Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 23;69(Pt 11):o1700. doi: 10.1107/S1600536813028481

N-[(1,3-Benzodioxol-5-yl)meth­yl]benzene­sulfonamide: an analogue of capsaicin

Stella H Maganhi a,*, Maurício T Tavares b, Mariana C F C B Damião b, Roberto Parise Filho b
PMCID: PMC3884350  PMID: 24454126

Abstract

The title compound, C14H13NO4S, an analogue of capsaicin, differs from the latter by having a 1,3-benzodioxole ring rather than a 2-meth­oxy­phenol moiety, and having a benzene­sulfonamide group instead of an aliphatic amide chain. The five-membered ring is in an envelope conformation with the methyl­ene C atom lying 0.221 (6) Å out of the plane formed by the other four atoms. The dihedral angle between the phenyl ring and the mean plane of the 1,3-benzodioxole fused-ring system is 84.65 (4)°. In the crystal, mol­ecules aggregate into supra­molecular layers in the ac plane through C—H⋯O, N—H⋯O and C—H⋯π inter­actions.

Related literature  

For background and the biological activity of capsaicin, see: Lee et al. (2011); Malagarie-Cazenave et al. (2011). For the synthesis and cytoxicity of the title compound, see: De Sá-Junior et al. (2013). For ring conformational analysis, see: Cremer & Pople (1975).graphic file with name e-69-o1700-scheme1.jpg

Experimental  

Crystal data  

  • C14H13NO4S

  • M r = 291.32

  • Orthorhombic, Inline graphic

  • a = 18.0158 (4) Å

  • b = 5.9346 (1) Å

  • c = 25.5480 (8) Å

  • V = 2731.51 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 290 K

  • 0.25 × 0.22 × 0.20 mm

Data collection  

  • Nonius KappaCCD diffractometer with Bruker APEXII CCD areadetector

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.930, T max = 0.948

  • 2652 measured reflections

  • 2652 independent reflections

  • 1860 reflections with I > 2σ(I)

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.149

  • S = 1.04

  • 2652 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813028481/tk5268sup1.cif

e-69-o1700-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028481/tk5268Isup2.hkl

e-69-o1700-Isup2.hkl (127.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813028481/tk5268Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C2–C7 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.99 2.00 2.945 (3) 157
C14—H14⋯O1ii 0.93 2.59 3.486 (3) 161
C10—H10⋯Cg1iii 0.93 2.74 3.563 (3) 147
C8—H8BCg2iv 0.97 2.82 3.511 (3) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank FAPESP (grant no. 2012/22524–9), the São Paulo Research Foundation (SMH), CNPq and CAPES for financial support.

supplementary crystallographic information

1. Comment

Capsaicin is the common name of trans-8-methyl-N-vanillyl-6-nonenamide, the main pungent component produced by hot red and chili peppers (Lee et al., 2011). It is a product of secondary metabolism from several species of the genus Capsicum (Malagarie-Cazenave et al. 2011) The beneficial effects of capsaicinoids are well known, such as their antitumoral activity. Thus, by rational approaches, the capsaicinoid structure could be used as an important prototype for the design of novel analogues. With this in mind, we intended to design a capsaicin-like analogue with potential activity against cancer cells. The title molecule, (I), N-(benzo[d][1,3]dioxol-5-ylmethyl)benzenesulfonamide was designed by converting the vanillyl system on the capsaicinoid structure to a benzodioxol group, and modifying the alkyl-lipophilic chain by an aromatic ring. The amide bond was replaced by a sulfonamide bond using bioisosteric concepts. Molecule (I) showed relevant cytotoxicity against MCF7 breast cancer cell line presenting an IC50 = 32 µM (De Sá-Junior et al., 2013). The compound, Fig. 1, shows an envelope configuration in the 1,3-dioxole five membered ring, with the C7 atom lying 0,221 (6) Å out of the plane formed by the other four atoms. The ring puckering parameters are q2 = 0.140 (3) Å and φ2 = 145.7 (1)o (Cremer & Pople, 1975). The crystal packing of (I), Table 1, is sustained by N—H···O and C—H···π interactions, leading to supramolecular layers in the ac plane.

2. Experimental

The synthesis has been already described (De Sá-Junior et al., 2013). Crystals were obtained by slow evaporation from a hexane/chloroform (4:1) solution.

3. Refinement

The H atoms were geometrically placed (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N—H H atom was located in a difference map and placed in that position with Uiso(H) = 1.2Ueq(N).

The data collection was not ideal but, in spite of that, the structure is unambiguous and fine.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing atom labels and 50% displacement ellipsoids.

Crystal data

C14H13NO4S Dx = 1.417 Mg m3
Mr = 291.32 Melting point = 350.1–350.6 K
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3351 reflections
a = 18.0158 (4) Å θ = 1.4–27.1°
b = 5.9346 (1) Å µ = 0.25 mm1
c = 25.5480 (8) Å T = 290 K
V = 2731.51 (11) Å3 Irregular, colourless
Z = 8 0.25 × 0.22 × 0.20 mm
F(000) = 1216

Data collection

Nonius KappaCCD with Bruker APEXII CCD area detector diffractometer 2652 independent reflections
Radiation source: fine-focus sealed tube 1860 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.000
φ and ω scans θmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = 0→22
Tmin = 0.930, Tmax = 0.948 k = 0→7
2652 measured reflections l = −31→0

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0843P)2 + 0.6245P] where P = (Fo2 + 2Fc2)/3
2652 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.14422 (14) 0.0794 (4) 0.26877 (9) 0.0610 (6)
H1A 0.1939 0.1190 0.2574 0.073*
H1B 0.1283 −0.0507 0.2487 0.073*
C2 0.14588 (11) 0.0187 (4) 0.32636 (9) 0.0493 (5)
C3 0.17158 (12) −0.1926 (4) 0.34057 (10) 0.0561 (6)
H3 0.1836 −0.2958 0.3145 0.067*
C4 0.17986 (13) −0.2546 (4) 0.39256 (10) 0.0596 (6)
H4 0.1975 −0.3962 0.4019 0.071*
C5 0.16096 (13) −0.0985 (4) 0.42922 (9) 0.0550 (6)
C6 0.13417 (14) 0.1100 (4) 0.41568 (9) 0.0559 (6)
C7 0.12552 (13) 0.1742 (4) 0.36469 (8) 0.0547 (6)
H7 0.1069 0.3154 0.3559 0.066*
C8 0.1485 (2) 0.1023 (6) 0.50195 (12) 0.0966 (11)
H8A 0.1936 0.1721 0.5148 0.116*
H8B 0.1132 0.0948 0.5306 0.116*
C9 0.09760 (11) 0.2425 (4) 0.15195 (8) 0.0492 (5)
C10 0.02961 (13) 0.2300 (4) 0.12712 (10) 0.0625 (6)
H10 −0.0093 0.3224 0.1377 0.075*
C11 0.01987 (15) 0.0799 (5) 0.08658 (11) 0.0748 (8)
H11 −0.0258 0.0719 0.0697 0.090*
C12 0.07628 (17) −0.0566 (5) 0.07097 (11) 0.0805 (8)
H12 0.0689 −0.1577 0.0436 0.097*
C13 0.14451 (16) −0.0459 (5) 0.09547 (11) 0.0806 (9)
H13 0.1830 −0.1390 0.0845 0.097*
C14 0.15560 (13) 0.1045 (5) 0.13662 (10) 0.0647 (7)
H14 0.2013 0.1120 0.1535 0.078*
O1 0.18306 (9) 0.4975 (3) 0.20769 (7) 0.0703 (5)
O2 0.04895 (10) 0.5823 (3) 0.20637 (6) 0.0654 (5)
O3 0.16399 (11) −0.1167 (3) 0.48341 (7) 0.0764 (6)
O4 0.11841 (13) 0.2327 (3) 0.46019 (6) 0.0841 (6)
N1 0.09406 (10) 0.2681 (3) 0.25825 (7) 0.0558 (5)
H1N 0.0405 0.2323 0.2630 0.067*
S1 0.10836 (3) 0.42069 (10) 0.20672 (2) 0.0518 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0711 (16) 0.0610 (14) 0.0509 (14) 0.0106 (12) 0.0004 (11) −0.0038 (11)
C2 0.0490 (12) 0.0500 (13) 0.0487 (13) −0.0012 (10) 0.0018 (9) −0.0018 (10)
C3 0.0558 (13) 0.0492 (14) 0.0632 (15) 0.0037 (10) 0.0044 (11) −0.0060 (11)
C4 0.0576 (14) 0.0483 (12) 0.0728 (17) 0.0033 (11) −0.0017 (12) 0.0047 (11)
C5 0.0579 (13) 0.0551 (13) 0.0519 (13) −0.0040 (10) −0.0008 (10) 0.0085 (11)
C6 0.0698 (15) 0.0511 (13) 0.0467 (13) 0.0008 (11) 0.0029 (11) −0.0035 (10)
C7 0.0679 (14) 0.0463 (12) 0.0497 (13) 0.0031 (11) 0.0018 (11) 0.0017 (10)
C8 0.156 (3) 0.084 (2) 0.0500 (16) 0.010 (2) −0.0048 (18) 0.0069 (15)
C9 0.0487 (12) 0.0559 (12) 0.0431 (12) 0.0012 (10) 0.0049 (9) 0.0026 (9)
C10 0.0515 (13) 0.0768 (16) 0.0592 (14) 0.0030 (12) 0.0026 (11) −0.0098 (12)
C11 0.0678 (17) 0.0909 (19) 0.0657 (17) −0.0066 (14) −0.0029 (13) −0.0167 (15)
C12 0.099 (2) 0.0810 (18) 0.0619 (17) 0.0034 (17) −0.0010 (15) −0.0185 (14)
C13 0.091 (2) 0.089 (2) 0.0620 (17) 0.0302 (17) 0.0082 (15) −0.0123 (15)
C14 0.0592 (14) 0.0821 (17) 0.0526 (14) 0.0156 (12) −0.0001 (11) −0.0023 (12)
O1 0.0522 (10) 0.0763 (12) 0.0823 (13) −0.0131 (9) 0.0035 (8) −0.0066 (9)
O2 0.0653 (11) 0.0623 (11) 0.0686 (11) 0.0126 (8) 0.0045 (8) −0.0066 (8)
O3 0.1040 (14) 0.0704 (12) 0.0548 (11) 0.0079 (10) −0.0014 (9) 0.0142 (8)
O4 0.1363 (18) 0.0690 (12) 0.0471 (10) 0.0244 (11) −0.0015 (10) −0.0023 (9)
N1 0.0522 (11) 0.0670 (12) 0.0482 (11) 0.0010 (9) 0.0026 (8) 0.0001 (9)
S1 0.0522 (4) 0.0525 (4) 0.0507 (4) −0.0022 (2) 0.0016 (2) −0.0017 (2)

Geometric parameters (Å, º)

C1—N1 1.464 (3) C8—H8B 0.9700
C1—C2 1.515 (3) C9—C10 1.382 (3)
C1—H1A 0.9700 C9—C14 1.384 (3)
C1—H1B 0.9700 C9—S1 1.765 (2)
C2—C3 1.385 (3) C10—C11 1.377 (3)
C2—C7 1.395 (3) C10—H10 0.9300
C3—C4 1.386 (3) C11—C12 1.360 (4)
C3—H3 0.9300 C11—H11 0.9300
C4—C5 1.361 (3) C12—C13 1.381 (4)
C4—H4 0.9300 C12—H12 0.9300
C5—C6 1.372 (3) C13—C14 1.393 (4)
C5—O3 1.390 (3) C13—H13 0.9300
C6—C7 1.366 (3) C14—H14 0.9300
C6—O4 1.380 (3) O1—S1 1.4210 (17)
C7—H7 0.9300 O2—S1 1.4372 (18)
C8—O3 1.411 (4) N1—S1 1.6186 (19)
C8—O4 1.425 (3) N1—H1N 0.9947
C8—H8A 0.9700
N1—C1—C2 111.85 (18) C10—C9—C14 120.5 (2)
N1—C1—H1A 109.2 C10—C9—S1 119.57 (17)
C2—C1—H1A 109.2 C14—C9—S1 119.74 (18)
N1—C1—H1B 109.2 C11—C10—C9 119.5 (2)
C2—C1—H1B 109.2 C11—C10—H10 120.2
H1A—C1—H1B 107.9 C9—C10—H10 120.2
C3—C2—C7 120.2 (2) C12—C11—C10 120.7 (2)
C3—C2—C1 118.4 (2) C12—C11—H11 119.6
C7—C2—C1 121.3 (2) C10—C11—H11 119.6
C2—C3—C4 121.8 (2) C11—C12—C13 120.3 (3)
C2—C3—H3 119.1 C11—C12—H12 119.8
C4—C3—H3 119.1 C13—C12—H12 119.8
C5—C4—C3 116.9 (2) C12—C13—C14 119.9 (2)
C5—C4—H4 121.6 C12—C13—H13 120.0
C3—C4—H4 121.6 C14—C13—H13 120.0
C4—C5—C6 121.9 (2) C9—C14—C13 119.0 (2)
C4—C5—O3 128.5 (2) C9—C14—H14 120.5
C6—C5—O3 109.6 (2) C13—C14—H14 120.5
C7—C6—C5 122.1 (2) C5—O3—C8 104.8 (2)
C7—C6—O4 128.0 (2) C6—O4—C8 104.6 (2)
C5—C6—O4 109.9 (2) C1—N1—S1 118.62 (15)
C6—C7—C2 117.0 (2) C1—N1—H1N 114.4
C6—C7—H7 121.5 S1—N1—H1N 111.9
C2—C7—H7 121.5 O1—S1—O2 119.43 (12)
O3—C8—O4 108.9 (2) O1—S1—N1 108.42 (11)
O3—C8—H8A 109.9 O2—S1—N1 105.06 (10)
O4—C8—H8A 109.9 O1—S1—C9 108.06 (10)
O3—C8—H8B 109.9 O2—S1—C9 108.26 (10)
O4—C8—H8B 109.9 N1—S1—C9 106.99 (11)
H8A—C8—H8B 108.3
N1—C1—C2—C3 160.6 (2) C10—C9—C14—C13 0.5 (4)
N1—C1—C2—C7 −22.4 (3) S1—C9—C14—C13 175.8 (2)
C7—C2—C3—C4 −1.8 (3) C12—C13—C14—C9 −0.5 (4)
C1—C2—C3—C4 175.2 (2) C4—C5—O3—C8 171.9 (3)
C2—C3—C4—C5 0.5 (3) C6—C5—O3—C8 −8.6 (3)
C3—C4—C5—C6 0.7 (4) O4—C8—O3—C5 14.5 (3)
C3—C4—C5—O3 −179.9 (2) C7—C6—O4—C8 −171.0 (3)
C4—C5—C6—C7 −0.6 (4) C5—C6—O4—C8 9.3 (3)
O3—C5—C6—C7 179.8 (2) O3—C8—O4—C6 −14.8 (4)
C4—C5—C6—O4 179.0 (2) C2—C1—N1—S1 155.52 (16)
O3—C5—C6—O4 −0.5 (3) C1—N1—S1—O1 −53.6 (2)
C5—C6—C7—C2 −0.6 (4) C1—N1—S1—O2 177.62 (16)
O4—C6—C7—C2 179.8 (2) C1—N1—S1—C9 62.69 (19)
C3—C2—C7—C6 1.8 (3) C10—C9—S1—O1 −149.4 (2)
C1—C2—C7—C6 −175.1 (2) C14—C9—S1—O1 35.3 (2)
C14—C9—C10—C11 −0.4 (4) C10—C9—S1—O2 −18.7 (2)
S1—C9—C10—C11 −175.7 (2) C14—C9—S1—O2 165.94 (19)
C9—C10—C11—C12 0.3 (4) C10—C9—S1—N1 94.0 (2)
C10—C11—C12—C13 −0.3 (5) C14—C9—S1—N1 −81.3 (2)
C11—C12—C13—C14 0.4 (5)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C2–C7 and C9–C14 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.99 2.00 2.945 (3) 157
C14—H14···O1ii 0.93 2.59 3.486 (3) 161
C10—H10···Cg1iii 0.93 2.74 3.563 (3) 147
C8—H8B···Cg2iv 0.97 2.82 3.511 (3) 129

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x+1/2, y−1/2, z; (iii) −x, y+1/2, −z+1/2; (iv) x, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5268).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. ChemAxon (2010). Marvinsketch. http://www.chemaxon.com.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. De Sá-Junior, P. L., Ferreira, A. K., Pasqualoto, K. F. M., Tavares, M. T., Damiao, M. C. F. C. B., Azevedo, R. A., Camara, D. A. D., Pereira, A., Souza, D. M. & Parise-Filho, R. (2013). Toxicol. Appl. Pharmacol. 266, 385–398. [DOI] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Lee, M., Kim, C., Kim, I. & Kim, Y. (2011). Phytother. Res. 25, 935–939. [DOI] [PubMed]
  7. Malagarie-Cazenave, S., Olea-Herrero, N., Vara, D., Morell, C. & Díaz-Laviada, I. (2011). Cytokine, 54, 330–337. [DOI] [PubMed]
  8. Nonius (1999). COLLECT Nonius BV, Delft, The Netherlands.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813028481/tk5268sup1.cif

e-69-o1700-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028481/tk5268Isup2.hkl

e-69-o1700-Isup2.hkl (127.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813028481/tk5268Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES