Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 21;69(Pt 9):o1458–o1459. doi: 10.1107/S1600536813022319

8-Hy­droxy­quinolin-1-ium hydrogen sulfate monohydrate

Maamar Damous a, George Dénès b, Sofiane Bouacida a,c,*, Meriem Hamlaoui a, Hocine Merazig a, Jean-Claude Daran d
PMCID: PMC3884397  PMID: 24427083

Abstract

In the crystal structure of the title salt hydrate, C9H8NO+·HSO4 ·H2O, the quinoline N—H atoms are hydrogen bonded to the bis­ulfate anions. The bis­ulfate anions and water mol­ecules are linked together by O—H⋯O hydrogen-bonding inter­actions. The cations and anions form separate layers alternating along the c axis, which are linked by N—H⋯O and O—H⋯O hydrogen bonds into a two-dimensional network parallel to (100). Further O—H⋯O contacts connect these layers, forming a three-dimensional network, in which two R 4 4(12) rings and C 2 2(13) infinite chains can be identified.

Related literature  

For background to and the biological activity of quinoline derivatives, see: Sasaki et al. (1998); Reux et al. (2009); Morimoto et al. (1991); Markees et al. (1970). For related structures, see: Loh et al. (2010a ,b ). For a description of the Cambridge Structural Database, see: Allen, (2002).graphic file with name e-69-o1458-scheme1.jpg

Experimental  

Crystal data  

  • C9H8NO+·HSO4 ·H2O

  • M r = 261.25

  • Triclinic, Inline graphic

  • a = 6.5536 (4) Å

  • b = 8.0600 (5) Å

  • c = 11.3369 (6) Å

  • α = 100.068 (5)°

  • β = 106.344 (4)°

  • γ = 105.712 (5)°

  • V = 532.35 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 180 K

  • 0.43 × 0.16 × 0.08 mm

Data collection  

  • Agilent Xcalibur (Sapphire1) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.874, T max = 0.975

  • 10891 measured reflections

  • 2171 independent reflections

  • 2000 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.079

  • S = 1.05

  • 2171 reflections

  • 163 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813022319/hg5339sup1.cif

e-69-o1458-sup1.cif (22KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813022319/hg5339Isup2.hkl

e-69-o1458-Isup2.hkl (104.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813022319/hg5339Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O14 0.88 2.00 2.7690 (18) 145
O1W—H1W⋯O11i 0.85 (1) 1.89 (1) 2.7369 (17) 178 (1)
O1W—H2W⋯O14ii 0.85 (1) 2.03 (1) 2.8818 (19) 175 (1)
O9—H9⋯O13iii 0.84 1.81 2.6470 (16) 174
O12—H12⋯O1W 0.84 1.72 2.5529 (17) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, Algeria and Laboratoire de Chimie de Coordination Toulouse, France. Thanks are due to the Ministére de l’Enseignement Supérieur et de la Recherche Scientifique - Algérie (via the PNR project) for financial support.

supplementary crystallographic information

1. Comment

Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Loh et al., 2010a,b). Syntheses of the quinoline derivatives were discussed earlier (Sasaki et al., 1998; Reux et al., 2009). Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991) and biologically active compounds (Markees et al., 1970). Herein we report the synthesis and crystal structure of 8-hydroxy-quinolin-1-ium hydrogen sulfate monohydrate (I). The molecular structure of (I), and the atomic numbering used, is illustrated in Fig. 1. The asymmetric unit of (I) consists of consists of one 8-hydroxy-quinolin-1-ium cation, one hydrogen sulfate anion and one water molecule. One proton is transferred from the hydroxyl group of sulfuric acid to the atom N1 of 8-hydroxy-quinoline during the crystallization, resulting in the formation of salt. All bond distances and angles are within the ranges of accepted values (CSD, Allen, 2002).

In the crystal structure, cationic and anionic layers alternate along the c axis and are linked by intermolecular N—H···O and O—H···O hydrogen bonds resulting in a two-dimensional network parallel to (100) (Table 1; Fig.2). Further O—H···O contacts connect these layers, forming a three-dimensional network in which R44(12) rings and C22(13) infinite chains are generated.

Perhaps the most interesting aspect of the structure results from the hydrogen bonding between the bisulfate anions and the solvent water molecule. This results in the formation of a ladder motif that runs parallel to the a axis (Fig. 3). Each bisulfate ion serves as a hydrogen bond donor to one water molecule and a hydrogen bond acceptor from a second water molecule forming the rails of the ladder, of form C22(6). The rungs are formed via a second water-donor/bisulfate acceptor pair, which generates rings within the ladder structure (two rungs and two rail sections in each ring), R44(12). There are two chemically different rings formed in this case since one involves rail sections with water molecules serving as the hydrogen bond donor and the other involves the bisulfate ion serving as the hydrogen bond donor.

2. Experimental

Single crystals of the compound C9H7NO+. HSO-4. H2O were grown as follows: 1 mmol of the copper sulfate pentahydrate CuSO4. 5H2O; 1 mmol of 8-hydroxy-quinoline and 1 mmol of sulfuric acid H2SO4 were mixed together in a minimum amount of distilled water. The clear solutions were stirred for 15 min and allowed to stand at room temperature. After a few days, Yellow crystals were formed. The product was filtered off, washed with a small amount of distilled water and was carefully isolated under polarizing microscope for analysis by X-ray diffraction.

3. Refinement

Hydrogen atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C, O and N) with C—H= 0.95 Å, N—H= 0.88 Å and O—H= 0.84 Å and Uiso(H)=1.2Ueq(C or N); Uiso(H)=1.5Ueq(O). Exept for H1W and H2W atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

(Farrugia, 2012) The molecule structure of the title Compound with the atomic labelling scheme·Displacement are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

(Brandenburg & Berndt, 2001) A diagram of the layered crystal packing in (I), viewed down the a axis showing hydrogen bond as dashed line.

Fig. 3.

Fig. 3.

(Brandenburg & Berndt, 2001) Hydrogen bond connections as dashed line between hydrogenesulfate and water molecule building chain along the a axis.

Crystal data

C9H8NO+·HSO4·H2O Z = 2
Mr = 261.25 F(000) = 272
Triclinic, P1 Dx = 1.63 Mg m3
a = 6.5536 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.0600 (5) Å Cell parameters from 8303 reflections
c = 11.3369 (6) Å θ = 3.3–28.4°
α = 100.068 (5)° µ = 0.32 mm1
β = 106.344 (4)° T = 180 K
γ = 105.712 (5)° Box, yellow
V = 532.35 (5) Å3 0.43 × 0.16 × 0.08 mm

Data collection

Agilent Xcalibur (Sapphire1) diffractometer 2171 independent reflections
Radiation source: fine-focus sealed tube 2000 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 8.2632 pixels mm-1 θmax = 26.4°, θmin = 3.3°
ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −10→10
Tmin = 0.874, Tmax = 0.975 l = −14→14
10891 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.3301P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2171 reflections Δρmax = 0.41 e Å3
163 parameters Δρmin = −0.39 e Å3
3 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.064 (4)

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent Technologies, 2011)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.0574 (3) −0.1138 (2) 0.22102 (15) 0.0278 (3)
H2 0.0132 −0.0941 0.1388 0.033*
C3 0.0242 (3) −0.2869 (2) 0.23249 (16) 0.0322 (4)
H3 −0.0426 −0.3858 0.1584 0.039*
C4 0.0881 (3) −0.3137 (2) 0.35064 (17) 0.0295 (4)
H4 0.0666 −0.432 0.3587 0.035*
C5 0.1857 (2) −0.1681 (2) 0.46135 (15) 0.0227 (3)
C6 0.2554 (3) −0.1860 (2) 0.58640 (16) 0.0284 (3)
H6 0.2366 −0.3013 0.6001 0.034*
C7 0.3500 (3) −0.0372 (2) 0.68755 (15) 0.0286 (4)
H7 0.3962 −0.0503 0.7717 0.034*
C8 0.3810 (2) 0.1351 (2) 0.67071 (14) 0.0248 (3)
H8 0.4469 0.2363 0.7432 0.03*
C9 0.3169 (2) 0.15841 (19) 0.55040 (14) 0.0204 (3)
C10 0.2174 (2) 0.00521 (19) 0.44474 (13) 0.0193 (3)
N1 0.1504 (2) 0.02392 (17) 0.32431 (11) 0.0213 (3)
H1 0.1697 0.1324 0.3146 0.026*
O1W 0.6635 (2) 0.23721 (17) 0.01309 (13) 0.0362 (3)
H1W 0.686 (4) 0.329 (2) −0.015 (2) 0.054*
H2W 0.788 (2) 0.246 (3) 0.0684 (18) 0.054*
O9 0.34231 (19) 0.31692 (14) 0.52328 (10) 0.0270 (3)
H9 0.402 0.3998 0.5915 0.04*
O11 0.2516 (2) 0.46432 (17) 0.07413 (12) 0.0396 (3)
O12 0.30658 (19) 0.17896 (15) 0.07153 (11) 0.0303 (3)
H12 0.4287 0.2071 0.0572 0.045*
O13 0.4983 (2) 0.42607 (17) 0.26039 (11) 0.0384 (3)
O14 0.0966 (2) 0.27484 (17) 0.19066 (13) 0.0371 (3)
S1 0.28858 (6) 0.34687 (5) 0.15279 (3) 0.02286 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0232 (7) 0.0338 (8) 0.0216 (7) 0.0084 (6) 0.0056 (6) 0.0013 (6)
C3 0.0266 (8) 0.0275 (8) 0.0324 (9) 0.0050 (6) 0.0078 (7) −0.0056 (7)
C4 0.0244 (8) 0.0212 (7) 0.0424 (10) 0.0075 (6) 0.0133 (7) 0.0051 (7)
C5 0.0172 (7) 0.0231 (7) 0.0309 (8) 0.0085 (6) 0.0107 (6) 0.0089 (6)
C6 0.0255 (8) 0.0303 (8) 0.0385 (9) 0.0140 (6) 0.0141 (7) 0.0193 (7)
C7 0.0239 (8) 0.0431 (9) 0.0263 (8) 0.0161 (7) 0.0101 (6) 0.0177 (7)
C8 0.0197 (7) 0.0319 (8) 0.0204 (7) 0.0078 (6) 0.0060 (6) 0.0044 (6)
C9 0.0157 (7) 0.0225 (7) 0.0231 (7) 0.0065 (5) 0.0070 (5) 0.0055 (6)
C10 0.0146 (6) 0.0227 (7) 0.0212 (7) 0.0067 (5) 0.0066 (5) 0.0059 (6)
N1 0.0197 (6) 0.0226 (6) 0.0208 (6) 0.0073 (5) 0.0061 (5) 0.0055 (5)
O1W 0.0411 (7) 0.0315 (7) 0.0434 (8) 0.0157 (6) 0.0188 (6) 0.0159 (6)
O9 0.0332 (6) 0.0193 (5) 0.0230 (5) 0.0053 (4) 0.0067 (5) 0.0033 (4)
O11 0.0560 (8) 0.0384 (7) 0.0367 (7) 0.0252 (6) 0.0170 (6) 0.0241 (6)
O12 0.0311 (6) 0.0242 (6) 0.0311 (6) 0.0096 (5) 0.0086 (5) −0.0001 (5)
O13 0.0405 (7) 0.0353 (7) 0.0282 (6) 0.0176 (6) −0.0021 (5) −0.0028 (5)
O14 0.0411 (7) 0.0367 (7) 0.0459 (7) 0.0182 (6) 0.0242 (6) 0.0187 (6)
S1 0.0289 (2) 0.0205 (2) 0.0203 (2) 0.01131 (15) 0.00646 (15) 0.00689 (14)

Geometric parameters (Å, º)

C2—N1 1.324 (2) C8—H8 0.95
C2—C3 1.387 (2) C9—O9 1.3437 (18)
C2—H2 0.95 C9—C10 1.411 (2)
C3—C4 1.360 (3) C10—N1 1.3602 (19)
C3—H3 0.95 N1—H1 0.88
C4—C5 1.410 (2) O1W—H1W 0.849 (9)
C4—H4 0.95 O1W—H2W 0.853 (9)
C5—C6 1.408 (2) O9—H9 0.84
C5—C10 1.410 (2) O11—S1 1.4310 (12)
C6—C7 1.362 (2) O12—S1 1.5511 (11)
C6—H6 0.95 O12—H12 0.84
C7—C8 1.402 (2) O13—S1 1.4467 (12)
C7—H7 0.95 O14—S1 1.4491 (12)
C8—C9 1.372 (2)
N1—C2—C3 120.19 (15) C7—C8—H8 119.7
N1—C2—H2 119.9 O9—C9—C8 125.44 (14)
C3—C2—H2 119.9 O9—C9—C10 116.15 (13)
C4—C3—C2 119.46 (15) C8—C9—C10 118.41 (14)
C4—C3—H3 120.3 N1—C10—C5 118.99 (13)
C2—C3—H3 120.3 N1—C10—C9 119.78 (13)
C3—C4—C5 120.84 (15) C5—C10—C9 121.23 (14)
C3—C4—H4 119.6 C2—N1—C10 122.93 (14)
C5—C4—H4 119.6 C2—N1—H1 118.5
C6—C5—C10 118.55 (14) C10—N1—H1 118.5
C6—C5—C4 123.86 (15) H1W—O1W—H2W 108.3 (17)
C10—C5—C4 117.58 (14) C9—O9—H9 109.5
C7—C6—C5 119.63 (15) S1—O12—H12 109.5
C7—C6—H6 120.2 O11—S1—O13 112.76 (8)
C5—C6—H6 120.2 O11—S1—O14 112.44 (8)
C6—C7—C8 121.68 (14) O13—S1—O14 112.45 (8)
C6—C7—H7 119.2 O11—S1—O12 108.35 (7)
C8—C7—H7 119.2 O13—S1—O12 106.44 (7)
C9—C8—C7 120.50 (14) O14—S1—O12 103.72 (7)
C9—C8—H8 119.7
N1—C2—C3—C4 0.0 (2) C4—C5—C10—N1 0.9 (2)
C2—C3—C4—C5 0.5 (2) C6—C5—C10—C9 0.1 (2)
C3—C4—C5—C6 179.92 (14) C4—C5—C10—C9 −179.10 (13)
C3—C4—C5—C10 −0.9 (2) O9—C9—C10—N1 −1.08 (19)
C10—C5—C6—C7 0.3 (2) C8—C9—C10—N1 179.47 (12)
C4—C5—C6—C7 179.42 (14) O9—C9—C10—C5 178.89 (12)
C5—C6—C7—C8 −0.2 (2) C8—C9—C10—C5 −0.6 (2)
C6—C7—C8—C9 −0.3 (2) C3—C2—N1—C10 0.0 (2)
C7—C8—C9—O9 −178.76 (14) C5—C10—N1—C2 −0.4 (2)
C7—C8—C9—C10 0.6 (2) C9—C10—N1—C2 179.54 (13)
C6—C5—C10—N1 −179.92 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O14 0.88 2.00 2.7690 (18) 145
O1W—H1W···O11i 0.85 (1) 1.89 (1) 2.7369 (17) 178 (1)
O1W—H2W···O14ii 0.85 (1) 2.03 (1) 2.8818 (19) 175 (1)
O9—H9···O13iii 0.84 1.81 2.6470 (16) 174
O12—H12···O1W 0.84 1.72 2.5529 (17) 172

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5339).

References

  1. Agilent, (2011). CrysAlis PRO Agilent Technologies Ltd, Yarnton, England.
  2. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  3. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2357. [DOI] [PMC free article] [PubMed]
  7. Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2396. [DOI] [PMC free article] [PubMed]
  8. Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326. [DOI] [PubMed]
  9. Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.
  10. Reux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441–4447. [DOI] [PubMed]
  11. Sasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851–3856.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813022319/hg5339sup1.cif

e-69-o1458-sup1.cif (22KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813022319/hg5339Isup2.hkl

e-69-o1458-Isup2.hkl (104.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813022319/hg5339Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES