Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 31;69(Pt 9):o1489. doi: 10.1107/S1600536813023751

1-[2-(3-Meth­oxy­phen­yl)eth­yl]pyrroli­dine-2,5-dione

Zeenat Fatima a, Jayaraman Selvakumar b, Thothadri Srinivasan a, Devadasan Velmurugan a,*
PMCID: PMC3884377  PMID: 24427107

Abstract

In the title compound, C13H15NO3, the pyrrolidine ring makes a dihedral angle of 4.69 (9)° with the 3-meth­oxy-phenyl ring. In the crystal, hydrogen-bonded chains running along [101] are generated by connecting neighbouring mol­ecules via C—H⋯O hydrogen bonds. Parallel chains are linked by further C—H⋯O hydrogen bonds, forming a three-dimensional structure.

Related literature  

For the bioactivity of pyrrolidine-2,5-dione derivatives, see: Obniska et al. (2012); Ha et al. (2011); Kaminski et al. (2011). For related structures, see: Khorasani & Fernandes (2012); Mayes et al. (2008).graphic file with name e-69-o1489-scheme1.jpg

Experimental  

Crystal data  

  • C13H15NO3

  • M r = 233.26

  • Monoclinic, Inline graphic

  • a = 12.8719 (9) Å

  • b = 12.5878 (8) Å

  • c = 7.4523 (5) Å

  • β = 90.831 (3)°

  • V = 1207.36 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.40 × 0.35 × 0.20 mm

Data collection  

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.964, T max = 0.982

  • 5692 measured reflections

  • 2615 independent reflections

  • 2328 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.097

  • S = 1.02

  • 2615 reflections

  • 156 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813023751/su2640sup1.cif

e-69-o1489-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813023751/su2640Isup2.hkl

e-69-o1489-Isup2.hkl (125.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813023751/su2640Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O3i 0.96 2.54 3.418 (3) 151
C8—H8B⋯O1ii 0.97 2.54 3.469 (2) 161
C12—H12A⋯O2iii 0.97 2.57 3.456 (3) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We are grateful to Dr C. R. Ramanathan, Department of Chemistry, Pondicherry University for support of this research. The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. ZF and DV acknowledge the UGC (SAP–CAS) for departmental facilities. ZF also thanks the UGC for a meritorious fellowship.

supplementary crystallographic information

1. Comment

Pyrrolidine-2,5-dione derivates are an important class of heterocylic compounds with essential applications in medicinal chemistry and organic synthesis. They exhibit numerous bioactivities, for example anticonvulsant (Obniska et al., 2012; Kaminski et al., 2011) and tyrosinase inhibitory activity (Ha et al., 2011). In the field of organic chemistry derivates, like 1-bromopyrrolidine-2,5-dione (NBS), are the most commonly used halogenation reagents. In view of the different applications of this class of compounds, we have synthesized the title derivative and report herein on its crystal structure.

In the title compound, Fig. 1, the pyrrolidine ring (N1/C10—C13) makes a dihedral angle of 4.69 (9)° with the benzene ring (C2—C7).

In the crystal, hydrogen-bonded chains running along [101] are generated by connecting neighbouring molecules via C—H···O hydrogen bonds (Table 1 and Fig. 2). Parallel chains are linked by further C—H···O hydrogen bonds forming a three-dimensional structure (Table 1 and Fig. 2).

2. Experimental

3-methoxy phenethylamine (1.51 g, 10 mmol) and succinic anhydride (1.2 g, 12 mmol) were stirred at room temperature in dry ethyl acetate for 30 min. Ethyl acetate was removed under reduced pressure, and the resulting residue was dissolved in toluene. Acetyl chloride (5 equiv) was then added and the mixture refluxed for 1 h. The reaction mixture was washed with aqueous Na2CO3 and dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure followed by silica gel column purification using hexane ethyl acetate (30:70) as eluent to afford the title compound as a colourless solid. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution of the title compound in ethanol at room temperature.

3. Refinement

The H atoms were placed in calculated positions and treated as riding atoms: C—H = 0.93 Å to 0.97 Å, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the c axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

Crystal data

C13H15NO3 F(000) = 496
Mr = 233.26 Dx = 1.283 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 2615 reflections
a = 12.8719 (9) Å θ = 2.3–28.4°
b = 12.5878 (8) Å µ = 0.09 mm1
c = 7.4523 (5) Å T = 293 K
β = 90.831 (3)° Block, colourless
V = 1207.36 (14) Å3 0.40 × 0.35 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer 2615 independent reflections
Radiation source: fine-focus sealed tube 2328 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
ω and φ scans θmax = 28.4°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −17→17
Tmin = 0.964, Tmax = 0.982 k = −15→16
5692 measured reflections l = −9→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.1677P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
2615 reflections Δρmax = 0.12 e Å3
156 parameters Δρmin = −0.16 e Å3
2 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0149 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.95763 (19) 0.43725 (18) 1.0655 (3) 0.0832 (6)
H1A 0.9806 0.4494 0.9452 0.125*
H1B 1.0043 0.4716 1.1487 0.125*
H1C 0.8890 0.4657 1.0789 0.125*
C2 0.90109 (11) 0.26275 (13) 0.9852 (2) 0.0485 (3)
C3 0.91325 (14) 0.15484 (15) 1.0131 (2) 0.0633 (4)
H3 0.9582 0.1300 1.1025 0.076*
C4 0.85800 (17) 0.08476 (14) 0.9071 (3) 0.0695 (5)
H4 0.8652 0.0121 0.9261 0.083*
C5 0.79213 (14) 0.12096 (13) 0.7730 (2) 0.0609 (4)
H5 0.7552 0.0726 0.7026 0.073*
C6 0.78069 (11) 0.22844 (13) 0.74273 (18) 0.0472 (3)
C7 0.83541 (11) 0.29992 (12) 0.85029 (19) 0.0450 (3)
H7 0.8280 0.3726 0.8317 0.054*
C8 0.70939 (12) 0.26805 (15) 0.5942 (2) 0.0564 (4)
H8A 0.6893 0.3408 0.6193 0.068*
H8B 0.6468 0.2251 0.5907 0.068*
C9 0.76102 (13) 0.26346 (15) 0.4132 (2) 0.0565 (4)
H9A 0.8161 0.3159 0.4094 0.068*
H9B 0.7920 0.1939 0.3972 0.068*
C10 0.63151 (13) 0.20320 (14) 0.1850 (2) 0.0573 (4)
C11 0.56115 (15) 0.25110 (19) 0.0462 (3) 0.0737 (6)
H11A 0.4891 0.2352 0.0712 0.088*
H11B 0.5774 0.2247 −0.0724 0.088*
C12 0.58151 (16) 0.36961 (19) 0.0592 (3) 0.0777 (6)
H12A 0.6066 0.3969 −0.0540 0.093*
H12B 0.5185 0.4073 0.0896 0.093*
C13 0.66250 (15) 0.38270 (13) 0.2046 (2) 0.0609 (4)
N1 0.68700 (9) 0.28356 (10) 0.26754 (15) 0.0475 (3)
O1 0.95629 (10) 0.32628 (11) 1.10049 (17) 0.0690 (3)
O2 0.70187 (17) 0.46337 (11) 0.2584 (2) 0.0967 (5)
O3 0.64082 (15) 0.11124 (11) 0.2245 (2) 0.0906 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0866 (14) 0.0787 (13) 0.0843 (14) −0.0200 (11) −0.0031 (11) −0.0264 (11)
C2 0.0412 (7) 0.0623 (8) 0.0421 (7) 0.0004 (7) 0.0000 (6) −0.0038 (7)
C3 0.0629 (10) 0.0683 (10) 0.0585 (10) 0.0098 (8) −0.0075 (8) 0.0138 (8)
C4 0.0825 (12) 0.0484 (9) 0.0773 (12) 0.0001 (8) −0.0032 (10) 0.0119 (8)
C5 0.0636 (10) 0.0534 (9) 0.0658 (11) −0.0099 (7) −0.0003 (8) −0.0074 (7)
C6 0.0405 (7) 0.0586 (8) 0.0425 (7) −0.0008 (6) 0.0019 (6) −0.0018 (6)
C7 0.0429 (7) 0.0486 (7) 0.0437 (7) 0.0016 (6) 0.0014 (6) −0.0002 (6)
C8 0.0444 (7) 0.0769 (10) 0.0478 (8) 0.0049 (7) −0.0064 (6) −0.0044 (8)
C9 0.0434 (7) 0.0776 (11) 0.0483 (8) 0.0044 (7) −0.0084 (6) 0.0034 (8)
C10 0.0570 (9) 0.0649 (11) 0.0502 (8) −0.0133 (7) 0.0058 (7) −0.0053 (7)
C11 0.0508 (9) 0.1229 (19) 0.0473 (8) −0.0130 (10) −0.0052 (7) 0.0007 (10)
C12 0.0687 (12) 0.1047 (16) 0.0596 (10) 0.0264 (11) 0.0000 (9) 0.0204 (10)
C13 0.0717 (11) 0.0584 (9) 0.0529 (10) 0.0049 (8) 0.0093 (8) 0.0062 (7)
N1 0.0448 (6) 0.0538 (7) 0.0439 (7) −0.0009 (5) −0.0041 (5) −0.0004 (5)
O1 0.0654 (7) 0.0838 (9) 0.0573 (7) −0.0055 (6) −0.0185 (5) −0.0104 (6)
O2 0.1454 (15) 0.0532 (7) 0.0917 (10) −0.0170 (9) 0.0081 (10) −0.0025 (7)
O3 0.1184 (13) 0.0569 (8) 0.0962 (12) −0.0184 (7) −0.0033 (10) −0.0054 (7)

Geometric parameters (Å, º)

C1—O1 1.421 (3) C8—H8A 0.9700
C1—H1A 0.9600 C8—H8B 0.9700
C1—H1B 0.9600 C9—N1 1.4562 (19)
C1—H1C 0.9600 C9—H9A 0.9700
C2—O1 1.3654 (19) C9—H9B 0.9700
C2—C3 1.383 (2) C10—O3 1.200 (2)
C2—C7 1.386 (2) C10—N1 1.378 (2)
C3—C4 1.376 (3) C10—C11 1.492 (3)
C3—H3 0.9300 C11—C12 1.517 (3)
C4—C5 1.379 (3) C11—H11A 0.9700
C4—H4 0.9300 C11—H11B 0.9700
C5—C6 1.379 (2) C12—C13 1.502 (3)
C5—H5 0.9300 C12—H12A 0.9700
C6—C7 1.390 (2) C12—H12B 0.9700
C6—C8 1.512 (2) C13—O2 1.201 (2)
C7—H7 0.9300 C13—N1 1.368 (2)
C8—C9 1.513 (2)
O1—C1—H1A 109.5 H8A—C8—H8B 107.9
O1—C1—H1B 109.5 N1—C9—C8 111.51 (13)
H1A—C1—H1B 109.5 N1—C9—H9A 109.3
O1—C1—H1C 109.5 C8—C9—H9A 109.3
H1A—C1—H1C 109.5 N1—C9—H9B 109.3
H1B—C1—H1C 109.5 C8—C9—H9B 109.3
O1—C2—C3 115.10 (14) H9A—C9—H9B 108.0
O1—C2—C7 124.41 (14) O3—C10—N1 123.31 (18)
C3—C2—C7 120.48 (14) O3—C10—C11 128.13 (18)
C4—C3—C2 119.16 (15) N1—C10—C11 108.56 (15)
C4—C3—H3 120.4 C10—C11—C12 104.51 (15)
C2—C3—H3 120.4 C10—C11—H11A 110.8
C3—C4—C5 120.78 (16) C12—C11—H11A 110.9
C3—C4—H4 119.6 C10—C11—H11B 110.8
C5—C4—H4 119.6 C12—C11—H11B 110.9
C4—C5—C6 120.39 (16) H11A—C11—H11B 108.9
C4—C5—H5 119.8 C13—C12—C11 105.73 (15)
C6—C5—H5 119.8 C13—C12—H12A 110.6
C5—C6—C7 119.25 (14) C11—C12—H12A 110.6
C5—C6—C8 120.36 (14) C13—C12—H12B 110.6
C7—C6—C8 120.39 (15) C11—C12—H12B 110.6
C2—C7—C6 119.91 (14) H12A—C12—H12B 108.7
C2—C7—H7 120.0 O2—C13—N1 124.25 (18)
C6—C7—H7 120.0 O2—C13—C12 128.20 (19)
C6—C8—C9 111.72 (12) N1—C13—C12 107.54 (16)
C6—C8—H8A 109.3 C13—N1—C10 113.65 (14)
C9—C8—H8A 109.3 C13—N1—C9 123.99 (15)
C6—C8—H8B 109.3 C10—N1—C9 122.31 (15)
C9—C8—H8B 109.3 C2—O1—C1 117.90 (14)
O1—C2—C3—C4 177.92 (17) C10—C11—C12—C13 0.1 (2)
C7—C2—C3—C4 −1.1 (3) C11—C12—C13—O2 179.5 (2)
C2—C3—C4—C5 0.8 (3) C11—C12—C13—N1 0.5 (2)
C3—C4—C5—C6 0.1 (3) O2—C13—N1—C10 −179.95 (18)
C4—C5—C6—C7 −0.7 (3) C12—C13—N1—C10 −0.94 (19)
C4—C5—C6—C8 179.27 (16) O2—C13—N1—C9 2.7 (3)
O1—C2—C7—C6 −178.43 (15) C12—C13—N1—C9 −178.33 (15)
C3—C2—C7—C6 0.4 (2) O3—C10—N1—C13 −178.52 (19)
C5—C6—C7—C2 0.5 (2) C11—C10—N1—C13 1.00 (19)
C8—C6—C7—C2 −179.55 (14) O3—C10—N1—C9 −1.1 (2)
C5—C6—C8—C9 −80.96 (19) C11—C10—N1—C9 178.43 (16)
C7—C6—C8—C9 99.05 (18) C8—C9—N1—C13 87.3 (2)
C6—C8—C9—N1 169.92 (15) C8—C9—N1—C10 −89.88 (19)
O3—C10—C11—C12 178.89 (19) C3—C2—O1—C1 172.27 (18)
N1—C10—C11—C12 −0.6 (2) C7—C2—O1—C1 −8.8 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1B···O3i 0.96 2.54 3.418 (3) 151
C8—H8B···O1ii 0.97 2.54 3.469 (2) 161
C12—H12A···O2iii 0.97 2.57 3.456 (3) 152

Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x−1/2, −y+1/2, z−1/2; (iii) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2640).

References

  1. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, U. S. A.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Ha, Y. M., Kim, J., Parkl, Y. J., Park, D., Choi, Y. J., Kim, J. M., Chung, K. W., Han, Y. K., Park, J. Y., Lee, J. Y., Moon, H. R. & Chung, H. Y. (2011). Med. Chem. Commun. 2, 542–549.
  4. Kaminski, K., Rzepka, S. & Obniska, J. (2011). Bioorg. Med. Chem. Lett. 21, 5800–5803. [DOI] [PubMed]
  5. Khorasani, S. & Fernandes, M. A. (2012). Acta Cryst. E68, o1503. [DOI] [PMC free article] [PubMed]
  6. Mayes, B. A., McGarry, P., Moussa, A. & Watkin, D. J. (2008). Acta Cryst. E64, o1355. [DOI] [PMC free article] [PubMed]
  7. Obniska, J., Rzepka, S. & Kamin’ ski, K. (2012). Bioorg. Med. Chem. 20, 4872–4880. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813023751/su2640sup1.cif

e-69-o1489-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813023751/su2640Isup2.hkl

e-69-o1489-Isup2.hkl (125.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813023751/su2640Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES