Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 31;69(Pt 11):o1724. doi: 10.1107/S1600536813029425

1-[5-Methyl-1-(4-nitro­phen­yl)-1H-1,2,3-triazol-4-yl]ethanone

N Vinutha a, S Madan Kumar a, Nithinchandra b, Kalluraya Balakrishna b, N K Lokanath a, D Revannasiddaiah a,*
PMCID: PMC3884370  PMID: 24454146

Abstract

The asymmetric unit of the title compound, C11H10N4O3, contains two independent mol­ecules in which the benzene rings make dihedral angles of 38.3 (2) and 87.1 (2)° with respect to the triazole rings. In the crystal, the mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains along [021]. Further, weak C—O⋯π [3.865 (5) Å, 83.8 (3)°] and N—O⋯π [3.275 (5) and 3.240 (6) Å, 141.8 (4) and 102.8 (3)°] inter­actions are observed.

Related literature  

For chemical and biological properties and pharmocological applications of 1,2,3-triazole derivative, see: Nithinchandra et al. (2012, 2013); Biagi et al. (2004); Manfredini et al. (2000); Sherement et al. (2004). For bond-length data, see: Allen et al. (1987).graphic file with name e-69-o1724-scheme1.jpg

Experimental  

Crystal data  

  • C11H10N4O3

  • M r = 246.23

  • Orthorhombic, Inline graphic

  • a = 7.2786 (10) Å

  • b = 11.5055 (16) Å

  • c = 27.220 (4) Å

  • V = 2279.5 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.91 mm−1

  • T = 296 K

  • 0.23 × 0.22 × 0.21 mm

Data collection  

  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013) T min = 0.818, T max = 0.831

  • 8697 measured reflections

  • 1910 independent reflections

  • 1617 reflections with I > 2σ(I)

  • R int = 0.057

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.138

  • S = 1.08

  • 1910 reflections

  • 329 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813029425/is5313sup1.cif

e-69-o1724-sup1.cif (31.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813029425/is5313Isup2.hkl

e-69-o1724-Isup2.hkl (92.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5B—H5B1⋯O3A i 0.96 2.51 3.306 (8) 141
C10B—H10B⋯O1A 0.93 2.58 3.197 (7) 124

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are thankful to the IOE, University of Mysore, for providing the single-crystal X-ray diffraction facility. VN is grateful to the UGC for the award of an RFSMS Fellowship. RD acknowledges the UGC, New Delhi, for financial support under the Major Research Project Scheme [UGC MRP No. F.41–882/2012 (SR) dated 01/07/2012].

supplementary crystallographic information

1. Comment

1,2,3-Triazoles are attractive constructs, because of their unique chemical properties and they find many applications in organic and medicinal chemistry (Nithinchandra et al., 2013). They are found to be potent antimicrobial (Sherement et al., 2004)and antiviral agents. Some of them have exhibited antiproliferative and anti-inflammatory property (Nithinchandra et al., 2012). Also, 1,2,3-triazoles are used as DNA cleaving agents (Manfredini et al., 2000) and potassium channel activators (Biagi et al., 2004).

The asymmetric unit of of the title compound consists of two molecules A and B (Fig. 1). They show conformational difference, as evident from dihedral angles. The dihedral angle between benzene ring and triazole moiety is 38.2 (3)° in A and 87.6 (4)° in B. The values of the bond lengths are similar to the reported literature (Allen et al., 1987).

In the crystal, the molecules are linked to one another with the C—H···O hydrogen bonds (Table 1). Also, short contacts of the type C3A—O1A···Cg4(x + 1/2, y - 1, z) with a distance 3.865 (5) Å [angle 83.8 (3)°], N4A—O2A···Cg3(x - 1, y - 1, z + 1/2) with a distance 3.275 (5) Å [angle 141.8 (4)°] and N4B—O3B···Cg1(x - 1/2, y - 1, z) with a distance 3.240 (6) Å [angle 102.8 (3)°] help in crystal stabilization. These interactions form a three dimensional architecture (Fig. 2), where Cg1, Cg3 and Cg4 are the centroids of the N1A/N2A/N3A/C1A/C2A, N1B/N2B/N3B/C1B/C2B and C6B–C11B rings, respectively.

2. Experimental

1-Azido-4-nitrobenzene (0.01 mol) was treated with acetyl acetone (0.01 mol) in methanol (10 ml) and the mixture was cooled to 0 °C. Sodium methoxide (0.01 mol) was added under inert atmosphere to the above mixture and stirred at ambient temperature for 8 h. Progress of the reaction was monitored by TLC (ethyl acetate/petroleum ether, 2:3, v/v). After completion of the reaction, the mixture was poured onto ice cold water. The precipitated solid was filtered, washed with water and recrystallized from ethanol. Single crystals suitable for X-ray analysis were obtained from a 1:2 mixture of DMF and ethanol by slow evaporation.

3. Refinement

All the H atoms were fixed geometrically (C—H = 0.93–0.96 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. The Flack parameter x refines to 0.2 (4) with unmerged data, and the absolute structure cannot be determined reliably. The final refinement was performed with the merged data.

Figures

Fig. 1.

Fig. 1.

Asymmetric unit of the title compound with 50% probability ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the title compound, viewed along the b axis. Dotted lines indicate hydrogen bonds and short contacts involved.

Crystal data

C11H10N4O3 F(000) = 1024
Mr = 246.23 Dx = 1.435 Mg m3
Orthorhombic, Pca21 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2ac Cell parameters from 1910 reflections
a = 7.2786 (10) Å θ = 3.2–64.2°
b = 11.5055 (16) Å µ = 0.91 mm1
c = 27.220 (4) Å T = 296 K
V = 2279.5 (6) Å3 Block, red
Z = 8 0.23 × 0.22 × 0.21 mm

Data collection

Bruker X8 Proteum diffractometer 1910 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode 1617 reflections with I > 2σ(I)
Helios multilayer optics monochromator Rint = 0.057
Detector resolution: 10.7 pixels mm-1 θmax = 64.2°, θmin = 3.3°
φ and ω scans h = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −5→13
Tmin = 0.818, Tmax = 0.831 l = −30→31
8697 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0932P)2] where P = (Fo2 + 2Fc2)/3
1910 reflections (Δ/σ)max < 0.001
329 parameters Δρmax = 0.17 e Å3
1 restraint Δρmin = −0.17 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.1681 (6) 0.7317 (4) 0.30010 (16) 0.0907 (16)
O2A 0.5412 (8) 0.8545 (4) 0.64933 (16) 0.1063 (18)
O3A 0.4670 (10) 1.0325 (5) 0.64815 (18) 0.129 (3)
N1A 0.4033 (6) 0.9759 (4) 0.35049 (15) 0.0680 (16)
N2A 0.4450 (6) 0.9990 (4) 0.39568 (14) 0.0657 (14)
N3A 0.3707 (5) 0.9122 (3) 0.42410 (12) 0.0522 (11)
N4A 0.4913 (7) 0.9402 (4) 0.62761 (15) 0.0767 (16)
C1A 0.2812 (6) 0.8331 (4) 0.39621 (15) 0.0497 (12)
C2A 0.3036 (6) 0.8752 (4) 0.34871 (16) 0.0570 (14)
C3A 0.2316 (7) 0.8288 (5) 0.30239 (18) 0.0670 (16)
C4A 0.2355 (10) 0.9058 (6) 0.2585 (2) 0.084 (2)
C5A 0.1735 (7) 0.7346 (4) 0.41484 (19) 0.0667 (17)
C6A 0.3986 (6) 0.9188 (4) 0.47594 (15) 0.0503 (14)
C7A 0.3940 (7) 1.0257 (4) 0.49864 (17) 0.0603 (17)
C8A 0.4254 (7) 1.0344 (4) 0.54869 (16) 0.0633 (17)
C9A 0.4592 (7) 0.9331 (4) 0.57459 (16) 0.0587 (14)
C10A 0.4634 (7) 0.8257 (4) 0.55236 (16) 0.0600 (16)
C11A 0.4341 (6) 0.8185 (4) 0.50253 (16) 0.0577 (16)
O1B −0.0706 (6) 0.3153 (4) 0.04016 (14) 0.0883 (16)
O2B 0.0771 (8) 0.4308 (5) 0.40221 (15) 0.110 (2)
O3B 0.1969 (7) 0.2600 (5) 0.40198 (14) 0.0950 (18)
N1B 0.3210 (5) 0.4147 (4) 0.10651 (14) 0.0653 (14)
N2B 0.3525 (5) 0.4112 (4) 0.15379 (13) 0.0637 (14)
N3B 0.1961 (5) 0.3690 (3) 0.17486 (12) 0.0538 (11)
N4B 0.1456 (6) 0.3479 (5) 0.38102 (15) 0.0733 (18)
C1B 0.0636 (6) 0.3448 (4) 0.14185 (17) 0.0550 (12)
C2B 0.1480 (6) 0.3740 (4) 0.09745 (16) 0.0550 (12)
C3B 0.0683 (7) 0.3710 (4) 0.04782 (15) 0.0597 (16)
C4B 0.1636 (9) 0.4365 (6) 0.00848 (19) 0.082 (2)
C5B −0.1210 (8) 0.3025 (5) 0.1540 (2) 0.0760 (19)
C6B 0.1834 (6) 0.3626 (4) 0.22757 (15) 0.0533 (14)
C7B 0.2290 (8) 0.2619 (4) 0.25147 (17) 0.0673 (16)
C8B 0.2177 (7) 0.2566 (4) 0.30211 (19) 0.0693 (17)
C9B 0.1605 (6) 0.3519 (5) 0.32681 (16) 0.0570 (14)
C10B 0.1174 (7) 0.4558 (5) 0.30392 (19) 0.0703 (17)
C11B 0.1287 (8) 0.4607 (5) 0.25360 (18) 0.0680 (17)
H5A1 0.24880 0.66610 0.41530 0.1000*
H7A 0.36970 1.09220 0.48030 0.0730*
H5A2 0.06950 0.72180 0.39380 0.1000*
H8A 0.42390 1.10620 0.56440 0.0760*
H5A3 0.13180 0.75140 0.44750 0.1000*
H4A1 0.17180 0.86890 0.23190 0.1260*
H10A 0.48560 0.75900 0.57070 0.0720*
H4A2 0.36060 0.92010 0.24920 0.1260*
H11A 0.43810 0.74690 0.48680 0.0690*
H4A3 0.17660 0.97820 0.26620 0.1260*
H5B1 −0.13290 0.22300 0.14380 0.1140*
H5B2 −0.21100 0.34910 0.13740 0.1140*
H5B3 −0.13980 0.30770 0.18890 0.1140*
H4B1 0.28300 0.40340 0.00310 0.1230*
H4B2 0.17640 0.51630 0.01820 0.1230*
H4B3 0.09310 0.43210 −0.02130 0.1230*
H7B 0.26730 0.19720 0.23370 0.0800*
H8B 0.24890 0.18890 0.31880 0.0830*
H10B 0.08170 0.52040 0.32210 0.0840*
H11B 0.10010 0.52910 0.23710 0.0820*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.115 (3) 0.074 (3) 0.083 (2) −0.011 (2) −0.018 (2) −0.0103 (19)
O2A 0.146 (4) 0.107 (3) 0.066 (2) 0.015 (3) −0.021 (3) 0.008 (2)
O3A 0.217 (7) 0.099 (3) 0.071 (3) −0.001 (4) −0.007 (3) −0.018 (2)
N1A 0.081 (3) 0.067 (3) 0.056 (2) −0.010 (2) 0.0006 (19) 0.0059 (19)
N2A 0.080 (3) 0.063 (2) 0.054 (2) −0.017 (2) 0.0022 (18) 0.0112 (18)
N3A 0.0547 (19) 0.050 (2) 0.0518 (19) −0.0050 (16) 0.0006 (14) 0.0012 (15)
N4A 0.092 (3) 0.081 (3) 0.057 (2) −0.005 (3) −0.003 (2) −0.002 (2)
C1A 0.053 (2) 0.044 (2) 0.052 (2) 0.0033 (18) −0.0018 (18) 0.0026 (17)
C2A 0.062 (2) 0.056 (3) 0.053 (2) 0.002 (2) 0.000 (2) 0.004 (2)
C3A 0.073 (3) 0.070 (3) 0.058 (2) 0.011 (3) −0.005 (2) −0.003 (2)
C4A 0.107 (4) 0.093 (4) 0.051 (2) 0.004 (3) 0.001 (3) 0.006 (3)
C5A 0.075 (3) 0.060 (3) 0.065 (3) −0.009 (2) 0.002 (2) 0.007 (2)
C6A 0.051 (2) 0.055 (3) 0.045 (2) −0.0043 (18) 0.0043 (17) 0.0041 (18)
C7A 0.066 (3) 0.055 (3) 0.060 (3) −0.001 (2) −0.002 (2) 0.005 (2)
C8A 0.075 (3) 0.058 (3) 0.057 (3) −0.004 (2) 0.004 (2) −0.006 (2)
C9A 0.059 (2) 0.069 (3) 0.048 (2) −0.002 (2) 0.0011 (18) 0.000 (2)
C10A 0.066 (3) 0.060 (3) 0.054 (2) −0.001 (2) −0.001 (2) 0.007 (2)
C11A 0.064 (3) 0.052 (3) 0.057 (2) 0.002 (2) −0.0023 (19) 0.0002 (19)
O1B 0.110 (3) 0.092 (3) 0.063 (2) −0.039 (2) −0.0193 (19) 0.0015 (18)
O2B 0.139 (4) 0.130 (4) 0.061 (3) 0.005 (3) 0.017 (2) −0.022 (2)
O3B 0.105 (3) 0.123 (4) 0.057 (2) −0.018 (3) −0.003 (2) 0.018 (2)
N1B 0.069 (2) 0.076 (3) 0.051 (2) −0.0069 (19) 0.0015 (18) 0.0005 (18)
N2B 0.060 (2) 0.084 (3) 0.0470 (19) −0.012 (2) 0.0031 (16) 0.0026 (18)
N3B 0.058 (2) 0.055 (2) 0.0485 (19) −0.0005 (17) −0.0001 (15) 0.0000 (15)
N4B 0.074 (3) 0.099 (4) 0.047 (2) −0.019 (3) −0.0022 (19) −0.004 (2)
C1B 0.062 (2) 0.050 (2) 0.053 (2) −0.0065 (19) 0.0007 (18) −0.0003 (18)
C2B 0.060 (2) 0.053 (2) 0.052 (2) −0.0023 (18) 0.0045 (19) 0.0005 (18)
C3B 0.076 (3) 0.054 (3) 0.049 (2) −0.003 (2) −0.003 (2) −0.0024 (19)
C4B 0.090 (4) 0.105 (5) 0.050 (2) −0.010 (3) 0.002 (3) 0.007 (3)
C5B 0.072 (3) 0.088 (4) 0.068 (3) −0.023 (3) 0.006 (2) 0.007 (3)
C6B 0.060 (2) 0.059 (3) 0.041 (2) 0.000 (2) 0.0024 (17) −0.0021 (18)
C7B 0.090 (3) 0.059 (3) 0.053 (2) 0.009 (2) 0.004 (2) 0.004 (2)
C8B 0.084 (3) 0.065 (3) 0.059 (3) 0.006 (3) 0.004 (2) 0.011 (2)
C9B 0.055 (2) 0.072 (3) 0.044 (2) −0.010 (2) 0.0004 (17) 0.000 (2)
C10B 0.082 (3) 0.070 (3) 0.059 (3) 0.005 (3) 0.003 (2) −0.012 (2)
C11B 0.089 (3) 0.060 (3) 0.055 (3) 0.009 (3) 0.002 (2) 0.000 (2)

Geometric parameters (Å, º)

O1A—C3A 1.211 (7) C4A—H4A2 0.9600
O2A—N4A 1.206 (7) C4A—H4A3 0.9600
O3A—N4A 1.213 (7) C5A—H5A3 0.9600
O1B—C3B 1.215 (7) C5A—H5A2 0.9600
O2B—N4B 1.221 (8) C5A—H5A1 0.9600
O3B—N4B 1.220 (8) C7A—H7A 0.9300
N1A—N2A 1.295 (6) C8A—H8A 0.9300
N1A—C2A 1.368 (6) C10A—H10A 0.9300
N2A—N3A 1.374 (6) C11A—H11A 0.9300
N3A—C1A 1.352 (6) C1B—C2B 1.397 (6)
N3A—C6A 1.428 (5) C1B—C5B 1.467 (7)
N4A—C9A 1.464 (6) C2B—C3B 1.471 (6)
N1B—N2B 1.308 (5) C3B—C4B 1.482 (7)
N1B—C2B 1.366 (6) C6B—C7B 1.370 (6)
N2B—N3B 1.364 (5) C6B—C11B 1.391 (7)
N3B—C1B 1.347 (6) C7B—C8B 1.382 (7)
N3B—C6B 1.440 (5) C8B—C9B 1.352 (7)
N4B—C9B 1.480 (6) C9B—C10B 1.384 (8)
C1A—C5A 1.468 (7) C10B—C11B 1.373 (7)
C1A—C2A 1.390 (6) C4B—H4B1 0.9600
C2A—C3A 1.466 (7) C4B—H4B2 0.9600
C3A—C4A 1.488 (8) C4B—H4B3 0.9600
C6A—C7A 1.377 (6) C5B—H5B1 0.9600
C6A—C11A 1.387 (6) C5B—H5B2 0.9600
C7A—C8A 1.385 (6) C5B—H5B3 0.9600
C8A—C9A 1.384 (6) C7B—H7B 0.9300
C9A—C10A 1.376 (6) C8B—H8B 0.9300
C10A—C11A 1.376 (6) C10B—H10B 0.9300
C4A—H4A1 0.9600 C11B—H11B 0.9300
N2A—N1A—C2A 109.4 (4) C8A—C7A—H7A 120.00
N1A—N2A—N3A 107.1 (4) C6A—C7A—H7A 120.00
N2A—N3A—C1A 111.3 (3) C9A—C8A—H8A 121.00
N2A—N3A—C6A 117.5 (3) C7A—C8A—H8A 121.00
C1A—N3A—C6A 131.2 (4) C9A—C10A—H10A 121.00
O2A—N4A—O3A 122.3 (5) C11A—C10A—H10A 120.00
O2A—N4A—C9A 119.1 (4) C6A—C11A—H11A 120.00
O3A—N4A—C9A 118.7 (5) C10A—C11A—H11A 120.00
N2B—N1B—C2B 109.2 (4) N3B—C1B—C2B 102.3 (4)
N1B—N2B—N3B 106.2 (3) N3B—C1B—C5B 125.0 (4)
N2B—N3B—C1B 113.0 (3) C2B—C1B—C5B 132.7 (4)
N2B—N3B—C6B 119.4 (3) N1B—C2B—C1B 109.4 (4)
C1B—N3B—C6B 127.5 (4) N1B—C2B—C3B 122.5 (4)
O3B—N4B—C9B 118.0 (5) C1B—C2B—C3B 128.0 (4)
O2B—N4B—O3B 123.5 (4) O1B—C3B—C2B 119.9 (4)
O2B—N4B—C9B 118.5 (5) O1B—C3B—C4B 122.3 (4)
N3A—C1A—C5A 125.6 (4) C2B—C3B—C4B 117.9 (4)
C2A—C1A—C5A 130.7 (4) N3B—C6B—C7B 120.1 (4)
N3A—C1A—C2A 103.4 (4) N3B—C6B—C11B 119.0 (4)
N1A—C2A—C1A 108.9 (4) C7B—C6B—C11B 120.9 (4)
N1A—C2A—C3A 121.9 (4) C6B—C7B—C8B 119.8 (4)
C1A—C2A—C3A 129.1 (4) C7B—C8B—C9B 118.6 (4)
O1A—C3A—C2A 121.1 (5) N4B—C9B—C8B 119.5 (5)
O1A—C3A—C4A 121.0 (5) N4B—C9B—C10B 117.3 (5)
C2A—C3A—C4A 117.8 (5) C8B—C9B—C10B 123.1 (4)
N3A—C6A—C11A 119.9 (4) C9B—C10B—C11B 118.1 (5)
N3A—C6A—C7A 119.2 (4) C6B—C11B—C10B 119.5 (5)
C7A—C6A—C11A 120.9 (4) C3B—C4B—H4B1 109.00
C6A—C7A—C8A 120.1 (4) C3B—C4B—H4B2 109.00
C7A—C8A—C9A 118.0 (4) C3B—C4B—H4B3 109.00
C8A—C9A—C10A 122.4 (4) H4B1—C4B—H4B2 109.00
N4A—C9A—C8A 118.9 (4) H4B1—C4B—H4B3 110.00
N4A—C9A—C10A 118.7 (4) H4B2—C4B—H4B3 110.00
C9A—C10A—C11A 119.0 (4) C1B—C5B—H5B1 109.00
C6A—C11A—C10A 119.6 (4) C1B—C5B—H5B2 109.00
C3A—C4A—H4A1 109.00 C1B—C5B—H5B3 109.00
C3A—C4A—H4A2 109.00 H5B1—C5B—H5B2 110.00
H4A1—C4A—H4A2 110.00 H5B1—C5B—H5B3 109.00
H4A1—C4A—H4A3 109.00 H5B2—C5B—H5B3 109.00
C3A—C4A—H4A3 109.00 C6B—C7B—H7B 120.00
H4A2—C4A—H4A3 109.00 C8B—C7B—H7B 120.00
C1A—C5A—H5A1 109.00 C7B—C8B—H8B 121.00
C1A—C5A—H5A2 109.00 C9B—C8B—H8B 121.00
C1A—C5A—H5A3 109.00 C9B—C10B—H10B 121.00
H5A1—C5A—H5A2 109.00 C11B—C10B—H10B 121.00
H5A1—C5A—H5A3 110.00 C6B—C11B—H11B 120.00
H5A2—C5A—H5A3 110.00 C10B—C11B—H11B 120.00
C2A—N1A—N2A—N3A −0.3 (5) N3A—C1A—C2A—C3A −177.7 (5)
N2A—N1A—C2A—C1A 0.3 (5) C5A—C1A—C2A—C3A −3.4 (8)
N2A—N1A—C2A—C3A 178.0 (4) C5A—C1A—C2A—N1A 174.2 (5)
N1A—N2A—N3A—C1A 0.2 (5) C1A—C2A—C3A—O1A −14.0 (8)
N1A—N2A—N3A—C6A −180.0 (4) C1A—C2A—C3A—C4A 164.8 (5)
N2A—N3A—C1A—C2A 0.0 (5) N1A—C2A—C3A—C4A −12.5 (7)
N2A—N3A—C1A—C5A −174.7 (4) N1A—C2A—C3A—O1A 168.8 (5)
C6A—N3A—C1A—C2A −179.9 (4) N3A—C6A—C11A—C10A 179.1 (4)
C6A—N3A—C1A—C5A 5.4 (7) N3A—C6A—C7A—C8A −178.3 (4)
N2A—N3A—C6A—C7A 37.8 (6) C11A—C6A—C7A—C8A 0.1 (7)
N2A—N3A—C6A—C11A −140.7 (4) C7A—C6A—C11A—C10A 0.6 (7)
C1A—N3A—C6A—C7A −142.4 (5) C6A—C7A—C8A—C9A −0.6 (7)
C1A—N3A—C6A—C11A 39.1 (7) C7A—C8A—C9A—C10A 0.3 (8)
O2A—N4A—C9A—C8A −171.7 (5) C7A—C8A—C9A—N4A −179.5 (5)
O2A—N4A—C9A—C10A 8.5 (8) N4A—C9A—C10A—C11A −179.7 (4)
O3A—N4A—C9A—C8A 8.2 (8) C8A—C9A—C10A—C11A 0.4 (8)
O3A—N4A—C9A—C10A −171.7 (6) C9A—C10A—C11A—C6A −0.9 (7)
C2B—N1B—N2B—N3B −0.7 (5) N3B—C1B—C2B—N1B −0.9 (5)
N2B—N1B—C2B—C1B 1.1 (6) N3B—C1B—C2B—C3B −177.2 (4)
N2B—N1B—C2B—C3B 177.6 (4) C5B—C1B—C2B—N1B 177.0 (5)
N1B—N2B—N3B—C6B −175.6 (4) C5B—C1B—C2B—C3B 0.7 (9)
N1B—N2B—N3B—C1B 0.2 (5) N1B—C2B—C3B—O1B 166.6 (5)
N2B—N3B—C1B—C2B 0.5 (5) N1B—C2B—C3B—C4B −12.9 (7)
N2B—N3B—C1B—C5B −177.6 (5) C1B—C2B—C3B—O1B −17.6 (8)
C1B—N3B—C6B—C11B −90.7 (6) C1B—C2B—C3B—C4B 162.9 (5)
C6B—N3B—C1B—C5B −2.3 (7) N3B—C6B—C7B—C8B 179.6 (4)
N2B—N3B—C6B—C7B −94.0 (5) C11B—C6B—C7B—C8B 1.1 (8)
C6B—N3B—C1B—C2B 175.9 (4) N3B—C6B—C11B—C10B −179.5 (5)
C1B—N3B—C6B—C7B 90.9 (6) C7B—C6B—C11B—C10B −1.1 (8)
N2B—N3B—C6B—C11B 84.5 (5) C6B—C7B—C8B—C9B 0.3 (8)
O3B—N4B—C9B—C8B 4.5 (7) C7B—C8B—C9B—N4B 179.4 (5)
O2B—N4B—C9B—C10B 8.1 (7) C7B—C8B—C9B—C10B −1.8 (8)
O2B—N4B—C9B—C8B −173.1 (5) N4B—C9B—C10B—C11B −179.4 (5)
O3B—N4B—C9B—C10B −174.3 (5) C8B—C9B—C10B—C11B 1.9 (8)
N3A—C1A—C2A—N1A −0.2 (5) C9B—C10B—C11B—C6B −0.4 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5B—H5B1···O3Ai 0.96 2.51 3.306 (8) 141
C10B—H10B···O1A 0.93 2.58 3.197 (7) 124

Symmetry code: (i) −x+1/2, y−1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5313).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Prpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Biagi, G., Calderone, V., Giorgi, I., Livi, O., Martinotti, E., Martelli, A. & Nardi, A. (2004). Farmaco, 59, 397–404. [DOI] [PubMed]
  3. Bruker (2013). APEX2, SAINT and SADABS Bruker AXS Inc., Madison,Wisconsin, USA.
  4. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  5. Manfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. 8, 2343–2346. [DOI] [PubMed]
  6. Nithinchandra, Kalluraya, B., Aamir, S. & Shabaraya, A. R. (2012). Eur. J. Med. Chem. 54, 597–604. [DOI] [PubMed]
  7. Nithinchandra, Kalluraya, B., Shobhitha, S. & Babu, M. (2013). J. Chem. Pharm. Res. 5, 307–313.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sherement, E. A., Tomanov, R. I., Trukhin, E. V. & Berestovitskaya, V. M. (2004). Russ. J. Org. Chem. 40, 594–595.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813029425/is5313sup1.cif

e-69-o1724-sup1.cif (31.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813029425/is5313Isup2.hkl

e-69-o1724-Isup2.hkl (92.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES