Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 26;69(Pt 11):o1702. doi: 10.1107/S1600536813028912

N-(1H-Indazol-5-yl)-4-meth­oxy­benzene­sulfonamide

Hakima Chicha a, El Mostapha Rakib a, Latifa Bouissane a,*, Mohamed Saadi b, Lahcen El Ammari b
PMCID: PMC3884352  PMID: 24454128

Abstract

In the title compound, C14H13N3O3S, the fused ring system is almost planar, the largest deviation from the mean plane being 0.023 (2) Å, and makes a dihedral angle of 47.92 (10)° with the benzene ring of the benzene­sulfonamide moiety. In the crystal, mol­ecules are connected through N—H⋯O hydrogen bonds and weak C—H⋯O contacts, forming a two-dimensional network which is parallel to (010).

Related literature  

For the pharmacological activity of selected sulfonamide derivatives, see: El-Sayed et al. (2011); Smith & Jones (2008); Scozzafava et al. (2003). For similar compounds, see: Bouissane et al. (2006); Abbassi et al. (2012, 2013); Chicha et al. (2013).graphic file with name e-69-o1702-scheme1.jpg

Experimental  

Crystal data  

  • C14H13N3O3S

  • M r = 303.33

  • Monoclinic, Inline graphic

  • a = 8.9996 (4) Å

  • b = 7.1999 (3) Å

  • c = 21.3728 (10) Å

  • β = 91.794 (3)°

  • V = 1384.20 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.41 × 0.36 × 0.27 mm

Data collection  

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.912, T max = 0.954

  • 14415 measured reflections

  • 3059 independent reflections

  • 2234 reflections with I > 2σ(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.119

  • S = 1.05

  • 3059 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813028912/im2443sup1.cif

e-69-o1702-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028912/im2443Isup2.hkl

e-69-o1702-Isup2.hkl (147.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813028912/im2443Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.90 2.07 2.956 (2) 168
N3—H3N⋯O2ii 0.77 2.23 2.998 (2) 172
C6—H6⋯O2i 0.93 2.52 3.381 (2) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

1. Comment

Sulfonamides are an important class of compounds which are widely used in the design of diverse classes of drug candidates (El-Sayed et al., 2011; Smith & Jones, 2008; Scozzafava et al., 2003). Recently, some N-[7(6)-indazolyl]arylsulfonamides prepared by our research group showed important antiproliferative activity against some human and murine cell lines (Abbassi et al., 2012, 2013; Bouissane et al., 2006; Chicha et al., 2013).

The molecule of the title compound is built up from two fused five- and six-membered rings (N1/N2/C1 to C7) linked to the 4-methoxybenzenesulfonamide group, as shown in Fig. 1. The fused ring system is almost planar, with the maximum deviation of -0.023 (2) Å arising from atom C1. Moreover, the dihedral angle between the indazole system and the plan through the atoms forming the benzene ring (C8 to C13) is 47.92 (10)°.

In the crystal, molecules are connected through N—H···O hydrogen bonds and weak C—H···O contacts, forming a two-dimensional network nearly parallel to (0 1 0) as shown in Fig.2 and Table 1.

2. Experimental

A mixture of 5-nitroindazole (216 mg, 1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 ml of absolute ethanol was heated at 333 K for 6 h. After reduction, the starting material disappeared and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methoxybenzenesulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with ethyl acetate: hexane 2:8, yield: 54%, m.p.: 437 K). The title compound was recrystallized from ethanol.

3. Refinement

H atoms were located in a difference map and treated as riding with C–H = 0.96 Å, C–H = 0.93 Å, and N–H = 0.89 Å for methyl, aromatic CH and NH, respectively. Thermal parameters for hydrogen atoms were refined as Uiso(H) = 1.2 Ueq(C) (aromatic CH, NH) and Uiso(H) = 1.5 Ueq(C) for the methyl group.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing displacement ellipsoids at the 50% probability level. H atoms are represented as small circles.

Fig. 2.

Fig. 2.

Partial crystal packing for the title compound showing N1–H1N···O1, N3–H3N···O2 and C6–H6···O2 hydrogen bonds as dashed lines.

Crystal data

C14H13N3O3S F(000) = 632
Mr = 303.33 Dx = 1.456 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3059 reflections
a = 8.9996 (4) Å θ = 2.3–27.1°
b = 7.1999 (3) Å µ = 0.25 mm1
c = 21.3728 (10) Å T = 296 K
β = 91.794 (3)° Block, colourless
V = 1384.20 (11) Å3 0.41 × 0.36 × 0.27 mm
Z = 4

Data collection

Bruker X8 APEX diffractometer 3059 independent reflections
Radiation source: fine-focus sealed tube 2234 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
φ and ω scans θmax = 27.1°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
Tmin = 0.912, Tmax = 0.954 k = −9→7
14415 measured reflections l = −26→27

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: difference Fourier map
wR(F2) = 0.119 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.3443P] where P = (Fo2 + 2Fc2)/3
3059 reflections (Δ/σ)max < 0.001
192 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4773 (2) 0.7356 (3) 0.10971 (11) 0.0511 (5)
H1 0.4212 0.8416 0.1167 0.061*
C2 0.4174 (2) 0.5666 (3) 0.08594 (9) 0.0393 (4)
C3 0.2770 (2) 0.5028 (3) 0.06477 (9) 0.0418 (5)
H3 0.1947 0.5810 0.0638 0.050*
C4 0.26542 (19) 0.3211 (3) 0.04565 (9) 0.0375 (4)
C5 0.3905 (2) 0.2042 (3) 0.04520 (10) 0.0432 (5)
H5 0.3786 0.0819 0.0320 0.052*
C6 0.5286 (2) 0.2648 (3) 0.06360 (10) 0.0468 (5)
H6 0.6112 0.1874 0.0624 0.056*
C7 0.5405 (2) 0.4478 (3) 0.08428 (9) 0.0399 (4)
C8 0.0730 (2) 0.0780 (3) 0.13810 (10) 0.0443 (5)
C9 0.0520 (3) −0.1113 (3) 0.13918 (12) 0.0564 (6)
H9 −0.0086 −0.1682 0.1088 0.068*
C10 0.1216 (3) −0.2164 (3) 0.18576 (12) 0.0631 (6)
H10 0.1068 −0.3442 0.1872 0.076*
C11 0.2130 (3) −0.1310 (4) 0.23000 (11) 0.0658 (7)
C12 0.2318 (4) 0.0582 (4) 0.22939 (12) 0.0789 (8)
H12 0.2913 0.1154 0.2601 0.095*
C13 0.1630 (3) 0.1618 (3) 0.18373 (11) 0.0649 (7)
H13 0.1765 0.2899 0.1831 0.078*
C14 0.2942 (4) −0.4178 (4) 0.27574 (15) 0.0991 (11)
H14A 0.3528 −0.4620 0.3110 0.149*
H14B 0.3375 −0.4594 0.2377 0.149*
H14C 0.1948 −0.4653 0.2779 0.149*
N1 0.65971 (18) 0.5491 (3) 0.10488 (8) 0.0496 (4)
H1N 0.7553 0.5150 0.1082 0.073 (8)*
N2 0.6220 (2) 0.7245 (3) 0.12066 (9) 0.0543 (5)
N3 0.12368 (17) 0.2461 (2) 0.02574 (8) 0.0442 (4)
H3N 0.1279 0.1587 0.0047 0.049 (7)*
O1 −0.03673 (15) 0.3928 (2) 0.10350 (8) 0.0574 (4)
O2 −0.11991 (14) 0.1127 (2) 0.04547 (8) 0.0589 (4)
O3 0.2906 (3) −0.2221 (3) 0.27662 (9) 0.1019 (8)
S1 −0.00356 (5) 0.21505 (7) 0.07747 (3) 0.04454 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0589 (13) 0.0394 (11) 0.0548 (14) −0.0011 (10) −0.0028 (10) −0.0053 (10)
C2 0.0456 (10) 0.0356 (10) 0.0365 (10) 0.0006 (8) 0.0010 (8) 0.0011 (8)
C3 0.0415 (10) 0.0377 (11) 0.0459 (11) 0.0054 (8) −0.0026 (8) 0.0007 (9)
C4 0.0389 (9) 0.0398 (11) 0.0339 (10) −0.0002 (8) −0.0002 (7) 0.0013 (8)
C5 0.0469 (10) 0.0358 (10) 0.0468 (12) 0.0034 (8) 0.0020 (9) −0.0047 (9)
C6 0.0400 (10) 0.0464 (12) 0.0542 (13) 0.0079 (9) 0.0020 (9) −0.0065 (10)
C7 0.0389 (9) 0.0454 (11) 0.0354 (10) −0.0010 (8) 0.0009 (8) −0.0005 (8)
C8 0.0443 (10) 0.0438 (12) 0.0451 (12) 0.0001 (9) 0.0055 (9) −0.0046 (9)
C9 0.0622 (13) 0.0440 (13) 0.0630 (15) −0.0017 (10) −0.0010 (11) −0.0081 (11)
C10 0.0843 (17) 0.0379 (12) 0.0674 (17) 0.0027 (12) 0.0079 (13) −0.0046 (11)
C11 0.0959 (18) 0.0586 (16) 0.0429 (14) 0.0103 (14) 0.0008 (12) −0.0005 (11)
C12 0.123 (2) 0.0618 (17) 0.0505 (15) −0.0090 (16) −0.0227 (15) −0.0034 (12)
C13 0.0962 (18) 0.0471 (13) 0.0505 (14) −0.0087 (13) −0.0114 (13) −0.0016 (11)
C14 0.154 (3) 0.0627 (19) 0.080 (2) 0.0185 (19) −0.006 (2) 0.0124 (16)
N1 0.0429 (9) 0.0535 (11) 0.0522 (11) −0.0027 (8) −0.0032 (8) −0.0073 (8)
N2 0.0598 (11) 0.0472 (11) 0.0554 (11) −0.0070 (9) −0.0059 (9) −0.0075 (9)
N3 0.0425 (9) 0.0444 (10) 0.0452 (10) −0.0006 (7) −0.0059 (7) −0.0074 (8)
O1 0.0471 (8) 0.0472 (9) 0.0780 (11) 0.0083 (7) 0.0036 (7) −0.0120 (8)
O2 0.0357 (7) 0.0605 (10) 0.0797 (11) −0.0009 (7) −0.0091 (7) −0.0128 (8)
O3 0.179 (2) 0.0620 (12) 0.0623 (13) 0.0153 (13) −0.0334 (14) 0.0025 (10)
S1 0.0340 (2) 0.0421 (3) 0.0572 (3) 0.0021 (2) −0.0027 (2) −0.0070 (2)

Geometric parameters (Å, º)

C1—N2 1.319 (3) C9—H9 0.9300
C1—C2 1.418 (3) C10—C11 1.378 (3)
C1—H1 0.9300 C10—H10 0.9300
C2—C7 1.401 (3) C11—O3 1.366 (3)
C2—C3 1.406 (3) C11—C12 1.373 (4)
C3—C4 1.374 (3) C12—C13 1.362 (3)
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.405 (3) C13—H13 0.9300
C4—N3 1.437 (2) C14—O3 1.410 (3)
C5—C6 1.364 (3) C14—H14A 0.9600
C5—H5 0.9300 C14—H14B 0.9600
C6—C7 1.393 (3) C14—H14C 0.9600
C6—H6 0.9300 N1—N2 1.353 (2)
C7—N1 1.359 (2) N1—H1N 0.8951
C8—C9 1.376 (3) N3—S1 1.6319 (18)
C8—C13 1.387 (3) N3—H3N 0.7745
C8—S1 1.753 (2) O1—S1 1.4306 (15)
C9—C10 1.385 (3) O2—S1 1.4361 (14)
N2—C1—C2 111.95 (19) O3—C11—C12 115.0 (2)
N2—C1—H1 124.0 O3—C11—C10 124.5 (2)
C2—C1—H1 124.0 C12—C11—C10 120.5 (2)
C7—C2—C3 119.72 (17) C13—C12—C11 119.8 (2)
C7—C2—C1 103.96 (17) C13—C12—H12 120.1
C3—C2—C1 136.31 (19) C11—C12—H12 120.1
C4—C3—C2 117.75 (17) C12—C13—C8 120.5 (2)
C4—C3—H3 121.1 C12—C13—H13 119.7
C2—C3—H3 121.1 C8—C13—H13 119.7
C3—C4—C5 121.28 (17) O3—C14—H14A 109.5
C3—C4—N3 120.26 (16) O3—C14—H14B 109.5
C5—C4—N3 118.46 (17) H14A—C14—H14B 109.5
C6—C5—C4 121.96 (18) O3—C14—H14C 109.5
C6—C5—H5 119.0 H14A—C14—H14C 109.5
C4—C5—H5 119.0 H14B—C14—H14C 109.5
C5—C6—C7 117.02 (18) N2—N1—C7 112.33 (17)
C5—C6—H6 121.5 N2—N1—H1N 118.9
C7—C6—H6 121.5 C7—N1—H1N 128.8
N1—C7—C6 131.46 (18) C1—N2—N1 105.43 (17)
N1—C7—C2 106.32 (17) C4—N3—S1 119.08 (13)
C6—C7—C2 122.21 (17) C4—N3—H3N 114.7
C9—C8—C13 119.8 (2) S1—N3—H3N 109.3
C9—C8—S1 121.26 (17) C11—O3—C14 118.8 (2)
C13—C8—S1 118.83 (17) O1—S1—O2 119.10 (9)
C8—C9—C10 119.6 (2) O1—S1—N3 107.47 (10)
C8—C9—H9 120.2 O2—S1—N3 105.32 (9)
C10—C9—H9 120.2 O1—S1—C8 107.36 (10)
C11—C10—C9 119.7 (2) O2—S1—C8 109.09 (10)
C11—C10—H10 120.1 N3—S1—C8 108.06 (9)
C9—C10—H10 120.1

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.90 2.07 2.956 (2) 168
N3—H3N···O2ii 0.77 2.23 2.998 (2) 172
C6—H6···O2i 0.93 2.52 3.381 (2) 155

Symmetry codes: (i) x+1, y, z; (ii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2443).

References

  1. Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249. [DOI] [PubMed]
  2. Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191. [DOI] [PMC free article] [PubMed]
  3. Bouissane, L., El Kazzouli, S., Léonce, S., Pffeifer, P., Rakib, E. M., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088. [DOI] [PubMed]
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chicha, H., Kouakou, A., Rakib, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1353. [DOI] [PMC free article] [PubMed]
  6. El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714–3720. [DOI] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925–953. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Smith, D. A. & Jones, R. M. (2008). Curr. Opin. Drug Discov. Devel. 11, 72–79. [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813028912/im2443sup1.cif

e-69-o1702-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028912/im2443Isup2.hkl

e-69-o1702-Isup2.hkl (147.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813028912/im2443Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES