Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 10;69(Pt 9):m485. doi: 10.1107/S1600536813021454

1-(2,3-Di­methyl­phen­yl)piperazine-1,4-diium tetra­chlorido­cuprate(II)

Safa Ben Mabrouk a, Iness Ameur a, Sonia Abid a,*, Mohamed Rzaigui a
PMCID: PMC3884381  PMID: 24426985

Abstract

In the title salt, (C12H20N2)[CuCl4], the CuII atom occupies a general position in a flattened tetra­hedral environment by Cl ligands, characterized by Cl—Cu—Cl angles of 134.04 (3) and 137.18 (4)°. The six-membered piperazinediium ring adopts a chair conformation. The organic cation and inorganic anion inter­act through N—H⋯Cl and C—H⋯Cl hydrogen bonds, forming a three-dimensional network.

Related literature  

For general background to the properties of tetra­halido­cuprate(II) compounds, see: Solomon et al. (1992); Kim et al. (2001); Panja et al. (2005); Lee et al. (2004); Turnbull et al. (2005); Shapiro et al. (2007). For general background to the geometry of the tetra­halidocuprate(II) species, see: Halvorson et al. (1990). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-69-0m485-scheme1.jpg

Experimental  

Crystal data  

  • (C12H20N2)[CuCl4]

  • M r = 397.64

  • Triclinic, Inline graphic

  • a = 7.1986 (15) Å

  • b = 7.7611 (11) Å

  • c = 15.635 (4) Å

  • α = 77.035 (16)°

  • β = 79.311 (19)°

  • γ = 81.845 (14)°

  • V = 831.9 (3) Å3

  • Z = 2

  • Ag Kα radiation

  • λ = 0.56087 Å

  • μ = 1.01 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection  

  • Nonius MACH-3 diffractometer

  • Absorption correction: part of the refinement model (ΔF) (Walker & Stuart, 1983) T min = 0.786, T max = 0.863

  • 9228 measured reflections

  • 8079 independent reflections

  • 4600 reflections with I > 2σ(I)

  • R int = 0.020

  • 2 standard reflections every 120 min intensity decay: 7%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.129

  • S = 1.00

  • 8079 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813021454/ru2053sup1.cif

e-69-0m485-sup1.cif (18.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813021454/ru2053Isup2.hkl

e-69-0m485-Isup2.hkl (387.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl3i 0.91 2.48 3.1610 (18) 132
N2—H2A⋯Cl2ii 0.90 2.35 3.144 (2) 147
N2—H2B⋯Cl1iii 0.90 2.30 3.152 (2) 159
N2—H2B⋯Cl2iii 0.90 2.80 3.271 (2) 114
C2—H2D⋯Cl1i 0.97 2.74 3.666 (3) 159
C3—H3B⋯Cl1iv 0.97 2.78 3.585 (2) 141
C4—H4B⋯Cl4ii 0.97 2.66 3.616 (2) 168
C6—H6⋯Cl4ii 0.93 2.71 3.572 (2) 154
C12—H12C⋯Cl3i 0.96 2.71 3.568 (3) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the Tunisian Ministry of HEScR.

supplementary crystallographic information

1. Comment

Cuprates are chemical compounds in which copper forms complex anions where the overall charge is negative. In such complexes, the ligands are generally cyanides, hydroxides or halides. Due to their important properties, the cuprates still constitute a research axis in many laboratories (Solomon et al., 1992; Kim et al., 2001; Lee et al., 2004; Panja et al., 2005; Turnbull et al., 2005; Shapiro et al., 2007). We report here synthesis and crystal structure of a new cuprate, (C12H20N2)[CuCl4] (I). Crystal structure of (I) gives another illustration of this type of material. The asymmetric unit within the unit cell is build of one tetrahedral [CuCl4]2- anion and one 1-(2,3-dimethylphenyl)piperazine-1,4-diium cation (Fig. 1). The copper(II) anion exhibits a coordination geometry intermediate between tetrahedral and square–planar. However we can tell that the configuration adopted by this anion is a flattened tetrahedral where the two trans bond angles, Cl(1)—Cu—Cl(4) = 137.18 (4)° and Cl(2)—Cu—Cl(3) = 134.04 (3)°, are very near to the minimum of the potential curve describing the angular deformation of isolated [CuCl4]2- anion (θ min = 135.95°) (Halvorson et al., 1990). The phenyl ring (C5—C10) of 1-(2,3-dimethylphenyl)piperazine-1,4-diium is planar with an r.m.s. deviation of 0.0111. The 6-membered piperazinium ring adopts a chair conformation, with puckering parameters (Cremer & Pople, 1975) QT = 0.581 (2) Å, θ = 5.3 (2)° and φ = 328 (3)°. The dihedral angle between the piperazine (N1–N2/C1–C4) ring and the benzene (C5–C10) ring is 65.41 (7) °. In the crystal, neighboring molecules are linked by N—H···Cl and C—H···Cl hydrogen bonds, forming a three-dimensional network (Figure 2).

2. Experimental

To an aqueous solution (10 ml) of HCl (0.2M) was added 1-(2,3-dimethylphenyl)piperazine (0.19 g, 1 mmol). To the obtained solution, a blue aqueous solution (10 ml) of CuCl2.6H2O (0.170 g, 1 mmol) was added slowly with stirring. The resulting solution was submitted to a slow evaporation at room temperature until the formation of yellow crystals of the title compound.

3. Refinement

H atoms were placed in their calculated positions and then refined using the riding model with atom-H lengths of 0.93 Å (CH), 0.97 Å (CH2), 0.96 Å (CH3), 0.91 Å (NH) and 0.90 Å (NH3). Uiso were set to 1.2 (CH, CH2), 1.5 (CH3) or 1.20 (NH) times Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with 50% probability displacement ellipsoids. Dashed lines indicate C—H···Cl.

Fig. 2.

Fig. 2.

Perspective view of the three-dimensional network of (I), showing the intermolecular hydrogen bonds (dashed solid lines) interactions.

Crystal data

(C12H20N2)[CuCl4] Z = 2
Mr = 397.64 F(000) = 406
Triclinic, P1 Dx = 1.588 Mg m3
Hall symbol: -P 1 Ag Kα radiation, λ = 0.56087 Å
a = 7.1986 (15) Å Cell parameters from 25 reflections
b = 7.7611 (11) Å θ = 9.0–10.7°
c = 15.635 (4) Å µ = 1.01 mm1
α = 77.035 (16)° T = 293 K
β = 79.311 (19)° Prism, yellow
γ = 81.845 (14)° 0.25 × 0.20 × 0.15 mm
V = 831.9 (3) Å3

Data collection

Nonius MACH-3 diffractometer 4600 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.020
Graphite monochromator θmax = 28.0°, θmin = 2.1°
non–profiled ω scans h = −12→11
Absorption correction: part of the refinement model (ΔF) (Walker & Stuart, 1983) k = −12→12
Tmin = 0.786, Tmax = 0.863 l = −26→2
9228 measured reflections 2 standard reflections every 120 min
8079 independent reflections intensity decay: 7%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.0435P] where P = (Fo2 + 2Fc2)/3
8079 reflections (Δ/σ)max < 0.001
172 parameters Δρmax = 0.87 e Å3
0 restraints Δρmin = −0.68 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.28980 (4) 0.31174 (4) 0.166012 (19) 0.03259 (8)
Cl3 0.56150 (8) 0.21183 (7) 0.22023 (4) 0.03825 (13)
Cl2 0.20878 (9) 0.53035 (8) 0.05406 (4) 0.04152 (14)
Cl1 0.27357 (11) 0.07141 (8) 0.10849 (5) 0.04717 (16)
Cl4 0.13588 (11) 0.43179 (10) 0.27862 (5) 0.05472 (19)
N1 0.6470 (2) 0.7932 (2) 0.25996 (11) 0.0256 (3)
H1 0.5611 0.8853 0.2411 0.031*
C5 0.6198 (3) 0.7639 (3) 0.35900 (14) 0.0287 (4)
C10 0.4411 (3) 0.8116 (3) 0.40409 (15) 0.0307 (4)
C4 0.8414 (3) 0.8412 (3) 0.21292 (15) 0.0298 (4)
H4A 0.8718 0.9435 0.2317 0.036*
H4B 0.9365 0.7426 0.2283 0.036*
N2 0.7973 (3) 0.7293 (3) 0.08360 (13) 0.0342 (4)
H2A 0.8894 0.6389 0.0928 0.041*
H2B 0.7938 0.7594 0.0248 0.041*
C9 0.4213 (3) 0.7840 (3) 0.49714 (16) 0.0342 (5)
C1 0.6039 (3) 0.6330 (3) 0.23052 (15) 0.0337 (4)
H1A 0.4785 0.6019 0.2598 0.040*
H1B 0.6956 0.5328 0.2479 0.040*
C2 0.6112 (3) 0.6693 (3) 0.13116 (16) 0.0359 (5)
H2C 0.5914 0.5621 0.1135 0.043*
H2D 0.5098 0.7603 0.1146 0.043*
C6 0.7721 (3) 0.6850 (3) 0.40122 (16) 0.0365 (5)
H6 0.8884 0.6514 0.3688 0.044*
C3 0.8434 (3) 0.8834 (3) 0.11406 (15) 0.0337 (4)
H3A 0.7513 0.9847 0.0988 0.040*
H3B 0.9680 0.9148 0.0839 0.040*
C7 0.7467 (4) 0.6570 (4) 0.49343 (17) 0.0436 (6)
H7 0.8462 0.6033 0.5238 0.052*
C8 0.5736 (4) 0.7093 (3) 0.53963 (17) 0.0420 (5)
H8 0.5590 0.6937 0.6012 0.050*
C11 0.2342 (4) 0.8368 (4) 0.55160 (19) 0.0506 (7)
H70 0.2526 0.8319 0.6114 0.076*
H72 0.1441 0.7564 0.5520 0.076*
H71 0.1871 0.9556 0.5260 0.076*
C12 0.2729 (3) 0.8866 (4) 0.35844 (18) 0.0450 (6)
H12A 0.1645 0.9099 0.4019 0.067*
H12B 0.2459 0.8026 0.3269 0.067*
H12C 0.3005 0.9953 0.3173 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.03341 (14) 0.03084 (14) 0.03585 (16) 0.00481 (10) −0.01015 (11) −0.01292 (11)
Cl3 0.0377 (3) 0.0295 (2) 0.0513 (3) 0.0060 (2) −0.0183 (2) −0.0128 (2)
Cl2 0.0450 (3) 0.0395 (3) 0.0405 (3) 0.0100 (2) −0.0159 (3) −0.0105 (2)
Cl1 0.0676 (4) 0.0333 (3) 0.0480 (4) −0.0068 (3) −0.0224 (3) −0.0121 (3)
Cl4 0.0545 (4) 0.0622 (4) 0.0416 (3) 0.0228 (3) −0.0035 (3) −0.0199 (3)
N1 0.0264 (8) 0.0238 (7) 0.0260 (8) 0.0000 (6) −0.0036 (6) −0.0058 (6)
C5 0.0346 (10) 0.0263 (9) 0.0254 (9) −0.0014 (7) −0.0033 (8) −0.0081 (7)
C10 0.0313 (10) 0.0303 (10) 0.0301 (10) −0.0023 (8) −0.0025 (8) −0.0078 (8)
C4 0.0278 (9) 0.0309 (10) 0.0312 (10) −0.0033 (7) −0.0045 (8) −0.0072 (8)
N2 0.0353 (9) 0.0381 (10) 0.0304 (9) 0.0012 (7) −0.0043 (8) −0.0129 (8)
C9 0.0373 (11) 0.0330 (10) 0.0309 (11) −0.0076 (9) 0.0033 (9) −0.0082 (9)
C1 0.0394 (11) 0.0300 (10) 0.0345 (11) −0.0097 (8) −0.0031 (9) −0.0109 (9)
C2 0.0376 (11) 0.0412 (12) 0.0325 (11) −0.0069 (9) −0.0060 (9) −0.0130 (9)
C6 0.0361 (11) 0.0398 (12) 0.0335 (11) 0.0076 (9) −0.0078 (9) −0.0123 (9)
C3 0.0345 (11) 0.0351 (11) 0.0314 (11) −0.0086 (9) −0.0004 (9) −0.0072 (9)
C7 0.0475 (14) 0.0492 (14) 0.0334 (12) 0.0070 (11) −0.0133 (11) −0.0090 (11)
C8 0.0550 (15) 0.0419 (13) 0.0290 (11) −0.0022 (11) −0.0065 (10) −0.0092 (10)
C11 0.0481 (15) 0.0613 (17) 0.0385 (14) −0.0070 (13) 0.0094 (12) −0.0145 (13)
C12 0.0295 (11) 0.0605 (16) 0.0396 (13) −0.0013 (11) −0.0021 (10) −0.0040 (12)

Geometric parameters (Å, º)

Cu1—Cl4 2.2170 (9) C9—C11 1.510 (3)
Cu1—Cl3 2.2439 (8) C1—C2 1.508 (3)
Cu1—Cl2 2.2467 (8) C1—H1A 0.9700
Cu1—Cl1 2.2704 (7) C1—H1B 0.9700
N1—C5 1.493 (3) C2—H2C 0.9700
N1—C1 1.507 (3) C2—H2D 0.9700
N1—C4 1.511 (3) C6—C7 1.390 (3)
N1—H1 0.9100 C6—H6 0.9300
C5—C6 1.382 (3) C3—H3A 0.9700
C5—C10 1.391 (3) C3—H3B 0.9700
C10—C9 1.405 (3) C7—C8 1.376 (4)
C10—C12 1.499 (3) C7—H7 0.9300
C4—C3 1.504 (3) C8—H8 0.9300
C4—H4A 0.9700 C11—H70 0.9600
C4—H4B 0.9700 C11—H72 0.9600
N2—C3 1.481 (3) C11—H71 0.9600
N2—C2 1.488 (3) C12—H12A 0.9600
N2—H2A 0.9000 C12—H12B 0.9600
N2—H2B 0.9000 C12—H12C 0.9600
C9—C8 1.377 (4)
Cl4—Cu1—Cl3 97.87 (3) N1—C1—H1B 109.4
Cl4—Cu1—Cl2 98.37 (3) C2—C1—H1B 109.4
Cl3—Cu1—Cl2 134.04 (3) H1A—C1—H1B 108.0
Cl4—Cu1—Cl1 137.18 (4) N2—C2—C1 111.22 (19)
Cl3—Cu1—Cl1 96.67 (3) N2—C2—H2C 109.4
Cl2—Cu1—Cl1 99.83 (3) C1—C2—H2C 109.4
C5—N1—C1 111.00 (16) N2—C2—H2D 109.4
C5—N1—C4 115.08 (16) C1—C2—H2D 109.4
C1—N1—C4 108.77 (16) H2C—C2—H2D 108.0
C5—N1—H1 107.2 C5—C6—C7 118.2 (2)
C1—N1—H1 107.2 C5—C6—H6 120.9
C4—N1—H1 107.2 C7—C6—H6 120.9
C6—C5—C10 123.4 (2) N2—C3—C4 110.92 (18)
C6—C5—N1 118.13 (19) N2—C3—H3A 109.5
C10—C5—N1 118.40 (19) C4—C3—H3A 109.5
C5—C10—C9 116.8 (2) N2—C3—H3B 109.5
C5—C10—C12 123.3 (2) C4—C3—H3B 109.5
C9—C10—C12 119.9 (2) H3A—C3—H3B 108.0
C3—C4—N1 109.47 (17) C8—C7—C6 119.7 (2)
C3—C4—H4A 109.8 C8—C7—H7 120.1
N1—C4—H4A 109.8 C6—C7—H7 120.1
C3—C4—H4B 109.8 C7—C8—C9 121.7 (2)
N1—C4—H4B 109.8 C7—C8—H8 119.1
H4A—C4—H4B 108.2 C9—C8—H8 119.1
C3—N2—C2 111.79 (17) C9—C11—H70 109.5
C3—N2—H2A 109.3 C9—C11—H72 109.5
C2—N2—H2A 109.3 H70—C11—H72 109.5
C3—N2—H2B 109.3 C9—C11—H71 109.5
C2—N2—H2B 109.3 H70—C11—H71 109.5
H2A—N2—H2B 107.9 H72—C11—H71 109.5
C8—C9—C10 120.1 (2) C10—C12—H12A 109.5
C8—C9—C11 119.2 (2) C10—C12—H12B 109.5
C10—C9—C11 120.6 (2) H12A—C12—H12B 109.5
N1—C1—C2 111.01 (18) C10—C12—H12C 109.5
N1—C1—H1A 109.4 H12A—C12—H12C 109.5
C2—C1—H1A 109.4 H12B—C12—H12C 109.5
C1—N1—C5—C6 88.3 (2) C12—C10—C9—C11 −2.8 (4)
C4—N1—C5—C6 −35.8 (3) C5—N1—C1—C2 174.05 (18)
C1—N1—C5—C10 −89.5 (2) C4—N1—C1—C2 −58.4 (2)
C4—N1—C5—C10 146.48 (19) C3—N2—C2—C1 −53.9 (3)
C6—C5—C10—C9 3.1 (3) N1—C1—C2—N2 55.3 (3)
N1—C5—C10—C9 −179.34 (19) C10—C5—C6—C7 −2.1 (4)
C6—C5—C10—C12 −176.0 (2) N1—C5—C6—C7 −179.7 (2)
N1—C5—C10—C12 1.6 (3) C2—N2—C3—C4 56.3 (2)
C5—N1—C4—C3 −174.74 (17) N1—C4—C3—N2 −59.4 (2)
C1—N1—C4—C3 60.0 (2) C5—C6—C7—C8 −0.5 (4)
C5—C10—C9—C8 −1.4 (3) C6—C7—C8—C9 2.1 (4)
C12—C10—C9—C8 177.7 (2) C10—C9—C8—C7 −1.1 (4)
C5—C10—C9—C11 178.2 (2) C11—C9—C8—C7 179.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl3i 0.91 2.48 3.1610 (18) 132
N2—H2A···Cl2ii 0.90 2.35 3.144 (2) 147
N2—H2B···Cl1iii 0.90 2.30 3.152 (2) 159
N2—H2B···Cl2iii 0.90 2.80 3.271 (2) 114
C2—H2D···Cl1i 0.97 2.74 3.666 (3) 159
C3—H3B···Cl1iv 0.97 2.78 3.585 (2) 141
C4—H4B···Cl4ii 0.97 2.66 3.616 (2) 168
C6—H6···Cl4ii 0.93 2.71 3.572 (2) 154
C12—H12C···Cl3i 0.96 2.71 3.568 (3) 149

Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) −x+1, −y+1, −z; (iv) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RU2053).

References

  1. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  2. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Halvorson, K. E., Patterson, C. & Willett, R. D. (1990). Acta Cryst. B46, 508–519.
  5. Harms, K. & Wocadlo, S. (1996). XCAD4 University of Marburg, Germany.
  6. Kim, Y. J., Kim, S. O., Kim, Y. I. & Choi, S. N. (2001). Inorg. Chem. 40, 4481–4484. [DOI] [PubMed]
  7. Lee, Y. K., Park, S. M., Kang, S. K., Kim, Y. I. & Choi, S. N. (2004). Bull. Korean Chem. Soc. 25, 823–828.
  8. Panja, A., Goswami, S., Shaikh, N., Roy, P., Manassero, M., Butcher, R. J. & Banerjee, P. (2005). Polyhedron, 24, 2921–2932.
  9. Shapiro, A., Landee, C. P., Turnbull, M. M., Jornet, J., Deumal, M., Novoa, J. J., Robb, M. A. & Lewis, W. (2007). J. Am. Chem. Soc. 129, 952–959. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Solomon, E. I., Baldwin, M. J. & Lowery, M. D. (1992). Chem. Rev. 92, 521–542.
  12. Turnbull, M. M., Landee, C. P. & Wells, B. M. (2005). Coord. Chem. Rev. 249, 2567–2576.
  13. Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813021454/ru2053sup1.cif

e-69-0m485-sup1.cif (18.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813021454/ru2053Isup2.hkl

e-69-0m485-Isup2.hkl (387.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES