Abstract
The title compound, C16H20N2O2S2, crystallizes with two enantiomers (A and B) in the asymmetric unit. The most noticeable difference between these two molecules is the relative orientation of the benzothiazole rings, with S—C—C—S torsion angles of −19.4 (2) (molecule A) and 100.6 (1)° (molecule B). The amide structure of the thiazolidinone rings leads to intermolecular hydrogen-bonded dimers of the R and S enantiomers.
Related literature
For chemi- and bioluminescence of firefly luciferin and related compounds, see: Jung et al. (1975 ▶); Naumov et al. (2009 ▶); White et al. (1979 ▶); Branchini et al. (2002 ▶). For structure modifications of firefly luciferin, see: Meroni et al. (2009 ▶); McCutcheon et al. (2012 ▶); Branchini et al. (2012 ▶); Würfel (2012 ▶). Luciferin and related structures are widely used in clinical and biochemical applications, see: Schäffer (1987 ▶); Kricka (1988 ▶); Josel et al. (1994 ▶); Shinde et al. (2006 ▶). All solvents were purified and dried according to Armarego & Chai (2009 ▶).
Experimental
Crystal data
C16H20N2O2S2
M r = 336.46
Triclinic,
a = 11.3755 (3) Å
b = 11.9028 (3) Å
c = 12.5261 (3) Å
α = 86.122 (1)°
β = 85.949 (1)°
γ = 89.206 (1)°
V = 1687.86 (7) Å3
Z = 4
Mo Kα radiation
μ = 0.32 mm−1
T = 133 K
0.06 × 0.05 × 0.05 mm
Data collection
Nonius KappaCCD diffractometer
10948 measured reflections
7580 independent reflections
6827 reflections with I > 2σ(I)
R int = 0.019
Refinement
R[F 2 > 2σ(F 2)] = 0.039
wR(F 2) = 0.088
S = 1.08
7580 reflections
557 parameters
All H-atom parameters refined
Δρmax = 0.37 e Å−3
Δρmin = −0.28 e Å−3
Data collection: COLLECT (Nonius, 1998 ▶); cell refinement: DENZO (Otwinowski & Minor, 1997 ▶); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL/PC (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813019521/fk2073sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813019521/fk2073Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536813019521/fk2073Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N2A—H1NA⋯O2B | 0.81 (3) | 2.15 (3) | 2.9429 (19) | 168 (2) |
| N2B—H1NB⋯O2A | 0.77 (2) | 2.04 (2) | 2.802 (2) | 173 (2) |
Acknowledgments
The authors thank Roche Diagnostics GmbH, Penzberg, for financial support.
supplementary crystallographic information
1. Comment
Luciferin, especially the class which is produced by the firefly Photinus pyralis, is of particular interest because of its bioluminescence and chemoluminescence properties (Naumov et al., 2009). Dimethyloxyluciferin, one prominent derivative which is known for its ability to emit visible light in the red region (Branchini et al., 2002), was further investigated in our group focusing on the modification on the 4-position of the thiazoline ring (Würfel, 2012). An extension of the chromophore should give rise to new dimethylluciferin derivatives with altered absorption and emission properties. The nucleophilic attack of isopropylmagnesium bromide with dimethyloxyluciferin should lead to a tertiary alcohol at the 4-position of the thiazoline ring. Subsequent dehydration reaction should form a 2-propylene substructure, thus representing a carbon extended luciferin derivative.
However, the dimethyloxyluciferin derivative did not react in this expected manner. The strong carbon nucleophile exclusively attacked the 2-position of the thiazoline ring leading, after aqueous work-up, to a racemic mixture of R,S-thiazolidines. C8 became an sp3 carbon (C8A—C1A = 1.524 (2) Å and C8B—C1B = 1.520 (2) Å), which results in the loss of the conjugation with the benzothiazole parent moiety. The thiazolidine rings are almost coplanar, with a dihedral angle of 10.32 (4)°, due to a dimer formation of the (R)- and (S)- enantiomers in the asymmetric unit. The dimer structure results from two hydrogen bonds between the amide moieties of the thiazolidine rings [N(A)—H···O(B) = 2.942 (2) Å and N(B)—H···O(A) = 2.802 (2) Å] from the two symmetry-independent molecules A and B. The most noticeable difference between these two molecules is the relative orientation of the benzothiazole moiety due to rotation around the C1—C8 bond. The resulting torsion angles S1—C1—C8—S2 are -19.4 (2)° (molecule A) and 100.6 (1)° (molecule B).
2. Experimental
All chemicals were synthesized according to given literature or purchased from commercial sources. All solvents were purified and dried according to Armarego & Chai (2009). 215 mg (8.85 mmol) of magnesium turnings in 20 ml of dry diethylether and a catalytic amount of iodine are placed in a 100 ml two-necked round-bottomed flask. 0.9 ml (9.60 mmol) 2-bromopropane was added. After a slight exothermic reaction, the mixture was refluxed for 1 h then cooled to room temperature. To that mixture 1.73 g (5.90 mmol) of 2-(6-methoxybenzothiazol-2-yl)-5,5-dimethylthiazolin-4-one in 20 ml of dry THF was added. The mixture was refluxed for 2 h, cooled to room temperature and hydrolysed with 10 g of ice and 10 ml of saturated NH4Cl solution, then extracted with ethyl acetate (3 × 20 ml). The extract was dried over MgSO4, filtered and distilled off. The remaining solid was purified by crystallization from n-heptane/ethyl acetate, yield: 70%, 1.43 g (4.25 mmol). 2-(6-Methoxybenzothiazol-2-yl)-5,5-dimethylthiazolin-4-one was synthesized from 2-cyano-6-methoxybenzothiazole and ethyl 2-mercapto-2-methylpropanoate according to Würfel (2012).
Light-yellow single crystals were obtained by dissolving the title compound at reflux temperature in n-heptane/ethyl acetate and, after cooling to room temperature, left alone in a closed vessel for several days. Elemental analysis, calculated for C16H20N2O2S2: C 57.11, H 5.99, N 8.33, S 19.06%; found: C 57.25, H 6.06, N 8.46, S 19.14.
3. Refinement
All H atoms were located from difference Fourier maps and freely refined.
Figures
Fig. 1.

Molecular structure of the title compound with symmetry-independent molecules A and B; anisotropic displacement ellipsoids are shown at the 40% probability level.
Fig. 2.
Crystal packing, viewed along a axis, showing hydrogen bonding between molecules A and B drawn as dotted lines.
Fig. 3.

The formation of the title compound.
Crystal data
| C16H20N2O2S2 | V = 1687.86 (7) Å3 |
| Mr = 336.46 | Z = 4 |
| Triclinic, P1 | F(000) = 712 |
| a = 11.3755 (3) Å | Dx = 1.324 Mg m−3 |
| b = 11.9028 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
| c = 12.5261 (3) Å | µ = 0.32 mm−1 |
| α = 86.122 (1)° | T = 133 K |
| β = 85.949 (1)° | Prism, colourless |
| γ = 89.206 (1)° | 0.06 × 0.05 × 0.05 mm |
Data collection
| Nonius KappaCCD diffractometer | 6827 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.019 |
| Graphite monochromator | θmax = 27.5°, θmin = 2.8° |
| φ and ω scans | h = −14→14 |
| 10948 measured reflections | k = −15→15 |
| 7580 independent reflections | l = −16→16 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: difference Fourier map |
| wR(F2) = 0.088 | All H-atom parameters refined |
| S = 1.08 | w = 1/[σ2(Fo2) + (0.0132P)2 + 1.7538P] where P = (Fo2 + 2Fc2)/3 |
| 7580 reflections | (Δ/σ)max = 0.001 |
| 557 parameters | Δρmax = 0.37 e Å−3 |
| 0 restraints | Δρmin = −0.28 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1A | 0.28415 (4) | 0.06581 (4) | 0.60425 (3) | 0.02114 (10) | |
| S2A | 0.45070 (4) | 0.03006 (3) | 0.78944 (3) | 0.02050 (10) | |
| O1A | −0.05418 (13) | 0.14410 (12) | 0.34536 (12) | 0.0325 (3) | |
| O2A | 0.61551 (12) | 0.30544 (11) | 0.70129 (13) | 0.0343 (3) | |
| N1A | 0.16890 (13) | 0.21511 (12) | 0.71336 (12) | 0.0214 (3) | |
| N2A | 0.43175 (13) | 0.24918 (12) | 0.76326 (12) | 0.0195 (3) | |
| H1NA | 0.406 (2) | 0.313 (2) | 0.762 (2) | 0.040 (7)* | |
| C1A | 0.26141 (16) | 0.15101 (14) | 0.71262 (13) | 0.0189 (3) | |
| C2A | 0.15831 (15) | 0.12492 (14) | 0.55230 (14) | 0.0203 (3) | |
| C3A | 0.10820 (17) | 0.10210 (15) | 0.45770 (15) | 0.0241 (4) | |
| H3A | 0.1418 (18) | 0.0513 (17) | 0.4144 (16) | 0.020 (5)* | |
| C4A | 0.00488 (17) | 0.15792 (15) | 0.43471 (15) | 0.0257 (4) | |
| C5A | −0.04879 (18) | 0.23308 (17) | 0.50568 (17) | 0.0301 (4) | |
| H5A | −0.123 (2) | 0.269 (2) | 0.489 (2) | 0.043 (7)* | |
| C6A | 0.00094 (18) | 0.25527 (16) | 0.59920 (17) | 0.0281 (4) | |
| H6A | −0.038 (2) | 0.306 (2) | 0.649 (2) | 0.041 (7)* | |
| C7A | 0.10746 (16) | 0.20125 (15) | 0.62280 (14) | 0.0212 (3) | |
| C8A | 0.35339 (15) | 0.15453 (14) | 0.79510 (13) | 0.0188 (3) | |
| C9A | 0.54381 (16) | 0.23130 (15) | 0.73098 (15) | 0.0227 (4) | |
| C10A | 0.58045 (16) | 0.10721 (14) | 0.73250 (15) | 0.0216 (3) | |
| C11A | −0.0003 (2) | 0.07124 (18) | 0.27038 (17) | 0.0338 (5) | |
| H11C | 0.010 (2) | −0.006 (2) | 0.3025 (19) | 0.035 (6)* | |
| H11B | −0.055 (2) | 0.0699 (19) | 0.2129 (19) | 0.036 (6)* | |
| H11A | 0.076 (2) | 0.101 (2) | 0.2387 (19) | 0.034 (6)* | |
| C12A | 0.68389 (19) | 0.08635 (19) | 0.8030 (2) | 0.0349 (5) | |
| H12C | 0.750 (2) | 0.131 (2) | 0.773 (2) | 0.040 (7)* | |
| H12B | 0.660 (2) | 0.106 (2) | 0.877 (2) | 0.042 (7)* | |
| H12A | 0.704 (2) | 0.006 (2) | 0.804 (2) | 0.042 (7)* | |
| C13A | 0.6148 (2) | 0.07723 (17) | 0.61714 (17) | 0.0301 (4) | |
| H13C | 0.684 (2) | 0.125 (2) | 0.5885 (19) | 0.040 (7)* | |
| H13A | 0.551 (2) | 0.094 (2) | 0.5703 (19) | 0.035 (6)* | |
| H13B | 0.633 (2) | −0.002 (2) | 0.6156 (19) | 0.037 (6)* | |
| C14A | 0.29315 (17) | 0.16514 (15) | 0.90837 (14) | 0.0223 (4) | |
| H14A | 0.2439 (19) | 0.2328 (18) | 0.9028 (17) | 0.026 (5)* | |
| C15A | 0.3822 (2) | 0.18177 (19) | 0.99156 (16) | 0.0297 (4) | |
| H15C | 0.433 (2) | 0.117 (2) | 0.9995 (18) | 0.033 (6)* | |
| H15B | 0.431 (2) | 0.249 (2) | 0.9696 (19) | 0.039 (7)* | |
| H15A | 0.342 (2) | 0.194 (2) | 1.062 (2) | 0.038 (6)* | |
| C16A | 0.2143 (2) | 0.06453 (18) | 0.94200 (16) | 0.0307 (4) | |
| H16C | 0.177 (2) | 0.0724 (19) | 1.0127 (19) | 0.032 (6)* | |
| H16B | 0.149 (2) | 0.059 (2) | 0.893 (2) | 0.050 (7)* | |
| H16A | 0.260 (2) | −0.005 (2) | 0.944 (2) | 0.043 (7)* | |
| S1B | 0.68977 (4) | 0.53085 (4) | 0.91211 (3) | 0.02025 (10) | |
| S2B | 0.57063 (4) | 0.75544 (3) | 0.70861 (4) | 0.02149 (10) | |
| O1B | 0.99279 (11) | 0.56823 (11) | 1.20270 (10) | 0.0247 (3) | |
| O2B | 0.37416 (11) | 0.49130 (10) | 0.75042 (10) | 0.0225 (3) | |
| N1B | 0.82852 (13) | 0.67362 (12) | 0.80061 (12) | 0.0206 (3) | |
| N2B | 0.56709 (13) | 0.53534 (12) | 0.71793 (11) | 0.0173 (3) | |
| H1NB | 0.5860 (18) | 0.4740 (19) | 0.7118 (16) | 0.019 (5)* | |
| C1B | 0.73372 (15) | 0.61588 (14) | 0.79671 (13) | 0.0180 (3) | |
| C2B | 0.81058 (15) | 0.57803 (14) | 0.97259 (14) | 0.0195 (3) | |
| C3B | 0.84486 (16) | 0.54766 (15) | 1.07565 (14) | 0.0206 (3) | |
| H3B | 0.7977 (18) | 0.4988 (18) | 1.1222 (17) | 0.023 (5)* | |
| C4B | 0.94756 (15) | 0.59370 (15) | 1.10563 (14) | 0.0209 (3) | |
| C5B | 1.01291 (16) | 0.66994 (15) | 1.03522 (15) | 0.0239 (4) | |
| H5B | 1.083 (2) | 0.7007 (18) | 1.0588 (17) | 0.028 (6)* | |
| C6B | 0.97773 (16) | 0.69941 (16) | 0.93396 (15) | 0.0243 (4) | |
| H6B | 1.0225 (18) | 0.7450 (17) | 0.8859 (16) | 0.020 (5)* | |
| C7B | 0.87480 (15) | 0.65293 (14) | 0.90076 (14) | 0.0191 (3) | |
| C8B | 0.65620 (15) | 0.62225 (13) | 0.70244 (13) | 0.0173 (3) | |
| C9B | 0.42712 (16) | 0.68758 (14) | 0.73455 (15) | 0.0226 (4) | |
| C10B | 0.45328 (15) | 0.56124 (14) | 0.73509 (13) | 0.0183 (3) | |
| C11B | 0.92381 (18) | 0.49480 (19) | 1.27642 (16) | 0.0289 (4) | |
| H11F | 0.965 (2) | 0.4887 (19) | 1.3430 (19) | 0.034 (6)* | |
| H11E | 0.920 (2) | 0.420 (2) | 1.2484 (19) | 0.034 (6)* | |
| H11D | 0.843 (2) | 0.528 (2) | 1.2912 (19) | 0.039 (6)* | |
| C12B | 0.3464 (2) | 0.72068 (19) | 0.6450 (2) | 0.0376 (5) | |
| H12F | 0.272 (2) | 0.682 (2) | 0.661 (2) | 0.047 (7)* | |
| H12E | 0.329 (2) | 0.801 (2) | 0.644 (2) | 0.044 (7)* | |
| H12D | 0.384 (2) | 0.701 (2) | 0.573 (2) | 0.046 (7)* | |
| C13B | 0.3702 (2) | 0.71541 (18) | 0.8440 (2) | 0.0364 (5) | |
| H13F | 0.295 (2) | 0.681 (2) | 0.8564 (19) | 0.039 (7)* | |
| H13E | 0.422 (2) | 0.687 (2) | 0.903 (2) | 0.046 (7)* | |
| H13D | 0.359 (2) | 0.795 (2) | 0.844 (2) | 0.050 (7)* | |
| C14B | 0.73008 (16) | 0.61496 (15) | 0.59462 (14) | 0.0205 (3) | |
| H14B | 0.7845 (18) | 0.6783 (17) | 0.5920 (16) | 0.021 (5)* | |
| C15B | 0.65467 (19) | 0.62882 (18) | 0.49827 (16) | 0.0279 (4) | |
| H15F | 0.593 (2) | 0.569 (2) | 0.5022 (18) | 0.035 (6)* | |
| H15E | 0.615 (2) | 0.702 (2) | 0.4936 (19) | 0.035 (6)* | |
| H15D | 0.704 (2) | 0.624 (2) | 0.434 (2) | 0.038 (6)* | |
| C16B | 0.79781 (18) | 0.50310 (17) | 0.59283 (16) | 0.0261 (4) | |
| H16F | 0.746 (2) | 0.4405 (19) | 0.5836 (17) | 0.029 (6)* | |
| H16E | 0.837 (2) | 0.4845 (19) | 0.6607 (19) | 0.033 (6)* | |
| H16D | 0.859 (2) | 0.508 (2) | 0.534 (2) | 0.038 (6)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1A | 0.0240 (2) | 0.0204 (2) | 0.0200 (2) | 0.00335 (16) | −0.00505 (16) | −0.00566 (16) |
| S2A | 0.0250 (2) | 0.01400 (19) | 0.0225 (2) | 0.00315 (16) | −0.00349 (16) | −0.00055 (15) |
| O1A | 0.0353 (8) | 0.0318 (7) | 0.0329 (8) | −0.0037 (6) | −0.0180 (6) | −0.0034 (6) |
| O2A | 0.0282 (7) | 0.0191 (7) | 0.0545 (10) | −0.0009 (5) | 0.0045 (7) | −0.0028 (6) |
| N1A | 0.0248 (8) | 0.0202 (7) | 0.0195 (7) | 0.0025 (6) | −0.0038 (6) | −0.0021 (6) |
| N2A | 0.0229 (7) | 0.0121 (7) | 0.0237 (8) | 0.0027 (6) | −0.0033 (6) | −0.0015 (6) |
| C1A | 0.0262 (9) | 0.0146 (7) | 0.0161 (8) | −0.0006 (6) | −0.0022 (6) | −0.0005 (6) |
| C2A | 0.0220 (8) | 0.0180 (8) | 0.0210 (8) | −0.0013 (6) | −0.0031 (7) | 0.0006 (6) |
| C3A | 0.0290 (9) | 0.0201 (8) | 0.0238 (9) | −0.0032 (7) | −0.0055 (7) | −0.0031 (7) |
| C4A | 0.0293 (10) | 0.0221 (9) | 0.0266 (9) | −0.0058 (7) | −0.0104 (8) | 0.0007 (7) |
| C5A | 0.0262 (10) | 0.0258 (9) | 0.0396 (11) | 0.0020 (8) | −0.0124 (8) | −0.0016 (8) |
| C6A | 0.0274 (10) | 0.0247 (9) | 0.0334 (10) | 0.0049 (7) | −0.0081 (8) | −0.0061 (8) |
| C7A | 0.0224 (8) | 0.0197 (8) | 0.0218 (8) | 0.0005 (7) | −0.0045 (7) | −0.0008 (7) |
| C8A | 0.0239 (8) | 0.0143 (7) | 0.0186 (8) | 0.0020 (6) | −0.0039 (7) | −0.0023 (6) |
| C9A | 0.0262 (9) | 0.0173 (8) | 0.0251 (9) | 0.0013 (7) | −0.0042 (7) | −0.0018 (7) |
| C10A | 0.0219 (8) | 0.0168 (8) | 0.0260 (9) | 0.0028 (6) | −0.0020 (7) | −0.0009 (7) |
| C11A | 0.0453 (13) | 0.0294 (11) | 0.0286 (10) | −0.0082 (9) | −0.0140 (9) | −0.0025 (8) |
| C12A | 0.0274 (10) | 0.0323 (11) | 0.0456 (13) | 0.0035 (9) | −0.0117 (9) | 0.0026 (10) |
| C13A | 0.0362 (11) | 0.0226 (9) | 0.0306 (10) | 0.0021 (8) | 0.0054 (9) | −0.0031 (8) |
| C14A | 0.0285 (9) | 0.0222 (9) | 0.0168 (8) | 0.0050 (7) | −0.0031 (7) | −0.0040 (7) |
| C15A | 0.0369 (11) | 0.0333 (11) | 0.0205 (9) | 0.0062 (9) | −0.0077 (8) | −0.0082 (8) |
| C16A | 0.0379 (11) | 0.0327 (11) | 0.0208 (9) | −0.0032 (9) | 0.0011 (8) | 0.0000 (8) |
| S1B | 0.0208 (2) | 0.0223 (2) | 0.0177 (2) | −0.00328 (16) | −0.00279 (16) | 0.00074 (16) |
| S2B | 0.0231 (2) | 0.01373 (19) | 0.0278 (2) | −0.00026 (16) | −0.00344 (17) | −0.00067 (16) |
| O1B | 0.0224 (6) | 0.0331 (7) | 0.0195 (6) | 0.0026 (5) | −0.0057 (5) | −0.0036 (5) |
| O2B | 0.0198 (6) | 0.0185 (6) | 0.0294 (7) | −0.0011 (5) | −0.0019 (5) | −0.0028 (5) |
| N1B | 0.0206 (7) | 0.0194 (7) | 0.0222 (7) | −0.0011 (6) | −0.0041 (6) | −0.0018 (6) |
| N2B | 0.0210 (7) | 0.0107 (7) | 0.0202 (7) | −0.0003 (5) | −0.0014 (6) | −0.0015 (5) |
| C1B | 0.0199 (8) | 0.0170 (8) | 0.0169 (8) | 0.0014 (6) | −0.0003 (6) | −0.0013 (6) |
| C2B | 0.0202 (8) | 0.0187 (8) | 0.0200 (8) | 0.0018 (6) | −0.0013 (6) | −0.0046 (6) |
| C3B | 0.0214 (8) | 0.0229 (8) | 0.0177 (8) | 0.0020 (7) | −0.0009 (7) | −0.0032 (7) |
| C4B | 0.0213 (8) | 0.0234 (8) | 0.0187 (8) | 0.0063 (7) | −0.0029 (7) | −0.0058 (7) |
| C5B | 0.0222 (9) | 0.0232 (9) | 0.0276 (9) | −0.0007 (7) | −0.0065 (7) | −0.0047 (7) |
| C6B | 0.0227 (9) | 0.0233 (9) | 0.0267 (9) | −0.0037 (7) | −0.0029 (7) | 0.0008 (7) |
| C7B | 0.0199 (8) | 0.0183 (8) | 0.0194 (8) | 0.0020 (6) | −0.0024 (6) | −0.0036 (6) |
| C8B | 0.0192 (8) | 0.0147 (7) | 0.0182 (8) | −0.0011 (6) | −0.0031 (6) | −0.0006 (6) |
| C9B | 0.0214 (8) | 0.0159 (8) | 0.0308 (10) | 0.0014 (6) | −0.0044 (7) | −0.0010 (7) |
| C10B | 0.0218 (8) | 0.0167 (8) | 0.0168 (8) | −0.0004 (6) | −0.0036 (6) | −0.0027 (6) |
| C11B | 0.0233 (9) | 0.0436 (12) | 0.0194 (9) | 0.0020 (8) | −0.0027 (7) | 0.0003 (8) |
| C12B | 0.0299 (11) | 0.0242 (10) | 0.0591 (15) | 0.0004 (8) | −0.0195 (10) | 0.0114 (10) |
| C13B | 0.0382 (12) | 0.0220 (10) | 0.0478 (14) | −0.0031 (9) | 0.0157 (10) | −0.0122 (9) |
| C14B | 0.0215 (8) | 0.0215 (8) | 0.0187 (8) | −0.0050 (7) | −0.0010 (7) | −0.0009 (6) |
| C15B | 0.0321 (10) | 0.0329 (11) | 0.0189 (9) | −0.0026 (8) | −0.0043 (8) | −0.0002 (8) |
| C16B | 0.0259 (9) | 0.0276 (10) | 0.0245 (9) | 0.0017 (8) | 0.0028 (8) | −0.0049 (8) |
Geometric parameters (Å, º)
| S1A—C2A | 1.7347 (18) | S1B—C2B | 1.7331 (18) |
| S1A—C1A | 1.7513 (17) | S1B—C1B | 1.7544 (17) |
| S2A—C10A | 1.8250 (18) | S2B—C9B | 1.8301 (18) |
| S2A—C8A | 1.8393 (17) | S2B—C8B | 1.8521 (17) |
| O1A—C4A | 1.366 (2) | O1B—C4B | 1.367 (2) |
| O1A—C11A | 1.423 (3) | O1B—C11B | 1.428 (2) |
| O2A—C9A | 1.231 (2) | O2B—C10B | 1.231 (2) |
| N1A—C1A | 1.291 (2) | N1B—C1B | 1.292 (2) |
| N1A—C7A | 1.394 (2) | N1B—C7B | 1.400 (2) |
| N2A—C9A | 1.329 (2) | N2B—C10B | 1.333 (2) |
| N2A—C8A | 1.463 (2) | N2B—C8B | 1.452 (2) |
| N2A—H1NA | 0.81 (3) | N2B—H1NB | 0.77 (2) |
| C1A—C8A | 1.524 (2) | C1B—C8B | 1.520 (2) |
| C2A—C3A | 1.395 (2) | C2B—C3B | 1.398 (2) |
| C2A—C7A | 1.401 (2) | C2B—C7B | 1.398 (2) |
| C3A—C4A | 1.381 (3) | C3B—C4B | 1.383 (2) |
| C3A—H3A | 0.90 (2) | C3B—H3B | 0.94 (2) |
| C4A—C5A | 1.407 (3) | C4B—C5B | 1.404 (3) |
| C5A—C6A | 1.379 (3) | C5B—C6B | 1.378 (3) |
| C5A—H5A | 0.97 (3) | C5B—H5B | 0.95 (2) |
| C6A—C7A | 1.404 (3) | C6B—C7B | 1.403 (2) |
| C6A—H6A | 0.98 (3) | C6B—H6B | 0.91 (2) |
| C8A—C14A | 1.544 (2) | C8B—C14B | 1.546 (2) |
| C9A—C10A | 1.528 (2) | C9B—C12B | 1.527 (3) |
| C10A—C12A | 1.528 (3) | C9B—C10B | 1.529 (2) |
| C10A—C13A | 1.534 (3) | C9B—C13B | 1.529 (3) |
| C11A—H11C | 0.98 (2) | C11B—H11F | 0.99 (2) |
| C11A—H11B | 0.98 (2) | C11B—H11E | 0.99 (2) |
| C11A—H11A | 0.99 (2) | C11B—H11D | 1.00 (3) |
| C12A—H12C | 0.96 (3) | C12B—H12F | 0.97 (3) |
| C12A—H12B | 0.99 (3) | C12B—H12E | 0.97 (3) |
| C12A—H12A | 0.98 (3) | C12B—H12D | 1.01 (3) |
| C13A—H13C | 1.01 (2) | C13B—H13F | 0.96 (3) |
| C13A—H13A | 0.98 (2) | C13B—H13E | 1.01 (3) |
| C13A—H13B | 0.96 (2) | C13B—H13D | 0.95 (3) |
| C14A—C16A | 1.525 (3) | C14B—C15B | 1.528 (3) |
| C14A—C15A | 1.528 (3) | C14B—C16B | 1.530 (3) |
| C14A—H14A | 0.98 (2) | C14B—H14B | 0.98 (2) |
| C15A—H15C | 0.96 (2) | C15B—H15F | 1.00 (2) |
| C15A—H15B | 1.00 (3) | C15B—H15E | 0.97 (2) |
| C15A—H15A | 0.98 (3) | C15B—H15D | 0.95 (3) |
| C16A—H16C | 0.96 (2) | C16B—H16F | 0.97 (2) |
| C16A—H16B | 1.00 (3) | C16B—H16E | 1.00 (2) |
| C16A—H16A | 0.97 (3) | C16B—H16D | 0.98 (2) |
| C2A—S1A—C1A | 88.64 (8) | C2B—S1B—C1B | 88.74 (8) |
| C10A—S2A—C8A | 95.33 (8) | C9B—S2B—C8B | 95.21 (8) |
| C4A—O1A—C11A | 116.31 (16) | C4B—O1B—C11B | 116.02 (14) |
| C1A—N1A—C7A | 110.12 (15) | C1B—N1B—C7B | 109.91 (15) |
| C9A—N2A—C8A | 120.58 (14) | C10B—N2B—C8B | 121.29 (14) |
| C9A—N2A—H1NA | 120.0 (18) | C10B—N2B—H1NB | 119.9 (16) |
| C8A—N2A—H1NA | 119.4 (18) | C8B—N2B—H1NB | 118.7 (16) |
| N1A—C1A—C8A | 122.99 (15) | N1B—C1B—C8B | 124.46 (15) |
| N1A—C1A—S1A | 116.55 (13) | N1B—C1B—S1B | 116.50 (13) |
| C8A—C1A—S1A | 120.26 (12) | C8B—C1B—S1B | 118.95 (12) |
| C3A—C2A—C7A | 122.32 (17) | C3B—C2B—C7B | 122.71 (16) |
| C3A—C2A—S1A | 128.22 (14) | C3B—C2B—S1B | 127.77 (14) |
| C7A—C2A—S1A | 109.43 (13) | C7B—C2B—S1B | 109.50 (13) |
| C4A—C3A—C2A | 117.58 (18) | C4B—C3B—C2B | 117.57 (17) |
| C4A—C3A—H3A | 121.8 (13) | C4B—C3B—H3B | 122.5 (13) |
| C2A—C3A—H3A | 120.6 (13) | C2B—C3B—H3B | 119.9 (13) |
| O1A—C4A—C3A | 124.15 (18) | O1B—C4B—C3B | 123.43 (16) |
| O1A—C4A—C5A | 114.95 (17) | O1B—C4B—C5B | 115.85 (16) |
| C3A—C4A—C5A | 120.89 (17) | C3B—C4B—C5B | 120.72 (16) |
| C6A—C5A—C4A | 121.33 (18) | C6B—C5B—C4B | 121.03 (17) |
| C6A—C5A—H5A | 119.7 (15) | C6B—C5B—H5B | 120.5 (13) |
| C4A—C5A—H5A | 119.0 (15) | C4B—C5B—H5B | 118.5 (13) |
| C5A—C6A—C7A | 118.62 (18) | C5B—C6B—C7B | 119.55 (17) |
| C5A—C6A—H6A | 120.5 (15) | C5B—C6B—H6B | 121.6 (13) |
| C7A—C6A—H6A | 120.9 (15) | C7B—C6B—H6B | 118.7 (13) |
| N1A—C7A—C2A | 115.21 (15) | C2B—C7B—N1B | 115.35 (15) |
| N1A—C7A—C6A | 125.55 (17) | C2B—C7B—C6B | 118.41 (16) |
| C2A—C7A—C6A | 119.23 (16) | N1B—C7B—C6B | 126.25 (16) |
| N2A—C8A—C1A | 108.24 (13) | N2B—C8B—C1B | 109.97 (13) |
| N2A—C8A—C14A | 111.57 (14) | N2B—C8B—C14B | 111.78 (13) |
| C1A—C8A—C14A | 110.48 (14) | C1B—C8B—C14B | 111.54 (14) |
| N2A—C8A—S2A | 104.11 (11) | N2B—C8B—S2B | 103.99 (11) |
| C1A—C8A—S2A | 110.32 (11) | C1B—C8B—S2B | 106.87 (11) |
| C14A—C8A—S2A | 111.89 (12) | C14B—C8B—S2B | 112.33 (11) |
| O2A—C9A—N2A | 125.08 (17) | C12B—C9B—C10B | 109.06 (15) |
| O2A—C9A—C10A | 120.46 (17) | C12B—C9B—C13B | 111.26 (19) |
| N2A—C9A—C10A | 114.46 (15) | C10B—C9B—C13B | 109.43 (15) |
| C12A—C10A—C9A | 109.71 (16) | C12B—C9B—S2B | 110.87 (14) |
| C12A—C10A—C13A | 110.66 (17) | C10B—C9B—S2B | 105.22 (12) |
| C9A—C10A—C13A | 108.76 (15) | C13B—C9B—S2B | 110.80 (14) |
| C12A—C10A—S2A | 110.76 (14) | O2B—C10B—N2B | 124.19 (16) |
| C9A—C10A—S2A | 105.09 (12) | O2B—C10B—C9B | 121.55 (16) |
| C13A—C10A—S2A | 111.68 (13) | N2B—C10B—C9B | 114.26 (14) |
| O1A—C11A—H11C | 111.9 (14) | O1B—C11B—H11F | 106.0 (13) |
| O1A—C11A—H11B | 105.3 (14) | O1B—C11B—H11E | 110.1 (14) |
| H11C—C11A—H11B | 109.3 (19) | H11F—C11B—H11E | 109.2 (19) |
| O1A—C11A—H11A | 111.7 (14) | O1B—C11B—H11D | 110.5 (14) |
| H11C—C11A—H11A | 110.0 (19) | H11F—C11B—H11D | 109.6 (19) |
| H11B—C11A—H11A | 108.4 (19) | H11E—C11B—H11D | 111.3 (19) |
| C10A—C12A—H12C | 109.0 (15) | C9B—C12B—H12F | 108.6 (16) |
| C10A—C12A—H12B | 109.2 (15) | C9B—C12B—H12E | 109.7 (15) |
| H12C—C12A—H12B | 111 (2) | H12F—C12B—H12E | 107 (2) |
| C10A—C12A—H12A | 108.0 (15) | C9B—C12B—H12D | 110.6 (15) |
| H12C—C12A—H12A | 111 (2) | H12F—C12B—H12D | 111 (2) |
| H12B—C12A—H12A | 109 (2) | H12E—C12B—H12D | 110 (2) |
| C10A—C13A—H13C | 108.3 (14) | C9B—C13B—H13F | 110.3 (15) |
| C10A—C13A—H13A | 111.6 (14) | C9B—C13B—H13E | 109.8 (15) |
| H13C—C13A—H13A | 107.6 (19) | H13F—C13B—H13E | 109 (2) |
| C10A—C13A—H13B | 110.1 (14) | C9B—C13B—H13D | 108.6 (16) |
| H13C—C13A—H13B | 112 (2) | H13F—C13B—H13D | 108 (2) |
| H13A—C13A—H13B | 107.3 (19) | H13E—C13B—H13D | 111 (2) |
| C16A—C14A—C15A | 111.16 (16) | C15B—C14B—C16B | 109.80 (15) |
| C16A—C14A—C8A | 111.16 (15) | C15B—C14B—C8B | 112.39 (15) |
| C15A—C14A—C8A | 112.13 (16) | C16B—C14B—C8B | 110.38 (14) |
| C16A—C14A—H14A | 108.6 (13) | C15B—C14B—H14B | 109.0 (12) |
| C15A—C14A—H14A | 108.0 (13) | C16B—C14B—H14B | 110.8 (12) |
| C8A—C14A—H14A | 105.5 (13) | C8B—C14B—H14B | 104.4 (12) |
| C14A—C15A—H15C | 110.8 (14) | C14B—C15B—H15F | 110.9 (13) |
| C14A—C15A—H15B | 110.2 (14) | C14B—C15B—H15E | 112.0 (14) |
| H15C—C15A—H15B | 109 (2) | H15F—C15B—H15E | 108.2 (19) |
| C14A—C15A—H15A | 111.0 (14) | C14B—C15B—H15D | 109.5 (15) |
| H15C—C15A—H15A | 108.0 (19) | H15F—C15B—H15D | 109.4 (19) |
| H15B—C15A—H15A | 107.7 (19) | H15E—C15B—H15D | 107 (2) |
| C14A—C16A—H16C | 110.1 (13) | C14B—C16B—H16F | 111.8 (13) |
| C14A—C16A—H16B | 111.6 (15) | C14B—C16B—H16E | 112.2 (13) |
| H16C—C16A—H16B | 107 (2) | H16F—C16B—H16E | 106.6 (18) |
| C14A—C16A—H16A | 110.7 (15) | C14B—C16B—H16D | 109.0 (14) |
| H16C—C16A—H16A | 108 (2) | H16F—C16B—H16D | 109.1 (19) |
| H16B—C16A—H16A | 110 (2) | H16E—C16B—H16D | 108.0 (19) |
| S1A—C1A—C8A—S2A | −19.39 (17) | S1B—C1B—C8B—S2B | 100.58 (12) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2A—H1NA···O2B | 0.81 (3) | 2.15 (3) | 2.9429 (19) | 168 (2) |
| N2B—H1NB···O2A | 0.77 (2) | 2.04 (2) | 2.802 (2) | 173 (2) |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2073).
References
- Armarego, W. L. & Chai, C. L. (2009). Purification of Laboratory Chemicals, 6th ed. Amsterdam: Elsevier.
- Branchini, B. R., Murtiashaw, M. H., Magyar, R. A., Portier, N. C., Ruggiero, M. C. & Stroh, J. G. (2002). J. Am. Chem. Soc. 124, 2112–2113. [DOI] [PubMed]
- Branchini, B. R., Woodroofe, C. C., Meisenheimer, P. L., Klaubert, D. H., Kovic, Y., Rosenberg, J. C., Behney, C. E. & Southworth, T. L. (2012). Biochemistry, 51, 9807–9813. [DOI] [PubMed]
- Josel, H.-P., Herrmann, R., Klein, C. & Heindl, D. (1994). German Patent DE 4210759.
- Jung, J., Chin, C.-A. & Song, P.-S. (1975). J. Am. Chem. Soc. 97, 3949–3954. [DOI] [PubMed]
- Kricka, L. J. (1988). Anal. Biochem. 175, 14–21. [DOI] [PubMed]
- McCutcheon, D. C., Paley, M. A., Steinhardt, R. C. & Prescher, J. A. (2012). J. Am. Chem. Soc. 134, 7604–7607. [DOI] [PMC free article] [PubMed]
- Meroni, G., Rajabi, M. & Santaniello, E. (2009). ARKIVOC, i, 265–288.
- Naumov, P., Ozawa, Y., Ohkubo, K. & Fukuzumi, S. (2009). J. Am. Chem. Soc. 131, 11590–11605. [DOI] [PubMed]
- Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Schäffer, J. M. (1987). US Patent 4665022.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Shinde, R., Perkins, J. & Contag, C. H. (2006). Biochemistry, 45, 11103–11112. [DOI] [PubMed]
- White, E. H., Steinmetz, M. G., Miano, J. D., Wildes, P. D. & Morland, R. (1979). J. Am. Chem. Soc. 101, 3199–3208.
- Würfel, H. (2012). PhD thesis. Friedrich-Schiller-University Jena, Germany.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813019521/fk2073sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813019521/fk2073Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536813019521/fk2073Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

