Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 31;69(Pt 11):o1719–o1720. doi: 10.1107/S1600536813029334

2-(2-Chloro-8-methyl­quinolin-3-yl)-4-phenyl-1,2-di­hydro­quinazoline

Chamseddine Derabli a, Raouf Boulcina a, Sofiane Bouacida b,c,*, Hocine Merazig b, Abdelmadjid Debache a
PMCID: PMC3884366  PMID: 24454142

Abstract

In the title compound, C24H18ClN3, the di­hydro­quinazoline and methyl-substituted quinoline benzene rings make a dihedral angle of 78.18 (4)° and form dihedral angles of 45.91 (5) and 79.80 (4)°, respectively, with the phenyl ring. The dihedral angle between the phenyl ring of di­hydro­quinazoline and the methyl-substituted benzene ring of quinoline is 78.18 (4)°. The crystal packing can be described as crossed layers parallel to the (011) and (0-11) planes. The structure features N—H⋯N hydrogen bonds and π–π inter­actions [centroid–centroid distance between phenyl rings = 3.7301 (9) Å].

Related literature  

For the preparation and applications of quinazoline and quinoline derivatives, see: Jenekhe et al. (2001); Hoemann et al. (2000); Connolly et al. (2005); Besson et al. (2007); Roma et al. (2000); Chen et al. (2001); Debache et al. (2008, 2009); Nemouchi et al. (2012).graphic file with name e-69-o1719-scheme1.jpg

Experimental  

Crystal data  

  • C24H18ClN3

  • M r = 383.86

  • Monoclinic, Inline graphic

  • a = 14.4553 (13) Å

  • b = 8.7501 (9) Å

  • c = 16.8630 (16) Å

  • β = 119.696 (6)°

  • V = 1852.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 150 K

  • 0.12 × 0.04 × 0.02 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.959, T max = 1.000

  • 10282 measured reflections

  • 3276 independent reflections

  • 2894 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.082

  • S = 1.06

  • 3276 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813029334/hg5353sup1.cif

e-69-o1719-sup1.cif (28.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813029334/hg5353Isup2.hkl

e-69-o1719-Isup2.hkl (157.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813029334/hg5353Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N2i 0.86 2.26 3.0998 (18) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to all personnel of the Laboratoire de Synthèse des Molécules d’intérêts Biologiques and UR–CHEMS, Université Constantine 1, Algeria, for their assistance. Thanks are due to the MESRS (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique, Algeria) for financial support.

supplementary crystallographic information

1. Comment

It is well known that the quinoline ring system is an important structural unit widely existing in alkaloids, therapeutics and synthetic analogues with interesting biological activities (Roma et al., 2000; Chen et al., 2001). In addition quinolines are valuable synthons for the preparation of nano- and meso-structures with enhanced electronic and photonic functions (Jenekhe et al., 2001). Due to their importance as substructures in a broad range of natural and designed products, significant efforts continue to be directed into the development of new quinoline-based structures (Hoemann et al., 2000). In the other hand, the quinazoline unit represents a useful natural product scaffold with demonstrated activities against numerous disorders. The transferable nature of its properties provides a strong rationale for the development of synthetic methods. Not surprisingly, considerable progress in synthetic methodology applicable to quinazoline alkaloids has been made during the past decade (Connolly et al., 2005; Besson et al., 2007). As part of our research in developing new efficient methods for heterocycles synthesis and also multicomponent reactions (Debache et al., 2008; Debache et al., 2009; Nemouchi et al., 2012), we decided to design some new molecules containing reactive fonctionnalities. As a result of this investigation we report herein a fast and efficient protocol for the synthesis of 2-(2-Chloro-8-methylquinolin-3-yl)-4-phenyl-1,2-dihydroquinazoline via a three-component reaction between 2-aminobenzophenone, 2-chloro-8-methylquinoline-3-carbaldehyde, and ammonium acetate, completed by the X-ray structure analysis.

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The benzene ring of dihydroquinazoline and methyl-substituted benzene rings of quinoline form a dihedral angles of 45.91 (5) and 79.80 (4)° respectively with a phenyl ring group. The dihedral angle between the phenyl ring of dihydroquinazoline and methyl-substituted benzene rings of quinoline is 78.18 (4) °. The crystal packing can be described as crossed layers parallel to the (011) and (0–11) planes. (Fig. 2). It is stabilized by a N—H···N hydrogen bond (Table 1, Fig. 2) and π-π interactions. however the centroid to centroid small distance between the phenyl rings is 3.7301 (9) Å. These interactions link the molecules within the layers and also link the layers together and reinforcing the cohesion of the structure.

2. Experimental

A mixture of 2-chloro-8-methylquinoline-3-carbaldehyde (1.0 equiv), 2-aminobenzophenone (1.0 equiv), ammonium acetate (2.0 equiv), and 4-(N,N-dimethylamino)pyridine (0.2 equiv.) in 5 ml of absolute ethanol was stirred at 40°C. After completion of the reaction as monitored by TLC, the reaction mixture was poured into ice cold water; solid product was filtered, washed with water (3–5 ml) and dried. The crude product was recrystallized from ethyl acetate to give pure dihydroquinazoline as a yellow solid; m.p. 182–184 °C; IR (KBr) ν 3329, 1605, 1551, 1470, 1315, 1080, 756, 698 cm-1; 1H NMR (CDCl3, 250 MHz) δ 8.52 (s, 1H, arom.), 7.74–7.41 (m, 8H, arom.), 7.34–7.26 (m, 2H, arom.), 6.83–6.74 (m, 2H, arom.), 6.48 (s, 1H, CH), 4.79 (s, 1H, NH), 2.81 (s, 3H, CH3); 13 C NMR (CDCl3, 62.5 MHz) δ 167.4, 148.2, 146.8, 146.6, 139.3, 138.0, 136.4, 133.2, 132.6, 130.9, 129.9, 129.3, 123.0, 128.4, 127.5, 127.1, 126.1, 120.4, 118.9, 117.9, 114.8, 68.8, 18.0. Anal. calcd for C24H18N3Cl: C, 75.09; H, 4.73; N, 10.95; Found: C, 75.18; H, 4.94; N, 11.37. HRMS calcd f or C24H19N3Cl (MH+) 384.1189; found 384.1162.

3. Refinement

Hydrogen atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C and N) with C—H = 0.96 Å (methyl); C—H = 0.93 Å (aromatic) or C—H = 0.98 Å (methine); N—H = 0.86 Å and with Uiso(H) = 1.2 Ueq(Caryl; Cmethine or N) and Uiso(H) = 1.5 Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The title molecule (Farrugia, 2012) with the atomic labelling scheme. The displacement parameters are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

(Brandenburg & Berndt, 2001) Part of the crystal structure viewed down the b axis showing the hydrogen bonds N—H···N as dashed red lines.

Crystal data

C24H18ClN3 F(000) = 800
Mr = 383.86 Dx = 1.376 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4868 reflections
a = 14.4553 (13) Å θ = 2.4–25.1°
b = 8.7501 (9) Å µ = 0.22 mm1
c = 16.8630 (16) Å T = 150 K
β = 119.696 (6)° Stick, colourless
V = 1852.8 (3) Å3 0.12 × 0.04 × 0.02 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 2894 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
φ and ω scans θmax = 25.1°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −17→17
Tmin = 0.959, Tmax = 1.000 k = −10→10
10282 measured reflections l = −20→20
3276 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.8263P] where P = (Fo2 + 2Fc2)/3
3276 reflections (Δ/σ)max = 0.001
254 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.69552 (11) 0.67980 (16) 0.79870 (9) 0.0147 (3)
C2 0.59188 (11) 0.61713 (15) 0.74927 (9) 0.0127 (3)
C3 0.57150 (11) 0.53348 (16) 0.67390 (9) 0.0146 (3)
H3 0.5049 0.4887 0.6391 0.018*
C4 0.64981 (11) 0.51388 (16) 0.64785 (9) 0.0159 (3)
C5 0.63045 (12) 0.43142 (17) 0.56897 (10) 0.0209 (3)
H5 0.5646 0.3853 0.5328 0.025*
C6 0.70818 (13) 0.41953 (19) 0.54594 (11) 0.0254 (4)
H6 0.6951 0.3665 0.4936 0.031*
C7 0.80782 (13) 0.4873 (2) 0.60120 (11) 0.0282 (4)
H7 0.8602 0.4765 0.5849 0.034*
C8 0.83123 (12) 0.5691 (2) 0.67858 (11) 0.0269 (4)
C9 0.93732 (14) 0.6438 (3) 0.73654 (13) 0.0489 (6)
H9A 0.9794 0.6349 0.7071 0.073*
H9B 0.9734 0.5944 0.795 0.073*
H9C 0.927 0.7498 0.7446 0.073*
C10 0.74979 (11) 0.58353 (17) 0.70258 (10) 0.0178 (3)
C11 0.50792 (11) 0.63352 (16) 0.77731 (9) 0.0131 (3)
H11 0.5314 0.7111 0.8254 0.016*
C12 0.32475 (11) 0.66315 (15) 0.71152 (9) 0.0138 (3)
C13 0.21909 (11) 0.71284 (16) 0.63629 (10) 0.0146 (3)
C14 0.21119 (11) 0.84104 (17) 0.58439 (10) 0.0167 (3)
H14 0.2721 0.8973 0.5986 0.02*
C15 0.11447 (11) 0.88597 (18) 0.51219 (10) 0.0202 (3)
H15 0.1106 0.9722 0.4785 0.024*
C16 0.02306 (12) 0.80291 (18) 0.48979 (10) 0.0217 (3)
H16 −0.0421 0.8325 0.4409 0.026*
C17 0.02994 (12) 0.67590 (18) 0.54081 (11) 0.0223 (3)
H17 −0.0313 0.6204 0.5264 0.027*
C18 0.12673 (11) 0.62970 (17) 0.61323 (10) 0.0193 (3)
H18 0.1302 0.5431 0.6466 0.023*
C19 0.33313 (11) 0.58635 (16) 0.79269 (10) 0.0158 (3)
C20 0.25708 (12) 0.59518 (18) 0.82105 (10) 0.0215 (3)
H20 0.2009 0.6641 0.7931 0.026*
C21 0.26503 (13) 0.5023 (2) 0.89021 (11) 0.0261 (4)
H21 0.2146 0.5094 0.909 0.031*
C22 0.34775 (13) 0.39837 (19) 0.93189 (10) 0.0237 (4)
H22 0.3507 0.333 0.9765 0.028*
C23 0.42583 (12) 0.39113 (17) 0.90769 (10) 0.0192 (3)
H23 0.482 0.3226 0.9367 0.023*
C24 0.41994 (11) 0.48728 (16) 0.83933 (9) 0.0145 (3)
N1 0.77105 (9) 0.66658 (15) 0.77866 (8) 0.0185 (3)
N2 0.40582 (9) 0.68184 (13) 0.69974 (8) 0.0136 (3)
N3 0.49626 (9) 0.48955 (14) 0.81327 (8) 0.0177 (3)
H3N 0.5343 0.4108 0.818 0.021*
Cl1 0.72959 (3) 0.78522 (4) 0.89821 (2) 0.02018 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0142 (7) 0.0167 (7) 0.0124 (7) 0.0004 (6) 0.0059 (6) 0.0021 (6)
C2 0.0125 (7) 0.0110 (7) 0.0142 (7) 0.0021 (5) 0.0064 (6) 0.0036 (5)
C3 0.0134 (7) 0.0122 (7) 0.0170 (7) −0.0001 (6) 0.0064 (6) 0.0020 (6)
C4 0.0191 (7) 0.0134 (7) 0.0168 (7) 0.0053 (6) 0.0100 (6) 0.0053 (6)
C5 0.0259 (8) 0.0171 (7) 0.0212 (8) 0.0033 (6) 0.0129 (7) −0.0001 (6)
C6 0.0348 (9) 0.0253 (9) 0.0221 (8) 0.0093 (7) 0.0186 (7) 0.0019 (7)
C7 0.0273 (9) 0.0406 (10) 0.0267 (8) 0.0135 (8) 0.0209 (8) 0.0093 (8)
C8 0.0184 (8) 0.0441 (10) 0.0214 (8) 0.0068 (7) 0.0122 (7) 0.0075 (7)
C9 0.0188 (9) 0.1013 (19) 0.0341 (10) −0.0071 (10) 0.0188 (8) −0.0086 (11)
C10 0.0157 (7) 0.0236 (8) 0.0155 (7) 0.0050 (6) 0.0089 (6) 0.0058 (6)
C11 0.0124 (7) 0.0129 (7) 0.0138 (7) −0.0008 (5) 0.0064 (6) −0.0002 (6)
C12 0.0146 (7) 0.0101 (7) 0.0176 (7) −0.0012 (5) 0.0088 (6) −0.0041 (5)
C13 0.0124 (7) 0.0160 (7) 0.0173 (7) 0.0009 (6) 0.0087 (6) −0.0039 (6)
C14 0.0129 (7) 0.0180 (7) 0.0215 (7) −0.0008 (6) 0.0102 (6) −0.0027 (6)
C15 0.0188 (7) 0.0232 (8) 0.0211 (7) 0.0056 (6) 0.0118 (6) 0.0041 (6)
C16 0.0125 (7) 0.0302 (9) 0.0201 (8) 0.0047 (6) 0.0064 (6) −0.0008 (7)
C17 0.0122 (7) 0.0241 (8) 0.0299 (8) −0.0023 (6) 0.0098 (7) −0.0041 (7)
C18 0.0162 (7) 0.0179 (7) 0.0251 (8) 0.0001 (6) 0.0112 (6) 0.0003 (6)
C19 0.0166 (7) 0.0146 (7) 0.0179 (7) −0.0029 (6) 0.0099 (6) −0.0041 (6)
C20 0.0195 (8) 0.0251 (8) 0.0243 (8) −0.0009 (6) 0.0142 (7) −0.0052 (7)
C21 0.0265 (8) 0.0354 (10) 0.0268 (8) −0.0073 (7) 0.0210 (7) −0.0067 (7)
C22 0.0304 (9) 0.0258 (8) 0.0198 (8) −0.0097 (7) 0.0160 (7) −0.0023 (7)
C23 0.0229 (8) 0.0172 (7) 0.0176 (7) −0.0027 (6) 0.0102 (6) −0.0012 (6)
C24 0.0164 (7) 0.0139 (7) 0.0149 (7) −0.0037 (6) 0.0090 (6) −0.0045 (6)
N1 0.0126 (6) 0.0272 (7) 0.0156 (6) 0.0003 (5) 0.0071 (5) 0.0034 (5)
N2 0.0113 (6) 0.0122 (6) 0.0172 (6) 0.0008 (5) 0.0069 (5) 0.0003 (5)
N3 0.0198 (6) 0.0148 (6) 0.0255 (7) 0.0062 (5) 0.0166 (6) 0.0058 (5)
Cl1 0.01497 (19) 0.0289 (2) 0.01610 (19) −0.00583 (15) 0.00722 (15) −0.00646 (15)

Geometric parameters (Å, º)

C1—N1 1.2981 (18) C12—C19 1.475 (2)
C1—C2 1.4151 (19) C12—C13 1.487 (2)
C1—Cl1 1.7580 (14) C13—C14 1.392 (2)
C2—C3 1.366 (2) C13—C18 1.396 (2)
C2—C11 1.5118 (18) C14—C15 1.380 (2)
C3—C4 1.4129 (19) C14—H14 0.93
C3—H3 0.93 C15—C16 1.386 (2)
C4—C10 1.411 (2) C15—H15 0.93
C4—C5 1.414 (2) C16—C17 1.379 (2)
C5—C6 1.363 (2) C16—H16 0.93
C5—H5 0.93 C17—C18 1.385 (2)
C6—C7 1.402 (2) C17—H17 0.93
C6—H6 0.93 C18—H18 0.93
C7—C8 1.376 (2) C19—C20 1.4017 (19)
C7—H7 0.93 C19—C24 1.402 (2)
C8—C10 1.427 (2) C20—C21 1.379 (2)
C8—C9 1.500 (3) C20—H20 0.93
C9—H9A 0.96 C21—C22 1.385 (2)
C9—H9B 0.96 C21—H21 0.93
C9—H9C 0.96 C22—C23 1.379 (2)
C10—N1 1.3704 (19) C22—H22 0.93
C11—N3 1.4437 (18) C23—C24 1.395 (2)
C11—N2 1.4681 (18) C23—H23 0.93
C11—H11 0.98 C24—N3 1.3753 (17)
C12—N2 1.2924 (17) N3—H3N 0.86
N1—C1—C2 126.42 (13) C14—C13—C18 118.39 (13)
N1—C1—Cl1 114.91 (11) C14—C13—C12 120.11 (12)
C2—C1—Cl1 118.67 (10) C18—C13—C12 121.44 (13)
C3—C2—C1 115.65 (12) C15—C14—C13 121.05 (13)
C3—C2—C11 120.34 (12) C15—C14—H14 119.5
C1—C2—C11 123.96 (12) C13—C14—H14 119.5
C2—C3—C4 121.16 (13) C14—C15—C16 120.21 (14)
C2—C3—H3 119.4 C14—C15—H15 119.9
C4—C3—H3 119.4 C16—C15—H15 119.9
C10—C4—C3 117.58 (13) C17—C16—C15 119.22 (14)
C10—C4—C5 119.81 (13) C17—C16—H16 120.4
C3—C4—C5 122.59 (14) C15—C16—H16 120.4
C6—C5—C4 120.01 (15) C16—C17—C18 120.96 (14)
C6—C5—H5 120 C16—C17—H17 119.5
C4—C5—H5 120 C18—C17—H17 119.5
C5—C6—C7 119.94 (14) C17—C18—C13 120.16 (14)
C5—C6—H6 120 C17—C18—H18 119.9
C7—C6—H6 120 C13—C18—H18 119.9
C8—C7—C6 122.67 (14) C20—C19—C24 118.54 (13)
C8—C7—H7 118.7 C20—C19—C12 125.02 (13)
C6—C7—H7 118.7 C24—C19—C12 116.21 (12)
C7—C8—C10 117.71 (15) C21—C20—C19 120.35 (15)
C7—C8—C9 122.46 (14) C21—C20—H20 119.8
C10—C8—C9 119.83 (15) C19—C20—H20 119.8
C8—C9—H9A 109.5 C20—C21—C22 120.36 (13)
C8—C9—H9B 109.5 C20—C21—H21 119.8
H9A—C9—H9B 109.5 C22—C21—H21 119.8
C8—C9—H9C 109.5 C23—C22—C21 120.51 (14)
H9A—C9—H9C 109.5 C23—C22—H22 119.7
H9B—C9—H9C 109.5 C21—C22—H22 119.7
N1—C10—C4 121.56 (12) C22—C23—C24 119.53 (14)
N1—C10—C8 118.58 (14) C22—C23—H23 120.2
C4—C10—C8 119.85 (14) C24—C23—H23 120.2
N3—C11—N2 110.52 (11) N3—C24—C23 122.85 (13)
N3—C11—C2 109.11 (11) N3—C24—C19 116.63 (12)
N2—C11—C2 110.92 (11) C23—C24—C19 120.51 (13)
N3—C11—H11 108.7 C1—N1—C10 117.61 (12)
N2—C11—H11 108.7 C12—N2—C11 114.49 (11)
C2—C11—H11 108.7 C24—N3—C11 115.21 (11)
N2—C12—C19 122.44 (13) C24—N3—H3N 122.4
N2—C12—C13 117.27 (12) C11—N3—H3N 122.4
C19—C12—C13 120.16 (12)
N1—C1—C2—C3 0.8 (2) C14—C15—C16—C17 0.4 (2)
Cl1—C1—C2—C3 −178.49 (10) C15—C16—C17—C18 −0.6 (2)
N1—C1—C2—C11 178.55 (13) C16—C17—C18—C13 0.7 (2)
Cl1—C1—C2—C11 −0.74 (19) C14—C13—C18—C17 −0.6 (2)
C1—C2—C3—C4 −0.7 (2) C12—C13—C18—C17 −177.81 (13)
C11—C2—C3—C4 −178.50 (12) N2—C12—C19—C20 163.29 (14)
C2—C3—C4—C10 0.1 (2) C13—C12—C19—C20 −21.0 (2)
C2—C3—C4—C5 −178.31 (13) N2—C12—C19—C24 −22.4 (2)
C10—C4—C5—C6 −0.1 (2) C13—C12—C19—C24 153.26 (13)
C3—C4—C5—C6 178.33 (14) C24—C19—C20—C21 −3.3 (2)
C4—C5—C6—C7 0.9 (2) C12—C19—C20—C21 170.81 (14)
C5—C6—C7—C8 −1.0 (3) C19—C20—C21—C22 −0.5 (2)
C6—C7—C8—C10 0.3 (3) C20—C21—C22—C23 2.9 (2)
C6—C7—C8—C9 −178.86 (18) C21—C22—C23—C24 −1.3 (2)
C3—C4—C10—N1 0.4 (2) C22—C23—C24—N3 178.18 (14)
C5—C4—C10—N1 178.87 (13) C22—C23—C24—C19 −2.6 (2)
C3—C4—C10—C8 −179.12 (14) C20—C19—C24—N3 −175.84 (13)
C5—C4—C10—C8 −0.6 (2) C12—C19—C24—N3 9.50 (19)
C7—C8—C10—N1 −179.01 (14) C20—C19—C24—C23 4.9 (2)
C9—C8—C10—N1 0.2 (2) C12—C19—C24—C23 −169.73 (13)
C7—C8—C10—C4 0.5 (2) C2—C1—N1—C10 −0.3 (2)
C9—C8—C10—C4 179.71 (17) Cl1—C1—N1—C10 178.99 (10)
C3—C2—C11—N3 71.53 (16) C4—C10—N1—C1 −0.3 (2)
C1—C2—C11—N3 −106.12 (15) C8—C10—N1—C1 179.22 (14)
C3—C2—C11—N2 −50.45 (17) C19—C12—N2—C11 −5.44 (19)
C1—C2—C11—N2 131.90 (14) C13—C12—N2—C11 178.74 (12)
N2—C12—C13—C14 −34.96 (19) N3—C11—N2—C12 42.97 (16)
C19—C12—C13—C14 149.12 (13) C2—C11—N2—C12 164.12 (12)
N2—C12—C13—C18 142.19 (14) C23—C24—N3—C11 −151.84 (13)
C19—C12—C13—C18 −33.73 (19) C19—C24—N3—C11 28.95 (18)
C18—C13—C14—C15 0.4 (2) N2—C11—N3—C24 −56.16 (15)
C12—C13—C14—C15 177.67 (13) C2—C11—N3—C24 −178.38 (12)
C13—C14—C15—C16 −0.4 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3N···N2i 0.86 2.26 3.0998 (18) 165
C11—H11···Cl1 0.98 2.58 3.1166 (16) 115

Symmetry code: (i) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5353).

References

  1. Besson, T. & Chosson, E. (2007). Comb. Chem. High Throughput Screening, 10, 903–917. [DOI] [PubMed]
  2. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2011). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  5. Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2377. [DOI] [PubMed]
  6. Connolly, D. J., Cusack, D., O’Sullivan, T. P. & Guiry, P. J. (2005). Tetrahedron, 61, 10153–10202.
  7. Debache, A., Boulcina, R., Belfaitah, A., Rhouati, S. & Carboni, B. (2008). Synlett, pp. 509–512.
  8. Debache, A., Ghalem, W., Boulcina, R., Belfaitah, A., Rhouati, S. & Carboni, B. (2009). Tetrahedron Lett. 50, 5248–5250.
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Hoemann, M. Z., Kumaravel, G., Xie, R. L., Rossi, R. F., Meyer, S., Sidhu, A., Cuny, G. D. & Hauske, J. R. (2000). Bioorg. Med. Chem. Lett. 10, 2675–2678. [DOI] [PubMed]
  11. Jenekhe, S. A., Lu, L. & Alam, M. M. (2001). Macromolecules, 34, 7315–7324.
  12. Nemouchi, S., Boulcina, R., Carboni, B. & Debache, A. (2012). C. R. Chim. 15, 394–397.
  13. Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1035. [DOI] [PubMed]
  14. Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813029334/hg5353sup1.cif

e-69-o1719-sup1.cif (28.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813029334/hg5353Isup2.hkl

e-69-o1719-Isup2.hkl (157.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813029334/hg5353Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES