Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 7;69(Pt 9):o1391. doi: 10.1107/S1600536813019521

2-Isopropyl-2-(6-meth­oxy-1,3-benzo­thia­zol-2-yl)-5,5-dimethyl-1,3-thia­zolidin-4-one

Hendryk Würfel a, Helmar Görls b, Dieter Weiss a, Rainer Beckert a,*
PMCID: PMC3884408  PMID: 24427032

Abstract

The title compound, C16H20N2O2S2, crystallizes with two enanti­omers (A and B) in the asymmetric unit. The most noticeable difference between these two mol­ecules is the relative orientation of the benzo­thia­zole rings, with S—C—C—S torsion angles of −19.4 (2) (mol­ecule A) and 100.6 (1)° (mol­ecule B). The amide structure of the thia­zolidinone rings leads to inter­molecular hydrogen-bonded dimers of the R and S enanti­omers.

Related literature  

For chemi- and bioluminescence of firefly luciferin and related compounds, see: Jung et al. (1975); Naumov et al. (2009); White et al. (1979); Branchini et al. (2002). For structure modifications of firefly luciferin, see: Meroni et al. (2009); McCutcheon et al. (2012); Branchini et al. (2012); Würfel (2012). Luciferin and related structures are widely used in clinical and biochemical applications, see: Schäffer (1987); Kricka (1988); Josel et al. (1994); Shinde et al. (2006). All solvents were purified and dried according to Armarego & Chai (2009).graphic file with name e-69-o1391-scheme1.jpg

Experimental  

Crystal data  

  • C16H20N2O2S2

  • M r = 336.46

  • Triclinic, Inline graphic

  • a = 11.3755 (3) Å

  • b = 11.9028 (3) Å

  • c = 12.5261 (3) Å

  • α = 86.122 (1)°

  • β = 85.949 (1)°

  • γ = 89.206 (1)°

  • V = 1687.86 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 133 K

  • 0.06 × 0.05 × 0.05 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 10948 measured reflections

  • 7580 independent reflections

  • 6827 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.088

  • S = 1.08

  • 7580 reflections

  • 557 parameters

  • All H-atom parameters refined

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813019521/fk2073sup1.cif

e-69-o1391-sup1.cif (36.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813019521/fk2073Isup2.hkl

e-69-o1391-Isup2.hkl (370.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813019521/fk2073Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H1NA⋯O2B 0.81 (3) 2.15 (3) 2.9429 (19) 168 (2)
N2B—H1NB⋯O2A 0.77 (2) 2.04 (2) 2.802 (2) 173 (2)

Acknowledgments

The authors thank Roche Diagnostics GmbH, Penzberg, for financial support.

supplementary crystallographic information

1. Comment

Luciferin, especially the class which is produced by the firefly Photinus pyralis, is of particular interest because of its bioluminescence and chemoluminescence properties (Naumov et al., 2009). Dimethyloxyluciferin, one prominent derivative which is known for its ability to emit visible light in the red region (Branchini et al., 2002), was further investigated in our group focusing on the modification on the 4-position of the thiazoline ring (Würfel, 2012). An extension of the chromophore should give rise to new dimethylluciferin derivatives with altered absorption and emission properties. The nucleophilic attack of isopropylmagnesium bromide with dimethyloxyluciferin should lead to a tertiary alcohol at the 4-position of the thiazoline ring. Subsequent dehydration reaction should form a 2-propylene substructure, thus representing a carbon extended luciferin derivative.

However, the dimethyloxyluciferin derivative did not react in this expected manner. The strong carbon nucleophile exclusively attacked the 2-position of the thiazoline ring leading, after aqueous work-up, to a racemic mixture of R,S-thiazolidines. C8 became an sp3 carbon (C8A—C1A = 1.524 (2) Å and C8B—C1B = 1.520 (2) Å), which results in the loss of the conjugation with the benzothiazole parent moiety. The thiazolidine rings are almost coplanar, with a dihedral angle of 10.32 (4)°, due to a dimer formation of the (R)- and (S)- enantiomers in the asymmetric unit. The dimer structure results from two hydrogen bonds between the amide moieties of the thiazolidine rings [N(A)—H···O(B) = 2.942 (2) Å and N(B)—H···O(A) = 2.802 (2) Å] from the two symmetry-independent molecules A and B. The most noticeable difference between these two molecules is the relative orientation of the benzothiazole moiety due to rotation around the C1—C8 bond. The resulting torsion angles S1—C1—C8—S2 are -19.4 (2)° (molecule A) and 100.6 (1)° (molecule B).

2. Experimental

All chemicals were synthesized according to given literature or purchased from commercial sources. All solvents were purified and dried according to Armarego & Chai (2009). 215 mg (8.85 mmol) of magnesium turnings in 20 ml of dry diethylether and a catalytic amount of iodine are placed in a 100 ml two-necked round-bottomed flask. 0.9 ml (9.60 mmol) 2-bromopropane was added. After a slight exothermic reaction, the mixture was refluxed for 1 h then cooled to room temperature. To that mixture 1.73 g (5.90 mmol) of 2-(6-methoxybenzothiazol-2-yl)-5,5-dimethylthiazolin-4-one in 20 ml of dry THF was added. The mixture was refluxed for 2 h, cooled to room temperature and hydrolysed with 10 g of ice and 10 ml of saturated NH4Cl solution, then extracted with ethyl acetate (3 × 20 ml). The extract was dried over MgSO4, filtered and distilled off. The remaining solid was purified by crystallization from n-heptane/ethyl acetate, yield: 70%, 1.43 g (4.25 mmol). 2-(6-Methoxybenzothiazol-2-yl)-5,5-dimethylthiazolin-4-one was synthesized from 2-cyano-6-methoxybenzothiazole and ethyl 2-mercapto-2-methylpropanoate according to Würfel (2012).

Light-yellow single crystals were obtained by dissolving the title compound at reflux temperature in n-heptane/ethyl acetate and, after cooling to room temperature, left alone in a closed vessel for several days. Elemental analysis, calculated for C16H20N2O2S2: C 57.11, H 5.99, N 8.33, S 19.06%; found: C 57.25, H 6.06, N 8.46, S 19.14.

3. Refinement

All H atoms were located from difference Fourier maps and freely refined.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with symmetry-independent molecules A and B; anisotropic displacement ellipsoids are shown at the 40% probability level.

Fig. 2.

Fig. 2.

Crystal packing, viewed along a axis, showing hydrogen bonding between molecules A and B drawn as dotted lines.

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C16H20N2O2S2 V = 1687.86 (7) Å3
Mr = 336.46 Z = 4
Triclinic, P1 F(000) = 712
a = 11.3755 (3) Å Dx = 1.324 Mg m3
b = 11.9028 (3) Å Mo Kα radiation, λ = 0.71073 Å
c = 12.5261 (3) Å µ = 0.32 mm1
α = 86.122 (1)° T = 133 K
β = 85.949 (1)° Prism, colourless
γ = 89.206 (1)° 0.06 × 0.05 × 0.05 mm

Data collection

Nonius KappaCCD diffractometer 6827 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.019
Graphite monochromator θmax = 27.5°, θmin = 2.8°
φ and ω scans h = −14→14
10948 measured reflections k = −15→15
7580 independent reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: difference Fourier map
wR(F2) = 0.088 All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0132P)2 + 1.7538P] where P = (Fo2 + 2Fc2)/3
7580 reflections (Δ/σ)max = 0.001
557 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.28415 (4) 0.06581 (4) 0.60425 (3) 0.02114 (10)
S2A 0.45070 (4) 0.03006 (3) 0.78944 (3) 0.02050 (10)
O1A −0.05418 (13) 0.14410 (12) 0.34536 (12) 0.0325 (3)
O2A 0.61551 (12) 0.30544 (11) 0.70129 (13) 0.0343 (3)
N1A 0.16890 (13) 0.21511 (12) 0.71336 (12) 0.0214 (3)
N2A 0.43175 (13) 0.24918 (12) 0.76326 (12) 0.0195 (3)
H1NA 0.406 (2) 0.313 (2) 0.762 (2) 0.040 (7)*
C1A 0.26141 (16) 0.15101 (14) 0.71262 (13) 0.0189 (3)
C2A 0.15831 (15) 0.12492 (14) 0.55230 (14) 0.0203 (3)
C3A 0.10820 (17) 0.10210 (15) 0.45770 (15) 0.0241 (4)
H3A 0.1418 (18) 0.0513 (17) 0.4144 (16) 0.020 (5)*
C4A 0.00488 (17) 0.15792 (15) 0.43471 (15) 0.0257 (4)
C5A −0.04879 (18) 0.23308 (17) 0.50568 (17) 0.0301 (4)
H5A −0.123 (2) 0.269 (2) 0.489 (2) 0.043 (7)*
C6A 0.00094 (18) 0.25527 (16) 0.59920 (17) 0.0281 (4)
H6A −0.038 (2) 0.306 (2) 0.649 (2) 0.041 (7)*
C7A 0.10746 (16) 0.20125 (15) 0.62280 (14) 0.0212 (3)
C8A 0.35339 (15) 0.15453 (14) 0.79510 (13) 0.0188 (3)
C9A 0.54381 (16) 0.23130 (15) 0.73098 (15) 0.0227 (4)
C10A 0.58045 (16) 0.10721 (14) 0.73250 (15) 0.0216 (3)
C11A −0.0003 (2) 0.07124 (18) 0.27038 (17) 0.0338 (5)
H11C 0.010 (2) −0.006 (2) 0.3025 (19) 0.035 (6)*
H11B −0.055 (2) 0.0699 (19) 0.2129 (19) 0.036 (6)*
H11A 0.076 (2) 0.101 (2) 0.2387 (19) 0.034 (6)*
C12A 0.68389 (19) 0.08635 (19) 0.8030 (2) 0.0349 (5)
H12C 0.750 (2) 0.131 (2) 0.773 (2) 0.040 (7)*
H12B 0.660 (2) 0.106 (2) 0.877 (2) 0.042 (7)*
H12A 0.704 (2) 0.006 (2) 0.804 (2) 0.042 (7)*
C13A 0.6148 (2) 0.07723 (17) 0.61714 (17) 0.0301 (4)
H13C 0.684 (2) 0.125 (2) 0.5885 (19) 0.040 (7)*
H13A 0.551 (2) 0.094 (2) 0.5703 (19) 0.035 (6)*
H13B 0.633 (2) −0.002 (2) 0.6156 (19) 0.037 (6)*
C14A 0.29315 (17) 0.16514 (15) 0.90837 (14) 0.0223 (4)
H14A 0.2439 (19) 0.2328 (18) 0.9028 (17) 0.026 (5)*
C15A 0.3822 (2) 0.18177 (19) 0.99156 (16) 0.0297 (4)
H15C 0.433 (2) 0.117 (2) 0.9995 (18) 0.033 (6)*
H15B 0.431 (2) 0.249 (2) 0.9696 (19) 0.039 (7)*
H15A 0.342 (2) 0.194 (2) 1.062 (2) 0.038 (6)*
C16A 0.2143 (2) 0.06453 (18) 0.94200 (16) 0.0307 (4)
H16C 0.177 (2) 0.0724 (19) 1.0127 (19) 0.032 (6)*
H16B 0.149 (2) 0.059 (2) 0.893 (2) 0.050 (7)*
H16A 0.260 (2) −0.005 (2) 0.944 (2) 0.043 (7)*
S1B 0.68977 (4) 0.53085 (4) 0.91211 (3) 0.02025 (10)
S2B 0.57063 (4) 0.75544 (3) 0.70861 (4) 0.02149 (10)
O1B 0.99279 (11) 0.56823 (11) 1.20270 (10) 0.0247 (3)
O2B 0.37416 (11) 0.49130 (10) 0.75042 (10) 0.0225 (3)
N1B 0.82852 (13) 0.67362 (12) 0.80061 (12) 0.0206 (3)
N2B 0.56709 (13) 0.53534 (12) 0.71793 (11) 0.0173 (3)
H1NB 0.5860 (18) 0.4740 (19) 0.7118 (16) 0.019 (5)*
C1B 0.73372 (15) 0.61588 (14) 0.79671 (13) 0.0180 (3)
C2B 0.81058 (15) 0.57803 (14) 0.97259 (14) 0.0195 (3)
C3B 0.84486 (16) 0.54766 (15) 1.07565 (14) 0.0206 (3)
H3B 0.7977 (18) 0.4988 (18) 1.1222 (17) 0.023 (5)*
C4B 0.94756 (15) 0.59370 (15) 1.10563 (14) 0.0209 (3)
C5B 1.01291 (16) 0.66994 (15) 1.03522 (15) 0.0239 (4)
H5B 1.083 (2) 0.7007 (18) 1.0588 (17) 0.028 (6)*
C6B 0.97773 (16) 0.69941 (16) 0.93396 (15) 0.0243 (4)
H6B 1.0225 (18) 0.7450 (17) 0.8859 (16) 0.020 (5)*
C7B 0.87480 (15) 0.65293 (14) 0.90076 (14) 0.0191 (3)
C8B 0.65620 (15) 0.62225 (13) 0.70244 (13) 0.0173 (3)
C9B 0.42712 (16) 0.68758 (14) 0.73455 (15) 0.0226 (4)
C10B 0.45328 (15) 0.56124 (14) 0.73509 (13) 0.0183 (3)
C11B 0.92381 (18) 0.49480 (19) 1.27642 (16) 0.0289 (4)
H11F 0.965 (2) 0.4887 (19) 1.3430 (19) 0.034 (6)*
H11E 0.920 (2) 0.420 (2) 1.2484 (19) 0.034 (6)*
H11D 0.843 (2) 0.528 (2) 1.2912 (19) 0.039 (6)*
C12B 0.3464 (2) 0.72068 (19) 0.6450 (2) 0.0376 (5)
H12F 0.272 (2) 0.682 (2) 0.661 (2) 0.047 (7)*
H12E 0.329 (2) 0.801 (2) 0.644 (2) 0.044 (7)*
H12D 0.384 (2) 0.701 (2) 0.573 (2) 0.046 (7)*
C13B 0.3702 (2) 0.71541 (18) 0.8440 (2) 0.0364 (5)
H13F 0.295 (2) 0.681 (2) 0.8564 (19) 0.039 (7)*
H13E 0.422 (2) 0.687 (2) 0.903 (2) 0.046 (7)*
H13D 0.359 (2) 0.795 (2) 0.844 (2) 0.050 (7)*
C14B 0.73008 (16) 0.61496 (15) 0.59462 (14) 0.0205 (3)
H14B 0.7845 (18) 0.6783 (17) 0.5920 (16) 0.021 (5)*
C15B 0.65467 (19) 0.62882 (18) 0.49827 (16) 0.0279 (4)
H15F 0.593 (2) 0.569 (2) 0.5022 (18) 0.035 (6)*
H15E 0.615 (2) 0.702 (2) 0.4936 (19) 0.035 (6)*
H15D 0.704 (2) 0.624 (2) 0.434 (2) 0.038 (6)*
C16B 0.79781 (18) 0.50310 (17) 0.59283 (16) 0.0261 (4)
H16F 0.746 (2) 0.4405 (19) 0.5836 (17) 0.029 (6)*
H16E 0.837 (2) 0.4845 (19) 0.6607 (19) 0.033 (6)*
H16D 0.859 (2) 0.508 (2) 0.534 (2) 0.038 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0240 (2) 0.0204 (2) 0.0200 (2) 0.00335 (16) −0.00505 (16) −0.00566 (16)
S2A 0.0250 (2) 0.01400 (19) 0.0225 (2) 0.00315 (16) −0.00349 (16) −0.00055 (15)
O1A 0.0353 (8) 0.0318 (7) 0.0329 (8) −0.0037 (6) −0.0180 (6) −0.0034 (6)
O2A 0.0282 (7) 0.0191 (7) 0.0545 (10) −0.0009 (5) 0.0045 (7) −0.0028 (6)
N1A 0.0248 (8) 0.0202 (7) 0.0195 (7) 0.0025 (6) −0.0038 (6) −0.0021 (6)
N2A 0.0229 (7) 0.0121 (7) 0.0237 (8) 0.0027 (6) −0.0033 (6) −0.0015 (6)
C1A 0.0262 (9) 0.0146 (7) 0.0161 (8) −0.0006 (6) −0.0022 (6) −0.0005 (6)
C2A 0.0220 (8) 0.0180 (8) 0.0210 (8) −0.0013 (6) −0.0031 (7) 0.0006 (6)
C3A 0.0290 (9) 0.0201 (8) 0.0238 (9) −0.0032 (7) −0.0055 (7) −0.0031 (7)
C4A 0.0293 (10) 0.0221 (9) 0.0266 (9) −0.0058 (7) −0.0104 (8) 0.0007 (7)
C5A 0.0262 (10) 0.0258 (9) 0.0396 (11) 0.0020 (8) −0.0124 (8) −0.0016 (8)
C6A 0.0274 (10) 0.0247 (9) 0.0334 (10) 0.0049 (7) −0.0081 (8) −0.0061 (8)
C7A 0.0224 (8) 0.0197 (8) 0.0218 (8) 0.0005 (7) −0.0045 (7) −0.0008 (7)
C8A 0.0239 (8) 0.0143 (7) 0.0186 (8) 0.0020 (6) −0.0039 (7) −0.0023 (6)
C9A 0.0262 (9) 0.0173 (8) 0.0251 (9) 0.0013 (7) −0.0042 (7) −0.0018 (7)
C10A 0.0219 (8) 0.0168 (8) 0.0260 (9) 0.0028 (6) −0.0020 (7) −0.0009 (7)
C11A 0.0453 (13) 0.0294 (11) 0.0286 (10) −0.0082 (9) −0.0140 (9) −0.0025 (8)
C12A 0.0274 (10) 0.0323 (11) 0.0456 (13) 0.0035 (9) −0.0117 (9) 0.0026 (10)
C13A 0.0362 (11) 0.0226 (9) 0.0306 (10) 0.0021 (8) 0.0054 (9) −0.0031 (8)
C14A 0.0285 (9) 0.0222 (9) 0.0168 (8) 0.0050 (7) −0.0031 (7) −0.0040 (7)
C15A 0.0369 (11) 0.0333 (11) 0.0205 (9) 0.0062 (9) −0.0077 (8) −0.0082 (8)
C16A 0.0379 (11) 0.0327 (11) 0.0208 (9) −0.0032 (9) 0.0011 (8) 0.0000 (8)
S1B 0.0208 (2) 0.0223 (2) 0.0177 (2) −0.00328 (16) −0.00279 (16) 0.00074 (16)
S2B 0.0231 (2) 0.01373 (19) 0.0278 (2) −0.00026 (16) −0.00344 (17) −0.00067 (16)
O1B 0.0224 (6) 0.0331 (7) 0.0195 (6) 0.0026 (5) −0.0057 (5) −0.0036 (5)
O2B 0.0198 (6) 0.0185 (6) 0.0294 (7) −0.0011 (5) −0.0019 (5) −0.0028 (5)
N1B 0.0206 (7) 0.0194 (7) 0.0222 (7) −0.0011 (6) −0.0041 (6) −0.0018 (6)
N2B 0.0210 (7) 0.0107 (7) 0.0202 (7) −0.0003 (5) −0.0014 (6) −0.0015 (5)
C1B 0.0199 (8) 0.0170 (8) 0.0169 (8) 0.0014 (6) −0.0003 (6) −0.0013 (6)
C2B 0.0202 (8) 0.0187 (8) 0.0200 (8) 0.0018 (6) −0.0013 (6) −0.0046 (6)
C3B 0.0214 (8) 0.0229 (8) 0.0177 (8) 0.0020 (7) −0.0009 (7) −0.0032 (7)
C4B 0.0213 (8) 0.0234 (8) 0.0187 (8) 0.0063 (7) −0.0029 (7) −0.0058 (7)
C5B 0.0222 (9) 0.0232 (9) 0.0276 (9) −0.0007 (7) −0.0065 (7) −0.0047 (7)
C6B 0.0227 (9) 0.0233 (9) 0.0267 (9) −0.0037 (7) −0.0029 (7) 0.0008 (7)
C7B 0.0199 (8) 0.0183 (8) 0.0194 (8) 0.0020 (6) −0.0024 (6) −0.0036 (6)
C8B 0.0192 (8) 0.0147 (7) 0.0182 (8) −0.0011 (6) −0.0031 (6) −0.0006 (6)
C9B 0.0214 (8) 0.0159 (8) 0.0308 (10) 0.0014 (6) −0.0044 (7) −0.0010 (7)
C10B 0.0218 (8) 0.0167 (8) 0.0168 (8) −0.0004 (6) −0.0036 (6) −0.0027 (6)
C11B 0.0233 (9) 0.0436 (12) 0.0194 (9) 0.0020 (8) −0.0027 (7) 0.0003 (8)
C12B 0.0299 (11) 0.0242 (10) 0.0591 (15) 0.0004 (8) −0.0195 (10) 0.0114 (10)
C13B 0.0382 (12) 0.0220 (10) 0.0478 (14) −0.0031 (9) 0.0157 (10) −0.0122 (9)
C14B 0.0215 (8) 0.0215 (8) 0.0187 (8) −0.0050 (7) −0.0010 (7) −0.0009 (6)
C15B 0.0321 (10) 0.0329 (11) 0.0189 (9) −0.0026 (8) −0.0043 (8) −0.0002 (8)
C16B 0.0259 (9) 0.0276 (10) 0.0245 (9) 0.0017 (8) 0.0028 (8) −0.0049 (8)

Geometric parameters (Å, º)

S1A—C2A 1.7347 (18) S1B—C2B 1.7331 (18)
S1A—C1A 1.7513 (17) S1B—C1B 1.7544 (17)
S2A—C10A 1.8250 (18) S2B—C9B 1.8301 (18)
S2A—C8A 1.8393 (17) S2B—C8B 1.8521 (17)
O1A—C4A 1.366 (2) O1B—C4B 1.367 (2)
O1A—C11A 1.423 (3) O1B—C11B 1.428 (2)
O2A—C9A 1.231 (2) O2B—C10B 1.231 (2)
N1A—C1A 1.291 (2) N1B—C1B 1.292 (2)
N1A—C7A 1.394 (2) N1B—C7B 1.400 (2)
N2A—C9A 1.329 (2) N2B—C10B 1.333 (2)
N2A—C8A 1.463 (2) N2B—C8B 1.452 (2)
N2A—H1NA 0.81 (3) N2B—H1NB 0.77 (2)
C1A—C8A 1.524 (2) C1B—C8B 1.520 (2)
C2A—C3A 1.395 (2) C2B—C3B 1.398 (2)
C2A—C7A 1.401 (2) C2B—C7B 1.398 (2)
C3A—C4A 1.381 (3) C3B—C4B 1.383 (2)
C3A—H3A 0.90 (2) C3B—H3B 0.94 (2)
C4A—C5A 1.407 (3) C4B—C5B 1.404 (3)
C5A—C6A 1.379 (3) C5B—C6B 1.378 (3)
C5A—H5A 0.97 (3) C5B—H5B 0.95 (2)
C6A—C7A 1.404 (3) C6B—C7B 1.403 (2)
C6A—H6A 0.98 (3) C6B—H6B 0.91 (2)
C8A—C14A 1.544 (2) C8B—C14B 1.546 (2)
C9A—C10A 1.528 (2) C9B—C12B 1.527 (3)
C10A—C12A 1.528 (3) C9B—C10B 1.529 (2)
C10A—C13A 1.534 (3) C9B—C13B 1.529 (3)
C11A—H11C 0.98 (2) C11B—H11F 0.99 (2)
C11A—H11B 0.98 (2) C11B—H11E 0.99 (2)
C11A—H11A 0.99 (2) C11B—H11D 1.00 (3)
C12A—H12C 0.96 (3) C12B—H12F 0.97 (3)
C12A—H12B 0.99 (3) C12B—H12E 0.97 (3)
C12A—H12A 0.98 (3) C12B—H12D 1.01 (3)
C13A—H13C 1.01 (2) C13B—H13F 0.96 (3)
C13A—H13A 0.98 (2) C13B—H13E 1.01 (3)
C13A—H13B 0.96 (2) C13B—H13D 0.95 (3)
C14A—C16A 1.525 (3) C14B—C15B 1.528 (3)
C14A—C15A 1.528 (3) C14B—C16B 1.530 (3)
C14A—H14A 0.98 (2) C14B—H14B 0.98 (2)
C15A—H15C 0.96 (2) C15B—H15F 1.00 (2)
C15A—H15B 1.00 (3) C15B—H15E 0.97 (2)
C15A—H15A 0.98 (3) C15B—H15D 0.95 (3)
C16A—H16C 0.96 (2) C16B—H16F 0.97 (2)
C16A—H16B 1.00 (3) C16B—H16E 1.00 (2)
C16A—H16A 0.97 (3) C16B—H16D 0.98 (2)
C2A—S1A—C1A 88.64 (8) C2B—S1B—C1B 88.74 (8)
C10A—S2A—C8A 95.33 (8) C9B—S2B—C8B 95.21 (8)
C4A—O1A—C11A 116.31 (16) C4B—O1B—C11B 116.02 (14)
C1A—N1A—C7A 110.12 (15) C1B—N1B—C7B 109.91 (15)
C9A—N2A—C8A 120.58 (14) C10B—N2B—C8B 121.29 (14)
C9A—N2A—H1NA 120.0 (18) C10B—N2B—H1NB 119.9 (16)
C8A—N2A—H1NA 119.4 (18) C8B—N2B—H1NB 118.7 (16)
N1A—C1A—C8A 122.99 (15) N1B—C1B—C8B 124.46 (15)
N1A—C1A—S1A 116.55 (13) N1B—C1B—S1B 116.50 (13)
C8A—C1A—S1A 120.26 (12) C8B—C1B—S1B 118.95 (12)
C3A—C2A—C7A 122.32 (17) C3B—C2B—C7B 122.71 (16)
C3A—C2A—S1A 128.22 (14) C3B—C2B—S1B 127.77 (14)
C7A—C2A—S1A 109.43 (13) C7B—C2B—S1B 109.50 (13)
C4A—C3A—C2A 117.58 (18) C4B—C3B—C2B 117.57 (17)
C4A—C3A—H3A 121.8 (13) C4B—C3B—H3B 122.5 (13)
C2A—C3A—H3A 120.6 (13) C2B—C3B—H3B 119.9 (13)
O1A—C4A—C3A 124.15 (18) O1B—C4B—C3B 123.43 (16)
O1A—C4A—C5A 114.95 (17) O1B—C4B—C5B 115.85 (16)
C3A—C4A—C5A 120.89 (17) C3B—C4B—C5B 120.72 (16)
C6A—C5A—C4A 121.33 (18) C6B—C5B—C4B 121.03 (17)
C6A—C5A—H5A 119.7 (15) C6B—C5B—H5B 120.5 (13)
C4A—C5A—H5A 119.0 (15) C4B—C5B—H5B 118.5 (13)
C5A—C6A—C7A 118.62 (18) C5B—C6B—C7B 119.55 (17)
C5A—C6A—H6A 120.5 (15) C5B—C6B—H6B 121.6 (13)
C7A—C6A—H6A 120.9 (15) C7B—C6B—H6B 118.7 (13)
N1A—C7A—C2A 115.21 (15) C2B—C7B—N1B 115.35 (15)
N1A—C7A—C6A 125.55 (17) C2B—C7B—C6B 118.41 (16)
C2A—C7A—C6A 119.23 (16) N1B—C7B—C6B 126.25 (16)
N2A—C8A—C1A 108.24 (13) N2B—C8B—C1B 109.97 (13)
N2A—C8A—C14A 111.57 (14) N2B—C8B—C14B 111.78 (13)
C1A—C8A—C14A 110.48 (14) C1B—C8B—C14B 111.54 (14)
N2A—C8A—S2A 104.11 (11) N2B—C8B—S2B 103.99 (11)
C1A—C8A—S2A 110.32 (11) C1B—C8B—S2B 106.87 (11)
C14A—C8A—S2A 111.89 (12) C14B—C8B—S2B 112.33 (11)
O2A—C9A—N2A 125.08 (17) C12B—C9B—C10B 109.06 (15)
O2A—C9A—C10A 120.46 (17) C12B—C9B—C13B 111.26 (19)
N2A—C9A—C10A 114.46 (15) C10B—C9B—C13B 109.43 (15)
C12A—C10A—C9A 109.71 (16) C12B—C9B—S2B 110.87 (14)
C12A—C10A—C13A 110.66 (17) C10B—C9B—S2B 105.22 (12)
C9A—C10A—C13A 108.76 (15) C13B—C9B—S2B 110.80 (14)
C12A—C10A—S2A 110.76 (14) O2B—C10B—N2B 124.19 (16)
C9A—C10A—S2A 105.09 (12) O2B—C10B—C9B 121.55 (16)
C13A—C10A—S2A 111.68 (13) N2B—C10B—C9B 114.26 (14)
O1A—C11A—H11C 111.9 (14) O1B—C11B—H11F 106.0 (13)
O1A—C11A—H11B 105.3 (14) O1B—C11B—H11E 110.1 (14)
H11C—C11A—H11B 109.3 (19) H11F—C11B—H11E 109.2 (19)
O1A—C11A—H11A 111.7 (14) O1B—C11B—H11D 110.5 (14)
H11C—C11A—H11A 110.0 (19) H11F—C11B—H11D 109.6 (19)
H11B—C11A—H11A 108.4 (19) H11E—C11B—H11D 111.3 (19)
C10A—C12A—H12C 109.0 (15) C9B—C12B—H12F 108.6 (16)
C10A—C12A—H12B 109.2 (15) C9B—C12B—H12E 109.7 (15)
H12C—C12A—H12B 111 (2) H12F—C12B—H12E 107 (2)
C10A—C12A—H12A 108.0 (15) C9B—C12B—H12D 110.6 (15)
H12C—C12A—H12A 111 (2) H12F—C12B—H12D 111 (2)
H12B—C12A—H12A 109 (2) H12E—C12B—H12D 110 (2)
C10A—C13A—H13C 108.3 (14) C9B—C13B—H13F 110.3 (15)
C10A—C13A—H13A 111.6 (14) C9B—C13B—H13E 109.8 (15)
H13C—C13A—H13A 107.6 (19) H13F—C13B—H13E 109 (2)
C10A—C13A—H13B 110.1 (14) C9B—C13B—H13D 108.6 (16)
H13C—C13A—H13B 112 (2) H13F—C13B—H13D 108 (2)
H13A—C13A—H13B 107.3 (19) H13E—C13B—H13D 111 (2)
C16A—C14A—C15A 111.16 (16) C15B—C14B—C16B 109.80 (15)
C16A—C14A—C8A 111.16 (15) C15B—C14B—C8B 112.39 (15)
C15A—C14A—C8A 112.13 (16) C16B—C14B—C8B 110.38 (14)
C16A—C14A—H14A 108.6 (13) C15B—C14B—H14B 109.0 (12)
C15A—C14A—H14A 108.0 (13) C16B—C14B—H14B 110.8 (12)
C8A—C14A—H14A 105.5 (13) C8B—C14B—H14B 104.4 (12)
C14A—C15A—H15C 110.8 (14) C14B—C15B—H15F 110.9 (13)
C14A—C15A—H15B 110.2 (14) C14B—C15B—H15E 112.0 (14)
H15C—C15A—H15B 109 (2) H15F—C15B—H15E 108.2 (19)
C14A—C15A—H15A 111.0 (14) C14B—C15B—H15D 109.5 (15)
H15C—C15A—H15A 108.0 (19) H15F—C15B—H15D 109.4 (19)
H15B—C15A—H15A 107.7 (19) H15E—C15B—H15D 107 (2)
C14A—C16A—H16C 110.1 (13) C14B—C16B—H16F 111.8 (13)
C14A—C16A—H16B 111.6 (15) C14B—C16B—H16E 112.2 (13)
H16C—C16A—H16B 107 (2) H16F—C16B—H16E 106.6 (18)
C14A—C16A—H16A 110.7 (15) C14B—C16B—H16D 109.0 (14)
H16C—C16A—H16A 108 (2) H16F—C16B—H16D 109.1 (19)
H16B—C16A—H16A 110 (2) H16E—C16B—H16D 108.0 (19)
S1A—C1A—C8A—S2A −19.39 (17) S1B—C1B—C8B—S2B 100.58 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2A—H1NA···O2B 0.81 (3) 2.15 (3) 2.9429 (19) 168 (2)
N2B—H1NB···O2A 0.77 (2) 2.04 (2) 2.802 (2) 173 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2073).

References

  1. Armarego, W. L. & Chai, C. L. (2009). Purification of Laboratory Chemicals, 6th ed. Amsterdam: Elsevier.
  2. Branchini, B. R., Murtiashaw, M. H., Magyar, R. A., Portier, N. C., Ruggiero, M. C. & Stroh, J. G. (2002). J. Am. Chem. Soc. 124, 2112–2113. [DOI] [PubMed]
  3. Branchini, B. R., Woodroofe, C. C., Meisenheimer, P. L., Klaubert, D. H., Kovic, Y., Rosenberg, J. C., Behney, C. E. & Southworth, T. L. (2012). Biochemistry, 51, 9807–9813. [DOI] [PubMed]
  4. Josel, H.-P., Herrmann, R., Klein, C. & Heindl, D. (1994). German Patent DE 4210759.
  5. Jung, J., Chin, C.-A. & Song, P.-S. (1975). J. Am. Chem. Soc. 97, 3949–3954. [DOI] [PubMed]
  6. Kricka, L. J. (1988). Anal. Biochem. 175, 14–21. [DOI] [PubMed]
  7. McCutcheon, D. C., Paley, M. A., Steinhardt, R. C. & Prescher, J. A. (2012). J. Am. Chem. Soc. 134, 7604–7607. [DOI] [PMC free article] [PubMed]
  8. Meroni, G., Rajabi, M. & Santaniello, E. (2009). ARKIVOC, i, 265–288.
  9. Naumov, P., Ozawa, Y., Ohkubo, K. & Fukuzumi, S. (2009). J. Am. Chem. Soc. 131, 11590–11605. [DOI] [PubMed]
  10. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Schäffer, J. M. (1987). US Patent 4665022.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Shinde, R., Perkins, J. & Contag, C. H. (2006). Biochemistry, 45, 11103–11112. [DOI] [PubMed]
  15. White, E. H., Steinmetz, M. G., Miano, J. D., Wildes, P. D. & Morland, R. (1979). J. Am. Chem. Soc. 101, 3199–3208.
  16. Würfel, H. (2012). PhD thesis. Friedrich-Schiller-University Jena, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813019521/fk2073sup1.cif

e-69-o1391-sup1.cif (36.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813019521/fk2073Isup2.hkl

e-69-o1391-Isup2.hkl (370.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813019521/fk2073Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES