 | 0.80100 (6) | 1.0039 (2) | 1.01127 (9) | 0.0317 (3) | |
| H7 | 0.7706 | 1.1101 | 0.9737 | 0.038* | |
| C8 | 0.84416 (6) | 1.0572 (3) | 1.09893 (9) | 0.0336 (3) | |
| H8 | 0.8438 | 1.1991 | 1.1221 | 0.040* | |
| C9 | 0.88821 (6) | 0.8997 (3) | 1.15268 (9) | 0.0326 (3) | |
| C10 | 0.89029 (6) | 0.6922 (3) | 1.12129 (9) | 0.0344 (3) | |
| H10 | 0.9208 | 0.5867 | 1.1594 | 0.041* | |
| C11 | 0.84702 (6) | 0.6411 (2) | 1.03298 (9) | 0.0330 (3) | |
| H11 | 0.8482 | 0.4998 | 1.0101 | 0.040* | |
| C12 | 0.55353 (7) | 0.7136 (3) | 0.46826 (9) | 0.0387 (4) | |
| H12A | 0.5211 | 0.6537 | 0.4689 | 0.058* | |
| H12B | 0.5654 | 0.6002 | 0.4436 | 0.058* | |
| H12C | 0.5400 | 0.8502 | 0.4317 | 0.058* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0527 (8) | 0.0698 (9) | 0.0412 (7) | 0.0008 (6) | 0.0132 (6) | −0.0240 (6) |
| O2 | 0.0326 (6) | 0.0792 (9) | 0.0295 (6) | 0.0096 (6) | 0.0123 (5) | 0.0014 (6) |
| N1 | 0.0278 (6) | 0.0347 (6) | 0.0256 (6) | −0.0026 (5) | 0.0146 (5) | −0.0031 (5) |
| N2 | 0.0279 (6) | 0.0289 (6) | 0.0245 (6) | −0.0001 (4) | 0.0138 (5) | −0.0035 (4) |
| N3 | 0.0278 (6) | 0.0326 (6) | 0.0257 (6) | −0.0038 (5) | 0.0154 (5) | −0.0042 (4) |
| N4 | 0.0280 (6) | 0.0624 (9) | 0.0287 (6) | −0.0011 (6) | 0.0159 (6) | −0.0066 (6) |
| C1 | 0.0290 (7) | 0.0327 (7) | 0.0301 (7) | 0.0031 (5) | 0.0140 (6) | −0.0005 (5) |
| C2 | 0.0335 (7) | 0.0274 (7) | 0.0310 (7) | 0.0027 (5) | 0.0156 (6) | −0.0022 (6) |
| C3 | 0.0312 (7) | 0.0286 (7) | 0.0284 (7) | 0.0021 (5) | 0.0150 (6) | −0.0031 (5) |
| C4 | 0.0334 (7) | 0.0291 (7) | 0.0302 (7) | −0.0029 (5) | 0.0177 (6) | −0.0061 (5) |
| C5 | 0.0291 (7) | 0.0304 (7) | 0.0290 (7) | −0.0023 (5) | 0.0181 (6) | −0.0026 (5) |
| C6 | 0.0271 (7) | 0.0331 (7) | 0.0278 (7) | −0.0036 (5) | 0.0183 (6) | −0.0010 (5) |
| C7 | 0.0291 (7) | 0.0354 (7) | 0.0289 (7) | 0.0009 (6) | 0.0163 (6) | −0.0002 (6) |
| C8 | 0.0325 (7) | 0.0365 (8) | 0.0330 (7) | −0.0035 (6) | 0.0202 (6) | −0.0065 (6) |
| C9 | 0.0261 (7) | 0.0467 (8) | 0.0264 (7) | −0.0050 (6) | 0.0165 (6) | −0.0041 (6) |
| C10 | 0.0282 (7) | 0.0437 (8) | 0.0295 (7) | 0.0037 (6) | 0.0161 (6) | 0.0037 (6) |
| C11 | 0.0325 (7) | 0.0341 (7) | 0.0334 (7) | 0.0004 (6) | 0.0201 (6) | −0.0018 (6) |
| C12 | 0.0333 (8) | 0.0498 (9) | 0.0265 (7) | −0.0039 (6) | 0.0142 (6) | −0.0052 (6) |
Geometric parameters (Å, º)
| O1—N4 | 1.2253 (19) | C4—H4A | 0.9900 |
| O2—N4 | 1.2219 (18) | C4—H4B | 0.9900 |
| N1—C1 | 1.4586 (17) | C5—H5 | 0.9500 |
| N1—C4 | 1.4546 (18) | C5—C6 | 1.4598 (19) |
| N1—C12 | 1.4608 (17) | C6—C7 | 1.401 (2) |
| N2—N3 | 1.3682 (15) | C6—C11 | 1.400 (2) |
| N2—C2 | 1.4639 (17) | C7—H7 | 0.9500 |
| N2—C3 | 1.4580 (16) | C7—C8 | 1.379 (2) |
| N3—C5 | 1.2889 (18) | C8—H8 | 0.9500 |
| N4—C9 | 1.4657 (18) | C8—C9 | 1.388 (2) |
| C1—H1A | 0.9900 | C9—C10 | 1.379 (2) |
| C1—H1B | 0.9900 | C10—H10 | 0.9500 |
| C1—C2 | 1.5137 (19) | C10—C11 | 1.384 (2) |
| C2—H2A | 0.9900 | C11—H11 | 0.9500 |
| C2—H2B | 0.9900 | C12—H12A | 0.9800 |
| C3—H3A | 0.9900 | C12—H12B | 0.9800 |
| C3—H3B | 0.9900 | C12—H12C | 0.9800 |
| C3—C4 | 1.5122 (18) | ||
| C1—N1—C12 | 110.78 (11) | C3—C4—H4A | 109.4 |
| C4—N1—C1 | 108.16 (10) | C3—C4—H4B | 109.4 |
| C4—N1—C12 | 110.55 (11) | H4A—C4—H4B | 108.0 |
| N3—N2—C2 | 110.17 (10) | N3—C5—H5 | 119.7 |
| N3—N2—C3 | 119.30 (10) | N3—C5—C6 | 120.54 (13) |
| C3—N2—C2 | 113.80 (10) | C6—C5—H5 | 119.7 |
| C5—N3—N2 | 120.39 (12) | C7—C6—C5 | 122.44 (13) |
| O1—N4—C9 | 117.78 (14) | C11—C6—C5 | 118.67 (13) |
| O2—N4—O1 | 123.67 (13) | C11—C6—C7 | 118.89 (13) |
| O2—N4—C9 | 118.55 (14) | C6—C7—H7 | 119.6 |
| N1—C1—H1A | 109.7 | C8—C7—C6 | 120.72 (14) |
| N1—C1—H1B | 109.7 | C8—C7—H7 | 119.6 |
| N1—C1—C2 | 109.86 (11) | C7—C8—H8 | 120.6 |
| H1A—C1—H1B | 108.2 | C7—C8—C9 | 118.76 (13) |
| C2—C1—H1A | 109.7 | C9—C8—H8 | 120.6 |
| C2—C1—H1B | 109.7 | C8—C9—N4 | 118.83 (13) |
| N2—C2—C1 | 111.02 (11) | C10—C9—N4 | 118.94 (13) |
| N2—C2—H2A | 109.4 | C10—C9—C8 | 122.22 (13) |
| N2—C2—H2B | 109.4 | C9—C10—H10 | 120.7 |
| C1—C2—H2A | 109.4 | C9—C10—C11 | 118.56 (13) |
| C1—C2—H2B | 109.4 | C11—C10—H10 | 120.7 |
| H2A—C2—H2B | 108.0 | C6—C11—H11 | 119.6 |
| N2—C3—H3A | 109.5 | C10—C11—C6 | 120.84 (13) |
| N2—C3—H3B | 109.5 | C10—C11—H11 | 119.6 |
| N2—C3—C4 | 110.69 (11) | N1—C12—H12A | 109.5 |
| H3A—C3—H3B | 108.1 | N1—C12—H12B | 109.5 |
| C4—C3—H3A | 109.5 | N1—C12—H12C | 109.5 |
| C4—C3—H3B | 109.5 | H12A—C12—H12B | 109.5 |
| N1—C4—C3 | 111.29 (11) | H12A—C12—H12C | 109.5 |
| N1—C4—H4A | 109.4 | H12B—C12—H12C | 109.5 |
| N1—C4—H4B | 109.4 | ||
| O1—N4—C9—C8 | −7.5 (2) | C3—N2—N3—C5 | −21.56 (18) |
| O1—N4—C9—C10 | 171.92 (14) | C3—N2—C2—C1 | 50.72 (15) |
| O2—N4—C9—C8 | 172.30 (13) | C4—N1—C1—C2 | 62.44 (14) |
| O2—N4—C9—C10 | −8.2 (2) | C5—C6—C7—C8 | 179.56 (12) |
| N1—C1—C2—N2 | −56.86 (15) | C5—C6—C11—C10 | −179.02 (12) |
| N2—N3—C5—C6 | −176.24 (11) | C6—C7—C8—C9 | 0.0 (2) |
| N2—C3—C4—N1 | 55.30 (15) | C7—C6—C11—C10 | 1.1 (2) |
| N3—N2—C2—C1 | −172.24 (11) | C7—C8—C9—N4 | 179.59 (12) |
| N3—N2—C3—C4 | 177.74 (11) | C7—C8—C9—C10 | 0.1 (2) |
| N3—C5—C6—C7 | −0.5 (2) | C8—C9—C10—C11 | 0.4 (2) |
| N3—C5—C6—C11 | 179.62 (12) | C9—C10—C11—C6 | −1.0 (2) |
| N4—C9—C10—C11 | −179.07 (12) | C11—C6—C7—C8 | −0.6 (2) |
| C1—N1—C4—C3 | −62.15 (14) | C12—N1—C1—C2 | −176.25 (11) |
| C2—N2—N3—C5 | −155.91 (12) | C12—N1—C4—C3 | 176.40 (11) |
| C2—N2—C3—C4 | −49.44 (15) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C2—H2B···O1i | 0.99 | 2.47 | 3.4052 (19) | 158 |
Symmetry code: (i) −x+3/2, −y+5/2, −z+2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2568).
References
- Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048. [DOI] [PMC free article] [PubMed]
- Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766. [DOI] [PubMed]
- Cai, J.-L., Lu, Y.-H., Gan, L.-L. & Zhou, C.-H. (2009). Chin. J. Antibiot. 34, 454–462.
- Capuano, B., Crosby, I. T., Lloyd, E. J. & Taylor, D. A. (2002). Aust. J. Chem. 55, 565–576.
- Choudhary, P., Kumar, R. & Verma, K. (2006). Bioorg. Med. Chem. 14, 1819–1826. [DOI] [PubMed]
- Contreras, J. M., Parrot, I., Sippl, W., Rival, Y. M. & Wermuth, C. G. (2001). J. Med. Chem. 44, 2707–2718. [DOI] [PubMed]
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Elliott, S. (2011). Drug Test Anal. 3, 430–438 [DOI] [PubMed]
- Guo, M.-L. (2007). Acta Cryst. E63, o1788–o1789.
- Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470–2488.
- Ming-Lin, G. & You-Nong, Q. (2007). Acta Cryst. E63, o4641.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
- Savaliya, M. D., Dobaria, J. G. & Purohit, D. M. (2010). An Indian J. 6, 267–271.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Upadhayaya, P. S., Sinha, N. & Jain, S. (2004). Bioorg. Med. Chem. 12, 2225–2238. [DOI] [PubMed]
- Xu, R.-B., Xu, X.-Y., Wang, D.-Q., Yang, X.-J. & Li, S. (2009). Acta Cryst. E65, o2997. [DOI] [PMC free article] [PubMed]
- Xu, R.-B., Zhang, N., Zhou, H.-Y., Yang, S. P., Li, Y.-Y., Shi, D.-H., Ma, W.-X. & Xu, X.-Y. (2012). J. Chem. Crystallogr. 42, 928–932.
- Zhou, L.-N., Yan, L., Zhou, H.-L., Yang, Q.-F. & Hu, Q.-L. (2011). Acta Cryst. E67, o100. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813028493/zl2568sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028493/zl2568Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536813028493/zl2568Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
