Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 10;69(Pt 9):m481. doi: 10.1107/S1600536813021478

Di­aqua­tetra­kis­(1H-imidazole-κN 3)magnesium dichloride

M Kayalvizhi a, G Vasuki a,*, Kamel Kaabi b, Cherif Ben Nasr b
PMCID: PMC3884374  PMID: 24426982

Abstract

In the title compound, [Mg(C3H3N2)4(H2O)2]Cl2, the MgII cation lies on a crystallographic inversion centre and is coordinated by two water mol­ecules and four N-atom donors from monodentate imidazole ligands, giving a slightly distorted octa­hedral stereochemistry. In the crystal, water O—H⋯Cl and imidazole N—H⋯Cl hydrogen bonds give rise to a three-dimensional structure.

Related literature  

For a similar structure, see: Reiss et al. (2011).graphic file with name e-69-0m481-scheme1.jpg

Experimental  

Crystal data  

  • [Mg(C3H3N2)4(H2O)2]Cl2

  • M r = 403.57

  • Monoclinic, Inline graphic

  • a = 12.3826 (6) Å

  • b = 11.0048 (4) Å

  • c = 14.4485 (6) Å

  • β = 107.037 (1)°

  • V = 1882.47 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.889, T max = 0.924

  • 8496 measured reflections

  • 1854 independent reflections

  • 1695 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.068

  • S = 1.05

  • 1854 reflections

  • 132 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813021478/zs2271sup1.cif

e-69-0m481-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813021478/zs2271Isup2.hkl

e-69-0m481-Isup2.hkl (91.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mg1—N1 2.2281 (10)
Mg1—N3 2.1611 (10)
Mg1—O1 2.0923 (9)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯Cl1i 0.84 (1) 2.30 (1) 3.1361 (9) 172 (2)
O1—H2W⋯Cl1 0.84 (1) 2.30 (1) 3.1337 (10) 176 (2)
N2—H2A⋯Cl1ii 0.89 (1) 2.47 (1) 3.3165 (12) 160 (2)
N4—H4A⋯Cl1iii 0.89 (1) 2.43 (1) 3.2585 (13) 155 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Sophisticated Analytical Instrument Facility, IIT-Madras, Chennai, for the data collection.

supplementary crystallographic information

1. Comment

In the title compound, [Mg(C3H3N2)4(H2O)2] . 2Cl, the MgII cation lies on a crystallographic inversion centre and is coordinated by two water molecules and four N-atom donors from monodentate imidazole ligands, (Fig. 1), giving a slightly distorted octahedral geometry (Table 1). In the crystal, O—H···Cl and N—H···Cl hydrogen bonds between both the aqua ligands and the imidazole ligands and the chloride counter-anions (Table 2) generate a three-dimensional structure (Fig. 2). These water–chloride hydrogen-bonding interactions are in the typical range as observed in the redetermined structure of diaquatetrakis(dimethylformamide-κO)magnesium dichloride (Reiss et al., 2011).

2. Experimental

A solution of MgCl2 (0.2 mmol) in water (6 ml) was added dropwise to a solution of imidazole (0.8 mmol) in ethanol. After stirring for 30 min, the mixture was filtered. Crystals suitable for X-ray analysis were obtained by evaporating the filtrate at room temperature (yield 56%).

3. Refinement

Carbon-bound H atoms were placed at calculated positions and treated as riding on the parent atom, with, C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The O-bound and N-bound H atoms were located in a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing atom numbering, with displacement ellipsoids drawn at the 40% probability level. For symmetry code (i): -x + 1/2, -y + 3/2, -z + 1.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed along the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

[Mg(C3H4N2)4(H2O)2]Cl2 F(000) = 840
Mr = 403.57 Dx = 1.424 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 8496 reflections
a = 12.3826 (6) Å θ = 2.1–26.0°
b = 11.0048 (4) Å µ = 0.40 mm1
c = 14.4485 (6) Å T = 296 K
β = 107.037 (1)° Block, colourless
V = 1882.47 (14) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 1854 independent reflections
Radiation source: fine-focus sealed tube 1695 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
ω and φ scan θmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −15→14
Tmin = 0.889, Tmax = 0.924 k = −13→13
8496 measured reflections l = −17→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0327P)2 + 1.0653P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
1854 reflections Δρmax = 0.17 e Å3
132 parameters Δρmin = −0.25 e Å3
4 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0093 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.29321 (12) 0.73665 (13) 0.29376 (10) 0.0376 (3)
H1 0.3423 0.6718 0.3154 0.045*
C2 0.19291 (13) 0.87405 (14) 0.19885 (10) 0.0440 (4)
H2 0.1594 0.9221 0.1451 0.053*
C3 0.17954 (11) 0.88354 (12) 0.28794 (9) 0.0366 (3)
H3 0.1340 0.9406 0.3059 0.044*
C4 0.01955 (12) 0.63009 (13) 0.37687 (10) 0.0393 (3)
H4 −0.0098 0.7052 0.3525 0.047*
C5 −0.03394 (12) 0.52348 (14) 0.35343 (11) 0.0462 (4)
H5 −0.1058 0.5111 0.3112 0.055*
C6 0.13086 (11) 0.49423 (12) 0.45568 (11) 0.0385 (3)
H6 0.1931 0.4549 0.4967 0.046*
N1 0.24289 (8) 0.79672 (9) 0.34828 (7) 0.0298 (2)
N2 0.26524 (11) 0.78024 (12) 0.20364 (8) 0.0434 (3)
N3 0.12407 (9) 0.61208 (9) 0.44212 (7) 0.0298 (2)
N4 0.03796 (11) 0.43755 (11) 0.40368 (10) 0.0429 (3)
O1 0.37963 (8) 0.62540 (8) 0.50646 (7) 0.0355 (2)
Mg1 0.2500 0.7500 0.5000 0.02385 (15)
Cl1 0.41012 (3) 0.35283 (3) 0.57173 (3) 0.04135 (14)
H1W 0.4370 (11) 0.6384 (16) 0.4884 (12) 0.057 (5)*
H2A 0.2880 (16) 0.7492 (16) 0.1556 (10) 0.069 (6)*
H2W 0.3849 (15) 0.5529 (10) 0.5253 (12) 0.056 (5)*
H4A 0.0289 (15) 0.3576 (9) 0.4011 (13) 0.058 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0447 (7) 0.0340 (7) 0.0385 (7) 0.0014 (6) 0.0188 (6) −0.0019 (6)
C2 0.0528 (8) 0.0486 (9) 0.0284 (7) −0.0021 (7) 0.0084 (6) 0.0050 (6)
C3 0.0413 (7) 0.0359 (7) 0.0336 (7) 0.0034 (6) 0.0125 (6) 0.0017 (6)
C4 0.0389 (7) 0.0341 (7) 0.0413 (8) −0.0016 (6) 0.0062 (6) 0.0048 (6)
C5 0.0416 (7) 0.0472 (9) 0.0460 (8) −0.0129 (7) 0.0071 (6) −0.0033 (7)
C6 0.0357 (7) 0.0278 (7) 0.0535 (8) 0.0005 (5) 0.0157 (6) 0.0041 (6)
N1 0.0356 (5) 0.0277 (5) 0.0288 (5) −0.0026 (4) 0.0138 (4) −0.0002 (4)
N2 0.0558 (7) 0.0484 (7) 0.0325 (6) −0.0074 (6) 0.0233 (5) −0.0088 (5)
N3 0.0326 (5) 0.0251 (5) 0.0337 (6) −0.0023 (4) 0.0130 (4) 0.0007 (4)
N4 0.0485 (7) 0.0261 (6) 0.0594 (8) −0.0110 (5) 0.0244 (6) −0.0065 (5)
O1 0.0360 (5) 0.0257 (5) 0.0523 (6) 0.0056 (4) 0.0248 (4) 0.0073 (4)
Mg1 0.0275 (3) 0.0196 (3) 0.0275 (3) −0.0003 (2) 0.0126 (2) 0.0008 (2)
Cl1 0.0432 (2) 0.0314 (2) 0.0584 (2) 0.00885 (13) 0.02879 (17) 0.01331 (14)

Geometric parameters (Å, º)

C1—N1 1.3166 (16) C6—N3 1.3107 (17)
C1—N2 1.3347 (18) C6—N4 1.3306 (19)
C1—H1 0.9300 C6—H6 0.9300
C2—C3 1.3491 (19) Mg1—N1 2.2281 (10)
C2—N2 1.355 (2) N2—H2A 0.890 (9)
C2—H2 0.9300 Mg1—N3 2.1611 (10)
C3—N1 1.3738 (17) N4—H4A 0.887 (9)
C3—H3 0.9300 Mg1—O1 2.0923 (9)
C4—C5 1.341 (2) O1—H1W 0.838 (9)
C4—N3 1.3741 (17) O1—H2W 0.839 (9)
C4—H4 0.9300 Mg1—O1i 2.0923 (9)
C5—N4 1.355 (2) Mg1—N3i 2.1612 (10)
C5—H5 0.9300 Mg1—N1i 2.2281 (10)
N1—C1—N2 111.72 (13) C6—N3—C4 104.57 (11)
N1—C1—H1 124.1 C6—N3—Mg1 129.03 (9)
N2—C1—H1 124.1 C4—N3—Mg1 126.30 (9)
C3—C2—N2 105.92 (12) C6—N4—C5 107.41 (12)
C3—C2—H2 127.0 C6—N4—H4A 124.5 (12)
N2—C2—H2 127.0 C5—N4—H4A 128.0 (12)
C2—C3—N1 110.17 (12) Mg1—O1—H1W 125.7 (12)
C2—C3—H3 124.9 Mg1—O1—H2W 128.6 (12)
N1—C3—H3 124.9 H1W—O1—H2W 105.6 (17)
C5—C4—N3 110.08 (13) O1i—Mg1—O1 179.999 (1)
C5—C4—H4 125.0 O1i—Mg1—N3 89.19 (4)
N3—C4—H4 125.0 O1—Mg1—N3 90.81 (4)
C4—C5—N4 106.08 (12) O1i—Mg1—N3i 90.81 (4)
C4—C5—H5 127.0 O1—Mg1—N3i 89.19 (4)
N4—C5—H5 127.0 N3—Mg1—N3i 180.0
N3—C6—N4 111.86 (13) O1i—Mg1—N1i 90.22 (4)
N3—C6—H6 124.1 O1—Mg1—N1i 89.78 (4)
N4—C6—H6 124.1 N3—Mg1—N1i 91.99 (4)
C1—N1—C3 104.59 (11) N3i—Mg1—N1i 88.01 (4)
C1—N1—Mg1 125.70 (9) O1i—Mg1—N1 89.78 (4)
C3—N1—Mg1 129.45 (8) O1—Mg1—N1 90.22 (4)
C1—N2—C2 107.60 (12) N3—Mg1—N1 88.01 (4)
C1—N2—H2A 124.8 (12) N3i—Mg1—N1 91.99 (4)
C2—N2—H2A 127.5 (12) N1i—Mg1—N1 180.0
N2—C2—C3—N1 0.07 (16) C4—N3—Mg1—O1i 33.40 (11)
N3—C4—C5—N4 −0.57 (17) C6—N3—Mg1—O1 29.08 (12)
N2—C1—N1—C3 −0.09 (15) C4—N3—Mg1—O1 −146.60 (11)
N2—C1—N1—Mg1 174.52 (9) C6—N3—Mg1—N1i −60.73 (12)
C2—C3—N1—C1 0.01 (15) C4—N3—Mg1—N1i 123.59 (11)
C2—C3—N1—Mg1 −174.32 (9) C6—N3—Mg1—N1 119.27 (12)
N1—C1—N2—C2 0.13 (17) C4—N3—Mg1—N1 −56.41 (11)
C3—C2—N2—C1 −0.12 (16) C1—N1—Mg1—O1i −168.58 (11)
N4—C6—N3—C4 −0.12 (16) C3—N1—Mg1—O1i 4.66 (11)
N4—C6—N3—Mg1 −176.52 (9) C1—N1—Mg1—O1 11.42 (11)
C5—C4—N3—C6 0.43 (16) C3—N1—Mg1—O1 −175.34 (11)
C5—C4—N3—Mg1 176.96 (10) C1—N1—Mg1—N3 −79.38 (11)
N3—C6—N4—C5 −0.23 (17) C3—N1—Mg1—N3 93.85 (11)
C4—C5—N4—C6 0.48 (17) C1—N1—Mg1—N3i 100.62 (11)
C6—N3—Mg1—O1i −150.92 (12) C3—N1—Mg1—N3i −86.14 (11)

Symmetry code: (i) −x+1/2, −y+3/2, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1W···Cl1ii 0.84 (1) 2.30 (1) 3.1361 (9) 172 (2)
O1—H2W···Cl1 0.84 (1) 2.30 (1) 3.1337 (10) 176 (2)
N2—H2A···Cl1iii 0.89 (1) 2.47 (1) 3.3165 (12) 160 (2)
N4—H4A···Cl1iv 0.89 (1) 2.43 (1) 3.2585 (13) 155 (2)

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x, −y+1, z−1/2; (iv) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2271).

References

  1. Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Reiss, G. J., Boldog, I. & Janiak, C. (2011). Acta Cryst. E67, m1109–m1110. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813021478/zs2271sup1.cif

e-69-0m481-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813021478/zs2271Isup2.hkl

e-69-0m481-Isup2.hkl (91.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES