Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 26;69(Pt 11):o1709–o1710. doi: 10.1107/S1600536813028730

(E)-13-(4-Amino­phen­yl)parthenolide

Narsimha Reddy Penthala a, Venumadhav Janganati a, Sean Parkin b, Kottayil I Varughese c, Peter A Crooks a,*
PMCID: PMC3884358  PMID: 24454134

Abstract

The title compound, C21H25NO3 [systematic name: (3aS,9aR,10aR,10bS,E)-3-[(E)-4-(4-amino­benzyl­idene)-6,9a-dimethyl-3a,4,5,8,9,9a,10a,10b-octa­hydro­oxireno[2′,3′:9,10]cyclo­deca­[1,2-b]furan-2(3H)-one] was obtained from the reaction of parthenolide [synonym: 4,5-ep­oxy­germacra-1(10),11(13)-dieno-12,6-lactone] with 4-iodo­aniline under Heck reaction conditions. It was identified as the E-isomer (conformation about the exocyclic methyl­idene C=C bond; the conformation about the C=C bond in the ten-membered ring is also E). The mol­ecule is built up from fused ten-, five- (lactone) and three-membered (epoxide) rings with a 4-amino­phenyl group as a substituent. The ten-membered ring displays an approximate chair–chair conformation, while the lactone ring has an envelope conformation with the C atom bonded to the ring O atom as the flap. The dihedral angle between the benzene ring of the 4-amino­phenyl moiety and the lactone ring mean plane is 23.50 (8)°. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds, between the amine group and the lactone and epoxide ring O atoms, forming chains propagating along the b-axis direction. Adjacent chains are linked via C—H⋯O inter­actions, forming an undulating two-dimensional network lying parallel to the plane (001). The absolute structure of the mol­ecule in the crystal was confirmed by resonance scattering [Flack parameter = 0.03 (3)].

Related literature  

For the biological activity of parthenolide, see: Hall et al. (1979). For the biological activity of parthenolide derivatives similar to the title compound, see: Hanson et al. (1970); Hehner et al. (1998); Kupchan et al. (1971); Nasim et al. (2011); Neelakantan et al. (2009); Oka et al. (2007); Ralstin et al. (2006); Rodriguez et al. (1976); Sun et al. (2006). For the synthesis and crystal structures of similar mol­ecules, see: Han et al. (2009).graphic file with name e-69-o1709-scheme1.jpg

Experimental  

Crystal data  

  • C21H25NO3

  • M r = 339.42

  • Orthorhombic, Inline graphic

  • a = 8.5619 (1) Å

  • b = 11.8846 (2) Å

  • c = 17.7457 (3) Å

  • V = 1805.71 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 90 K

  • 0.20 × 0.16 × 0.12 mm

Data collection  

  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.843, T max = 0.956

  • 25400 measured reflections

  • 3296 independent reflections

  • 3267 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.070

  • S = 1.06

  • 3296 reflections

  • 234 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack x parameter determined using 1383 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)

  • Absolute structure parameter: 0.03 (3)

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813028730/su2647sup1.cif

e-69-o1709-sup1.cif (28.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028730/su2647Isup2.hkl

e-69-o1709-Isup2.hkl (181KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.94 (2) 2.25 (3) 3.133 (2) 156 (2)
N1—H2B⋯O2i 0.90 (2) 2.57 (2) 3.077 (2) 116 (2)
C2—H2A⋯O3ii 0.99 2.63 3.372 (2) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by NIH/NCI [grant No. CA158275].

supplementary crystallographic information

1. Comment

In recent years the parthenolide molecule [systematic name: (1aR,7aS,10aS,10bS,Z)-1a,5-dimethyl-8-methylene- 2,3,6,7,7a,8,10a,10b-octahydrooxireno[2',3':9,10]cyclodeca [1,2-b]furan-9(1aH)-one] and several structurally related sesquiterpene lactone analogues have been extensively studied due to their potent anti-tumor and cytotoxic properties (Oka et al., 2007; Ralstin et al., 2006; Sun et al., 2006). The presence of an exo-methylene-γ-lactone functionality in these molecules is an important structural feature because of its exceptional reactivity toward nucleophilic functional groups (Rodriguez et al., 1976). The exo-methylene-γ-lactone moiety was reported to be essential for significant cytotoxic activity (Kupchan et al., 1971), for inhibition of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB; Hehner et al., 1998) and for the antitumor activity of these sesquiterpene lactones (Hanson et al., 1970).

Parthenolide is a sesquiterpene lactone of the germacranolide class which occurs naturally in the plant feverfew (Tanacetum parthenium), and is believed to be the active chemical constituent responsible for the plant's biological activity (Hall et al., 1979). It has become a key intermediate for the synthesis of several novel antileukemic compounds over the past decade. From our research on antileukemia analogues of parthenolide, we have improved the poor water solubility properties of parthenolide and related sesquiterpenes by incorporating amino moieties at the exocyclic methylidene carbon via Michael addition (Neelakantan et al., 2009). Also, in a recent communication we have reported the synthesis and antileukemic activity of a melampolide sesquiterpene lactone, melampomagnolide B (Nasim et al., 2011).

The current study focuses on the synthesis of the title E-olefinic analogue of parthenolide which was obtained from the reaction of parthenolide with 4-iodoaniline utilizing Heck chemistry (Han et al., 2009). In order to obtain detailed information on the structural conformation of the title compound and to establish the geometry of the exocyclic double bond, a single-crystal X-ray structure determination has been carried out.

The title molecule, Fig. 1, contains an E-exocyclic olefinic bond C12═C13. The ten-membered ring displays an approximate chair-chair conformation, while the lactone ring has an envelope conformation with atom C9 as the flap. The dihedral angle between the benzene ring of the 4-aminophenyl moiety and the lactone ring mean plane is 23.50 (8) °.

The crystal structures of the structurally related 3-trifluoromethylphenyl and 2-trifluoromethylphenyl derivatives of parthenolide have been reported previously (Han et al., 2009). These molecules also have an E-conformation about the exocyclic olefinic double bond, and their absolute stereochemistries were also determined by resonance scattering. The lactone rings of these compounds have envelope conformations with the C-atom bonded to the O-atom as the flap, as in the title compound. The dihedral angles between the lactone ring mean plane and the aromatic rings of the 3-trifluoromethylphenyl and 2-trifluoromethylphenyl moieties are 40.52 (12) and 48.07 (12) °, respectively, compared to 23.50 (8) ° in the title compound.

Significant deviations from the ideal bond angle geometry around the carbon atoms, C12, C13 and C11, that are in the sp2 state and involved in the double bonds are observed; the C12═C13–C16, C13═C12–C8 and O3═ C11–C12 bond angles with the respective values of 131.43 (14), 132.77 (14), and 129.80 (14)°, deviate from the ideal value of 120°.

In the crystal, molecules are linked via N—H···O hydrogen bonds (Fig. 2 and Table 1), between the amine group and the lactone and epoxide ring O atoms, forming chains propagating along the b-axis. Adjacent chains are linked via C—H···O interactions (Table 1) forming undulating two-dimensional networks lying parallel to the plane (001).

2. Experimental

A mixture of parthenolide [Chemtek, Worcester, MA, USA](50 mg, 0.20 mmol), triethylamine (60 mg, 0.61 mmol), and 4-iodoaniline (48.56 mg, 0.22 mmol) in dimethylformamide (0.1 ml) was treated with palladium(II) acetate (0.5 mg, 0.002 mmol) and then stirred at 353 K for 24 h. Han et al. (2009) reported the synthesis of similar chiral molecules. The reaction mixture was cooled to room temperature, water (8 ml) was added, and the mixture was extracted with ethyl acetate (10 ml × 3). The separated organics were dried over Na2SO4 and concentrated under reduced pressure. The obtained crude residue was purified using silica flash chromatography (7:3, hexanes/EtOAc) to afford the title compound, which was recrystallized from a mixture of hexanes and ethyl acetate(1:1) as yellow needle-like crystals (40 mg, 58 % yield; M.p. = 512–514 K). Spectroscopic data for the title compound are available in the archived CIF.

3. Refinement

All the H-atoms were located in difference electron density maps. The NH2 H atoms were refined with Uiso(H) = 1.5Ueq(N). The C-bound H atoms were placed in idealized positions and refined as riding atoms: C-H = 0.98, 0.99, 1.00 and 0.95 Å for CH3, CH2, CH and Csp2H H atoms, respectively, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A partial crystal packing plot of the title compound showing the N-H···O hydrogen bonds that join the molecules into chains parallel to the b axis (see Table 1 for details; H atoms not involved in these hydrogen-bonds have been omitted to enhance clarity).

Crystal data

C21H25NO3 Dx = 1.249 Mg m3
Mr = 339.42 Melting point = 512–514 K
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2ab Cell parameters from 9832 reflections
a = 8.5619 (1) Å θ = 5.2–68.0°
b = 11.8846 (2) Å µ = 0.66 mm1
c = 17.7457 (3) Å T = 90 K
V = 1805.71 (5) Å3 Block, colourless
Z = 4 0.20 × 0.16 × 0.12 mm
F(000) = 728

Data collection

Bruker X8 Proteum diffractometer 3296 independent reflections
Radiation source: fine-focus rotating anode 3267 reflections with I > 2σ(I)
Detector resolution: 5.6 pixels mm-1 Rint = 0.033
φ and ω scans θmax = 68.2°, θmin = 5.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.843, Tmax = 0.956 k = −11→14
25400 measured reflections l = −21→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.303P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3296 reflections Δρmax = 0.13 e Å3
234 parameters Δρmin = −0.14 e Å3
0 restraints Absolute structure: Flack parameter determined using 1383 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.03 (3)

Special details

Experimental. Spectroscopic data for the title compound: 1H NMR (400 MHz, CDCl3): δ 7.54-7.55 (d, J=2.8 Hz, 1H), 7.23-7.26 (d, J=8.4 Hz, 2H), 6.68-6.70 (d, J=8.0 Hz, 2H), 5.28-5.30 (d, J=11.2 Hz, 1H), 4.02 (brs, 2H), 3.91-3.95 (t, J=8.0Hz, 1H), 3.25 (m, 1H), 2.82-2.84 (d, J=8.8 Hz, 1H), 2.28-2.45 (m, 1H), 2.14-2.24 (m, 5H), 1.69 (s, 3H), 1.61 (s, 1H), 1.43-1.45 (m, 1H), 1.31(s, 3H); 13C NMR (100 MHz,CDCl3) δ 171.63, 148.15, 138.64, 134.79, 132.17, 125.12, 124.03, 123.29, 114.42, 82.71, 66.62, 61.58, 46.98, 41.88, 36.10, 29.33, 24.33, 17.49, 17.36 ppm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.69671 (14) 0.83851 (9) 0.57032 (6) 0.0269 (3)
O2 0.57735 (14) 0.71820 (9) 0.43765 (6) 0.0247 (3)
O3 0.57901 (15) 0.65318 (10) 0.31945 (6) 0.0276 (3)
N1 0.48608 (19) −0.03270 (12) 0.45455 (10) 0.0323 (3)
H1A 0.539 (3) −0.055 (2) 0.4989 (14) 0.049*
H2B 0.495 (3) −0.077 (2) 0.4135 (14) 0.049*
C1 0.61245 (19) 0.79003 (14) 0.63430 (9) 0.0255 (4)
C2 0.7040 (2) 0.76874 (16) 0.70559 (9) 0.0321 (4)
H1 0.7143 0.8397 0.7344 0.038*
H2A 0.8102 0.7420 0.6926 0.038*
C3 0.6202 (2) 0.67944 (15) 0.75440 (9) 0.0325 (4)
H3A 0.6881 0.6579 0.7972 0.039*
H3B 0.5227 0.7117 0.7752 0.039*
C4 0.5821 (2) 0.57669 (14) 0.70835 (9) 0.0277 (4)
H4 0.6688 0.5325 0.6928 0.033*
C5 0.4420 (2) 0.53993 (13) 0.68657 (8) 0.0248 (3)
C6 0.4284 (2) 0.44729 (13) 0.62863 (8) 0.0259 (3)
H6A 0.3432 0.3957 0.6438 0.031*
H6B 0.5268 0.4035 0.6282 0.031*
C7 0.39551 (19) 0.49041 (13) 0.54839 (8) 0.0237 (3)
H7A 0.3090 0.5455 0.5508 0.028*
H7B 0.3597 0.4263 0.5172 0.028*
C8 0.53600 (18) 0.54638 (12) 0.50866 (8) 0.0198 (3)
H8 0.6346 0.5178 0.5321 0.024*
C9 0.53593 (18) 0.67758 (12) 0.51252 (8) 0.0209 (3)
H9 0.4293 0.7050 0.5263 0.025*
C10 0.65311 (18) 0.72056 (12) 0.56849 (8) 0.0219 (3)
H10 0.7423 0.6679 0.5775 0.026*
C11 0.56586 (19) 0.63346 (13) 0.38588 (8) 0.0225 (3)
C12 0.54277 (18) 0.52539 (12) 0.42479 (8) 0.0207 (3)
C13 0.53493 (19) 0.43138 (13) 0.38311 (8) 0.0223 (3)
H13 0.5363 0.4441 0.3303 0.027*
C14 0.2884 (2) 0.58698 (15) 0.71301 (10) 0.0321 (4)
H14A 0.3071 0.6429 0.7526 0.048*
H14B 0.2236 0.5260 0.7331 0.048*
H14C 0.2345 0.6227 0.6706 0.048*
C15 0.4537 (2) 0.84179 (14) 0.64419 (9) 0.0301 (4)
H15A 0.4639 0.9142 0.6702 0.045*
H15B 0.3878 0.7913 0.6741 0.045*
H15C 0.4057 0.8537 0.5947 0.045*
C16 0.52461 (18) 0.31328 (13) 0.40450 (9) 0.0228 (3)
C17 0.5641 (2) 0.27104 (12) 0.47583 (8) 0.0253 (3)
H17 0.6003 0.3214 0.5136 0.030*
C18 0.5517 (2) 0.15768 (13) 0.49238 (9) 0.0276 (3)
H18 0.5777 0.1314 0.5414 0.033*
C19 0.50076 (19) 0.08115 (13) 0.43735 (10) 0.0266 (3)
C20 0.46429 (19) 0.12208 (14) 0.36578 (9) 0.0266 (3)
H20 0.4306 0.0715 0.3276 0.032*
C21 0.47670 (19) 0.23526 (13) 0.35002 (9) 0.0245 (3)
H21 0.4521 0.2611 0.3008 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0341 (6) 0.0208 (5) 0.0258 (6) −0.0064 (5) 0.0045 (5) −0.0028 (5)
O2 0.0368 (6) 0.0174 (5) 0.0199 (5) −0.0020 (5) 0.0000 (5) 0.0017 (4)
O3 0.0358 (6) 0.0279 (6) 0.0190 (5) −0.0027 (5) −0.0006 (5) 0.0043 (4)
N1 0.0364 (8) 0.0191 (7) 0.0415 (8) −0.0011 (6) 0.0020 (7) 0.0013 (6)
C1 0.0310 (8) 0.0222 (7) 0.0232 (8) −0.0057 (6) 0.0029 (6) −0.0029 (6)
C2 0.0339 (9) 0.0375 (9) 0.0248 (8) −0.0065 (8) −0.0004 (7) −0.0055 (7)
C3 0.0343 (9) 0.0430 (10) 0.0201 (8) −0.0023 (8) −0.0030 (7) 0.0005 (7)
C4 0.0320 (8) 0.0297 (8) 0.0212 (7) 0.0066 (7) 0.0028 (7) 0.0048 (6)
C5 0.0342 (9) 0.0220 (7) 0.0183 (7) 0.0041 (7) 0.0033 (7) 0.0048 (6)
C6 0.0346 (9) 0.0194 (7) 0.0236 (7) 0.0020 (7) 0.0069 (7) 0.0046 (6)
C7 0.0269 (8) 0.0203 (7) 0.0238 (8) −0.0003 (6) 0.0024 (6) 0.0014 (6)
C8 0.0237 (8) 0.0164 (7) 0.0191 (7) 0.0006 (6) 0.0002 (6) 0.0006 (5)
C9 0.0266 (8) 0.0175 (7) 0.0185 (7) 0.0021 (6) 0.0016 (6) 0.0008 (5)
C10 0.0261 (7) 0.0177 (7) 0.0220 (7) −0.0004 (6) 0.0016 (6) 0.0014 (6)
C11 0.0256 (8) 0.0206 (7) 0.0212 (7) 0.0012 (6) −0.0012 (6) −0.0002 (6)
C12 0.0229 (7) 0.0194 (7) 0.0197 (7) −0.0002 (6) −0.0007 (6) 0.0014 (6)
C13 0.0254 (8) 0.0233 (8) 0.0183 (7) 0.0023 (6) −0.0002 (6) 0.0009 (6)
C14 0.0346 (9) 0.0279 (8) 0.0340 (9) 0.0007 (8) 0.0070 (7) −0.0037 (7)
C15 0.0374 (9) 0.0242 (8) 0.0287 (8) 0.0011 (7) 0.0045 (7) −0.0054 (7)
C16 0.0260 (8) 0.0196 (7) 0.0229 (7) 0.0015 (6) 0.0009 (6) −0.0024 (6)
C17 0.0325 (8) 0.0198 (7) 0.0235 (7) 0.0036 (7) −0.0022 (7) −0.0033 (6)
C18 0.0329 (9) 0.0235 (7) 0.0265 (8) 0.0046 (7) −0.0001 (7) 0.0014 (6)
C19 0.0242 (7) 0.0192 (7) 0.0365 (9) 0.0005 (6) 0.0031 (7) −0.0004 (7)
C20 0.0256 (8) 0.0229 (8) 0.0314 (8) −0.0004 (6) −0.0019 (7) −0.0060 (6)
C21 0.0265 (8) 0.0242 (8) 0.0229 (7) 0.0016 (6) −0.0011 (6) −0.0031 (6)

Geometric parameters (Å, º)

O1—C10 1.4510 (18) C8—C12 1.5101 (19)
O1—C1 1.4634 (19) C8—C9 1.561 (2)
O2—C11 1.3667 (18) C8—H8 1.0000
O2—C9 1.4573 (17) C9—C10 1.501 (2)
O3—C11 1.2072 (18) C9—H9 1.0000
N1—C19 1.393 (2) C10—H10 1.0000
N1—H1A 0.94 (2) C11—C12 1.472 (2)
N1—H2B 0.90 (2) C12—C13 1.342 (2)
C1—C10 1.472 (2) C13—C16 1.457 (2)
C1—C15 1.502 (2) C13—H13 0.9500
C1—C2 1.510 (2) C14—H14A 0.9800
C2—C3 1.547 (2) C14—H14B 0.9800
C2—H1 0.9900 C14—H14C 0.9800
C2—H2A 0.9900 C15—H15A 0.9800
C3—C4 1.505 (2) C15—H15B 0.9800
C3—H3A 0.9900 C15—H15C 0.9800
C3—H3B 0.9900 C16—C21 1.401 (2)
C4—C5 1.334 (3) C16—C17 1.403 (2)
C4—H4 0.9500 C17—C18 1.383 (2)
C5—C14 1.504 (2) C17—H17 0.9500
C5—C6 1.511 (2) C18—C19 1.404 (2)
C6—C7 1.539 (2) C18—H18 0.9500
C6—H6A 0.9900 C19—C20 1.395 (2)
C6—H6B 0.9900 C20—C21 1.378 (2)
C7—C8 1.545 (2) C20—H20 0.9500
C7—H7A 0.9900 C21—H21 0.9500
C7—H7B 0.9900
C10—O1—C1 60.67 (10) C10—C9—C8 111.63 (12)
C11—O2—C9 110.56 (11) O2—C9—H9 109.7
C19—N1—H1A 114.0 (15) C10—C9—H9 109.7
C19—N1—H2B 112.6 (15) C8—C9—H9 109.7
H1A—N1—H2B 118 (2) O1—C10—C1 60.08 (9)
O1—C1—C10 59.25 (9) O1—C10—C9 121.02 (12)
O1—C1—C15 112.05 (13) C1—C10—C9 123.89 (14)
C10—C1—C15 122.43 (14) O1—C10—H10 113.8
O1—C1—C2 117.39 (14) C1—C10—H10 113.8
C10—C1—C2 116.62 (15) C9—C10—H10 113.8
C15—C1—C2 116.15 (14) O3—C11—O2 120.44 (14)
C1—C2—C3 110.08 (14) O3—C11—C12 129.80 (14)
C1—C2—H1 109.6 O2—C11—C12 109.72 (12)
C3—C2—H1 109.6 C13—C12—C11 118.35 (13)
C1—C2—H2A 109.6 C13—C12—C8 132.77 (14)
C3—C2—H2A 109.6 C11—C12—C8 108.87 (12)
H1—C2—H2A 108.2 C12—C13—C16 131.43 (14)
C4—C3—C2 110.68 (13) C12—C13—H13 114.3
C4—C3—H3A 109.5 C16—C13—H13 114.3
C2—C3—H3A 109.5 C5—C14—H14A 109.5
C4—C3—H3B 109.5 C5—C14—H14B 109.5
C2—C3—H3B 109.5 H14A—C14—H14B 109.5
H3A—C3—H3B 108.1 C5—C14—H14C 109.5
C5—C4—C3 128.15 (15) H14A—C14—H14C 109.5
C5—C4—H4 115.9 H14B—C14—H14C 109.5
C3—C4—H4 115.9 C1—C15—H15A 109.5
C4—C5—C14 125.04 (14) C1—C15—H15B 109.5
C4—C5—C6 120.33 (15) H15A—C15—H15B 109.5
C14—C5—C6 114.58 (15) C1—C15—H15C 109.5
C5—C6—C7 113.64 (12) H15A—C15—H15C 109.5
C5—C6—H6A 108.8 H15B—C15—H15C 109.5
C7—C6—H6A 108.8 C21—C16—C17 117.15 (14)
C5—C6—H6B 108.8 C21—C16—C13 118.40 (14)
C7—C6—H6B 108.8 C17—C16—C13 124.42 (14)
H6A—C6—H6B 107.7 C18—C17—C16 121.43 (15)
C6—C7—C8 115.03 (13) C18—C17—H17 119.3
C6—C7—H7A 108.5 C16—C17—H17 119.3
C8—C7—H7A 108.5 C17—C18—C19 120.49 (15)
C6—C7—H7B 108.5 C17—C18—H18 119.8
C8—C7—H7B 108.5 C19—C18—H18 119.8
H7A—C7—H7B 107.5 N1—C19—C20 121.19 (15)
C12—C8—C7 114.12 (13) N1—C19—C18 120.33 (16)
C12—C8—C9 102.02 (11) C20—C19—C18 118.47 (15)
C7—C8—C9 114.19 (12) C21—C20—C19 120.52 (15)
C12—C8—H8 108.7 C21—C20—H20 119.7
C7—C8—H8 108.7 C19—C20—H20 119.7
C9—C8—H8 108.7 C20—C21—C16 121.91 (15)
O2—C9—C10 109.13 (12) C20—C21—H21 119.0
O2—C9—C8 106.91 (11) C16—C21—H21 119.0
C10—O1—C1—C15 −115.61 (15) C8—C9—C10—O1 166.95 (12)
C10—O1—C1—C2 106.19 (17) O2—C9—C10—C1 121.71 (15)
O1—C1—C2—C3 −158.44 (14) C8—C9—C10—C1 −120.33 (15)
C10—C1—C2—C3 −91.06 (18) C9—O2—C11—O3 171.96 (15)
C15—C1—C2—C3 65.05 (19) C9—O2—C11—C12 −9.99 (16)
C1—C2—C3—C4 51.03 (19) O3—C11—C12—C13 0.4 (3)
C2—C3—C4—C5 −110.84 (19) O2—C11—C12—C13 −177.46 (14)
C3—C4—C5—C14 −8.7 (3) O3—C11—C12—C8 179.14 (17)
C3—C4—C5—C6 168.64 (15) O2—C11—C12—C8 1.33 (18)
C4—C5—C6—C7 −98.81 (18) C7—C8—C12—C13 −50.8 (2)
C14—C5—C6—C7 78.79 (18) C9—C8—C12—C13 −174.49 (17)
C5—C6—C7—C8 73.72 (17) C7—C8—C12—C11 130.63 (13)
C6—C7—C8—C12 144.91 (13) C9—C8—C12—C11 6.96 (17)
C6—C7—C8—C9 −98.26 (15) C11—C12—C13—C16 174.88 (16)
C11—O2—C9—C10 135.27 (13) C8—C12—C13—C16 −3.6 (3)
C11—O2—C9—C8 14.39 (16) C12—C13—C16—C21 163.27 (17)
C12—C8—C9—O2 −12.50 (15) C12—C13—C16—C17 −18.8 (3)
C7—C8—C9—O2 −136.12 (12) C21—C16—C17—C18 −2.0 (2)
C12—C8—C9—C10 −131.78 (13) C13—C16—C17—C18 −179.96 (16)
C7—C8—C9—C10 104.60 (15) C16—C17—C18—C19 0.9 (3)
C1—O1—C10—C9 113.87 (16) C17—C18—C19—N1 −179.03 (16)
C15—C1—C10—O1 98.02 (16) C17—C18—C19—C20 0.4 (2)
C2—C1—C10—O1 −107.50 (15) N1—C19—C20—C21 178.82 (16)
O1—C1—C10—C9 −109.26 (15) C18—C19—C20—C21 −0.6 (2)
C15—C1—C10—C9 −11.2 (2) C19—C20—C21—C16 −0.5 (2)
C2—C1—C10—C9 143.25 (15) C17—C16—C21—C20 1.8 (2)
O2—C9—C10—O1 49.00 (18) C13—C16—C21—C20 179.88 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.94 (2) 2.25 (3) 3.133 (2) 156 (2)
N1—H2B···O2i 0.90 (2) 2.57 (2) 3.077 (2) 116 (2)
C2—H2A···O3ii 0.99 2.63 3.372 (2) 132

Symmetry codes: (i) x, y−1, z; (ii) x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2647).

References

  1. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Hall, I. H., Lee, K. H., Starnes, C. O., Sumida, Y., Wu, R. Y., Waddell, T. G., Cochran, J. W. & Gerhart, K. G. (1979). J. Pharm. Sci. 68, 537–542. [DOI] [PubMed]
  3. Han, C., Barrios, F. J., Riofski, M. V. & Colby, D. A. (2009). J. Org. Chem. 74, 7176–7179. [DOI] [PubMed]
  4. Hanson, R. L., Lardy, H. A. & Kupchan, S. M. (1970). Science, 168, 378–380. [DOI] [PubMed]
  5. Hehner, S. P., Heinrich, M., Bork, P. M., Vogt, M., Ratter, F., Lehmann, V., Osthoff, K. S., Dröge, W. & Schmitz, M. L. (1998). J. Biol. Chem. 273, 1288–1297. [DOI] [PubMed]
  6. Kupchan, S. M., Eakin, M. A. & Thomas, A. M. (1971). J. Med. Chem. 14, 1147–1152. [DOI] [PubMed]
  7. Nasim, S., Pei, S. S., Hagen, F. K., Jordan, C. T. & Crooks, P. A. (2011). Bioorg. Med. Chem. 19, 1515–1519. [DOI] [PubMed]
  8. Neelakantan, S., Nasim, S., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349. [DOI] [PubMed]
  9. Oka, D., Nishimura, K., Shiba, M., Nakai, Y., Arai, Y., Nakayama, M., Takayama, H., Inoue, H., Okuyama, A. & Nonomura, N. (2007). Int. J. Cancer, 120, 2576–2581. [DOI] [PubMed]
  10. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  11. Ralstin, M. C., Gage, E. A., Yip-Schneider, M. T., Klein, P. J., Wiebke, E. A. & Schmidt, C. M. (2006). Mol. Cancer Res. 4, 387–399. [DOI] [PubMed]
  12. Rodriguez, E., Towers, G. H. & Mitchell, J. C. (1976). Phytochemistry, 15, 1573–1580.
  13. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
  15. Sun, H.-X., Zheng, Q.-F. & Tu, J. (2006). Bioorg. Med. Chem. 14, 1189–1198. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813028730/su2647sup1.cif

e-69-o1709-sup1.cif (28.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813028730/su2647Isup2.hkl

e-69-o1709-Isup2.hkl (181KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES