Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 10;69(Pt 9):o1403. doi: 10.1107/S1600536813021739

(E)-2-(1,1-Di­cyclo­hexyl-3-phenyl­all­yl)-5,5-dimethyl-1,3,2-dioxaborinane

Gamal A El-Hiti a,*, Keith Smith b, Mark C Elliott b, Dyfyr Heulyn Jones b, Benson M Kariuki b,*
PMCID: PMC3884414  PMID: 24427041

Abstract

The crystal structure of the title compound, C26H39BO2, which contains no strong hydrogen bond donors, displays only long C—H⋯O contacts between inversion-related pairs of mol­ecules. The structure contains layers rich in oxygen and boron parallel to the ac plane. The dioxaborinane ring adopts an envelope conformation with the C atom attached to the two methyl groups as the flap .

Related literature  

For the synthesis and applications of allyl­boronic esters, see: Lombardo et al. (2002); Carosi & Hall (2007); Althaus et al. (2010); Fandrick et al. (2010); Clary et al. (2011); Hesse et al. (2012); Incerti-Pradillos et al. (2013). For the X-ray structure of a boronic ester, see: Sopková-de Oliveira Santos et al. (2003).graphic file with name e-69-o1403-scheme1.jpg

Experimental  

Crystal data  

  • C26H39BO2

  • M r = 394.38

  • Triclinic, Inline graphic

  • a = 9.4967 (3) Å

  • b = 11.2837 (2) Å

  • c = 12.0297 (4) Å

  • α = 109.897 (2)°

  • β = 96.388 (2)°

  • γ = 102.048 (2)°

  • V = 1161.90 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 150 K

  • 0.38 × 0.30 × 0.28 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) T min = 0.975, T max = 0.981

  • 8277 measured reflections

  • 5287 independent reflections

  • 4303 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.128

  • S = 1.03

  • 5287 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP99 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813021739/go2094sup1.cif

e-69-o1403-sup1.cif (29.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813021739/go2094Isup2.hkl

e-69-o1403-Isup2.hkl (253.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813021739/go2094Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22B⋯O2i 0.99 2.69 3.5773 (18) 150

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors would like to extend their appreciation to the Deanship of Scientific Research at King Saud University for its funding for this research through the research group project RGP-VPP-239.

supplementary crystallographic information

1. Comment

The title compound I, a useful synthetic intermediate, was synthesized by the reaction of (E)-dicyclohexylstyrylborane with the anion of dichloromethyl methyl ether followed by esterification with 2,2-dimethyl-1,3-propanediol. Allylboronic esters have been synthesized from the reaction of lithiated carbamates with vinylboranes [Althaus et al. (2010)], and from the reaction of primary allyl halides with pinacolborane and magnesium [Incerti-Pradillos et al. (2013), Clary et al. (2011)]. Allylboronic esters are important synthetic intermediates, which have been shown to react with aldehydes to give homoallylic alcohols [Lombardo et al. (2002)], with the control of the newly-generated stereogenic centre possible through use of a chiral catalyst [Carosi et al. (2007)]. Allylboronic esters take part in a zinc alkoxide catalysed reaction with ketones to give the corresponding homoallylic alcohol products [Fandrick et al. (2010)], and also take part in a proto-deboronation reaction which has been used to synthesize the pheromone of the Californian red scale beetle [Hesse et al. (2012)]. For the X-ray structure of a boronic ester, see: Sopková-de Oliveira Santos et al. (2003).

In the molecule (Figure 1), the two cyclohexyl groups assume a chair conformation and an envelope conformation is observed for the dioxaborinane ring. The phenylallyl group is not planar as the plane through the double bond makes an angle of 20.84 ° with the phenyl group. There are no strong hydrogen bond donors in the structure. Long contacts of C—H···O type occur between pairs of molecules to form loosely bound dimers (Figure 2). The dimers are stacked along the a-axis to form a structure with layers rich in oxygen and boron parallel to the ac plane (Figure 3).

2. Refinement

H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 times Ueq for the atom they are bonded to except for the methyl groups where 1.5 times Ueq was used with free rotation about the C—C bond. Of the low angle reflections not included in the refinement only (0 0 1) and (0 1 0) were omitted due to low intensities consistent with being obscured by the beamstop. The rest were eliminated automatically during data processing possibly as overloads.

Figures

Fig. 1.

Fig. 1.

A molecule showing atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

A pair of molecules showing C—H···O interactions as dotted lines.

Fig. 3.

Fig. 3.

Molecular packing in the crystal structure showing oxygen and boron rich layers.

Crystal data

C26H39BO2 Z = 2
Mr = 394.38 F(000) = 432
Triclinic, P1 Dx = 1.127 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.4967 (3) Å Cell parameters from 4303 reflections
b = 11.2837 (2) Å θ = 2.2–27.5°
c = 12.0297 (4) Å µ = 0.07 mm1
α = 109.897 (2)° T = 150 K
β = 96.388 (2)° Block, colourless
γ = 102.048 (2)° 0.38 × 0.30 × 0.28 mm
V = 1161.90 (6) Å3

Data collection

Nonius KappaCCD diffractometer 5287 independent reflections
Radiation source: fine-focus sealed tube 4303 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
CCD slices, ω and phi scans θmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) h = −12→12
Tmin = 0.975, Tmax = 0.981 k = −14→14
8277 measured reflections l = −15→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.4651P] where P = (Fo2 + 2Fc2)/3
5287 reflections (Δ/σ)max = 0.004
264 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.24096 (15) 0.23892 (13) 0.62817 (11) 0.0235 (3)
C2 0.22913 (18) 0.35166 (15) 0.71836 (13) 0.0348 (3)
H2 0.2828 0.4349 0.7232 0.042*
C3 0.14007 (19) 0.34351 (17) 0.80085 (14) 0.0411 (4)
H3 0.1319 0.4211 0.8607 0.049*
C4 0.06330 (17) 0.22337 (17) 0.79648 (14) 0.0382 (4)
H4 0.0029 0.2179 0.8534 0.046*
C5 0.07497 (17) 0.11101 (16) 0.70869 (14) 0.0348 (3)
H5 0.0228 0.0280 0.7055 0.042*
C6 0.16250 (16) 0.11876 (13) 0.62506 (13) 0.0281 (3)
H6 0.1689 0.0407 0.5648 0.034*
C7 0.33581 (15) 0.25145 (13) 0.54118 (12) 0.0255 (3)
H7 0.4098 0.3312 0.5644 0.031*
C8 0.32693 (14) 0.16134 (12) 0.43362 (11) 0.0221 (3)
H8 0.2530 0.0818 0.4117 0.027*
C9 0.42193 (14) 0.17080 (12) 0.34118 (11) 0.0205 (3)
C10 0.58492 (14) 0.24810 (12) 0.40612 (11) 0.0218 (3)
H10 0.5813 0.3293 0.4725 0.026*
C11 0.65750 (15) 0.16852 (13) 0.46484 (12) 0.0260 (3)
H11A 0.5978 0.1466 0.5210 0.031*
H11B 0.6589 0.0856 0.4014 0.031*
C12 0.81407 (16) 0.24166 (14) 0.53369 (13) 0.0330 (3)
H12A 0.8121 0.3195 0.6031 0.040*
H12B 0.8576 0.1844 0.5655 0.040*
C13 0.90896 (17) 0.28434 (15) 0.45299 (15) 0.0380 (4)
H13A 0.9200 0.2064 0.3883 0.046*
H13B 1.0079 0.3364 0.5010 0.046*
C14 0.83863 (17) 0.36592 (15) 0.39717 (15) 0.0361 (4)
H14A 0.8996 0.3908 0.3430 0.043*
H14B 0.8349 0.4471 0.4618 0.043*
C15 0.68323 (15) 0.29066 (13) 0.32573 (13) 0.0283 (3)
H15A 0.6875 0.2125 0.2577 0.034*
H15B 0.6400 0.3466 0.2918 0.034*
C16 0.35441 (15) 0.23557 (12) 0.25946 (12) 0.0229 (3)
H16 0.4152 0.2331 0.1963 0.027*
C17 0.19670 (16) 0.16006 (14) 0.19300 (13) 0.0309 (3)
H17A 0.1928 0.0671 0.1500 0.037*
H17B 0.1315 0.1645 0.2522 0.037*
C18 0.14178 (19) 0.21631 (17) 0.10238 (15) 0.0404 (4)
H18A 0.2011 0.2042 0.0387 0.048*
H18B 0.0384 0.1683 0.0635 0.048*
C19 0.1523 (2) 0.36161 (18) 0.16395 (16) 0.0436 (4)
H19A 0.1255 0.3970 0.1021 0.052*
H19B 0.0814 0.3726 0.2187 0.052*
C20 0.30661 (19) 0.43826 (15) 0.23583 (14) 0.0364 (4)
H20A 0.3073 0.5301 0.2804 0.044*
H20B 0.3754 0.4379 0.1797 0.044*
C21 0.35828 (17) 0.37906 (13) 0.32525 (13) 0.0287 (3)
H21A 0.4597 0.4290 0.3689 0.034*
H21B 0.2940 0.3855 0.3852 0.034*
C22 0.51831 (16) −0.10974 (13) 0.09454 (13) 0.0290 (3)
H22A 0.6131 −0.1146 0.1338 0.035*
H22B 0.5259 −0.1158 0.0115 0.035*
C23 0.39668 (15) −0.22485 (12) 0.08888 (12) 0.0256 (3)
C24 0.37886 (18) −0.20513 (13) 0.21769 (12) 0.0301 (3)
H24A 0.2915 −0.2720 0.2158 0.036*
H24B 0.4659 −0.2183 0.2607 0.036*
C25 0.25412 (17) −0.23168 (15) 0.01216 (14) 0.0363 (4)
H25A 0.1768 −0.3060 0.0092 0.055*
H25B 0.2688 −0.2427 −0.0697 0.055*
H25C 0.2250 −0.1507 0.0477 0.055*
C26 0.44291 (19) −0.35104 (14) 0.03502 (14) 0.0373 (4)
H26A 0.5375 −0.3438 0.0822 0.056*
H26B 0.4524 −0.3656 −0.0486 0.056*
H26C 0.3685 −0.4246 0.0369 0.056*
B1 0.42494 (16) 0.02685 (14) 0.25703 (13) 0.0210 (3)
O1 0.36243 (11) −0.07729 (8) 0.28350 (8) 0.0261 (2)
O2 0.49222 (11) 0.01427 (9) 0.16035 (8) 0.0273 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0250 (7) 0.0294 (6) 0.0191 (6) 0.0096 (5) 0.0060 (5) 0.0110 (5)
C2 0.0404 (9) 0.0318 (7) 0.0276 (7) 0.0065 (6) 0.0118 (6) 0.0056 (6)
C3 0.0444 (9) 0.0484 (9) 0.0257 (8) 0.0151 (8) 0.0147 (7) 0.0040 (7)
C4 0.0306 (8) 0.0644 (10) 0.0285 (8) 0.0168 (7) 0.0142 (6) 0.0232 (7)
C5 0.0303 (8) 0.0443 (8) 0.0394 (8) 0.0094 (6) 0.0119 (6) 0.0263 (7)
C6 0.0299 (7) 0.0298 (7) 0.0296 (7) 0.0115 (6) 0.0099 (6) 0.0138 (6)
C7 0.0291 (7) 0.0248 (6) 0.0240 (7) 0.0063 (5) 0.0094 (5) 0.0102 (5)
C8 0.0238 (7) 0.0240 (6) 0.0219 (6) 0.0079 (5) 0.0073 (5) 0.0108 (5)
C9 0.0243 (6) 0.0216 (6) 0.0188 (6) 0.0083 (5) 0.0072 (5) 0.0092 (5)
C10 0.0229 (6) 0.0225 (6) 0.0210 (6) 0.0072 (5) 0.0066 (5) 0.0081 (5)
C11 0.0286 (7) 0.0282 (6) 0.0230 (7) 0.0092 (5) 0.0049 (5) 0.0106 (5)
C12 0.0309 (8) 0.0338 (7) 0.0318 (8) 0.0121 (6) 0.0013 (6) 0.0085 (6)
C13 0.0264 (8) 0.0372 (8) 0.0450 (9) 0.0078 (6) 0.0061 (7) 0.0093 (7)
C14 0.0276 (8) 0.0352 (8) 0.0442 (9) 0.0035 (6) 0.0120 (7) 0.0145 (7)
C15 0.0285 (7) 0.0301 (7) 0.0295 (7) 0.0067 (6) 0.0111 (6) 0.0140 (6)
C16 0.0265 (7) 0.0262 (6) 0.0219 (6) 0.0114 (5) 0.0088 (5) 0.0123 (5)
C17 0.0295 (8) 0.0356 (7) 0.0295 (7) 0.0114 (6) 0.0042 (6) 0.0136 (6)
C18 0.0355 (9) 0.0569 (10) 0.0353 (8) 0.0190 (8) 0.0016 (7) 0.0228 (7)
C19 0.0482 (10) 0.0627 (11) 0.0443 (9) 0.0370 (9) 0.0182 (8) 0.0340 (8)
C20 0.0511 (10) 0.0379 (8) 0.0391 (8) 0.0276 (7) 0.0211 (7) 0.0244 (7)
C21 0.0378 (8) 0.0276 (7) 0.0282 (7) 0.0158 (6) 0.0107 (6) 0.0142 (5)
C22 0.0338 (8) 0.0268 (7) 0.0280 (7) 0.0129 (6) 0.0142 (6) 0.0067 (5)
C23 0.0303 (7) 0.0246 (6) 0.0224 (7) 0.0103 (5) 0.0080 (5) 0.0068 (5)
C24 0.0475 (9) 0.0219 (6) 0.0245 (7) 0.0128 (6) 0.0112 (6) 0.0096 (5)
C25 0.0369 (9) 0.0403 (8) 0.0265 (7) 0.0126 (7) 0.0036 (6) 0.0054 (6)
C26 0.0498 (10) 0.0284 (7) 0.0339 (8) 0.0173 (7) 0.0133 (7) 0.0064 (6)
B1 0.0235 (7) 0.0238 (7) 0.0179 (7) 0.0080 (5) 0.0047 (5) 0.0094 (5)
O1 0.0400 (6) 0.0207 (4) 0.0199 (5) 0.0090 (4) 0.0112 (4) 0.0082 (4)
O2 0.0363 (6) 0.0229 (4) 0.0255 (5) 0.0100 (4) 0.0153 (4) 0.0083 (4)

Geometric parameters (Å, º)

C1—C6 1.3902 (19) C16—C17 1.531 (2)
C1—C2 1.3983 (18) C16—C21 1.5316 (17)
C1—C7 1.4777 (17) C16—H16 1.0000
C2—C3 1.388 (2) C17—C18 1.532 (2)
C2—H2 0.9500 C17—H17A 0.9900
C3—C4 1.379 (2) C17—H17B 0.9900
C3—H3 0.9500 C18—C19 1.528 (2)
C4—C5 1.381 (2) C18—H18A 0.9900
C4—H4 0.9500 C18—H18B 0.9900
C5—C6 1.3879 (19) C19—C20 1.524 (3)
C5—H5 0.9500 C19—H19A 0.9900
C6—H6 0.9500 C19—H19B 0.9900
C7—C8 1.3264 (18) C20—C21 1.5338 (19)
C7—H7 0.9500 C20—H20A 0.9900
C8—C9 1.5251 (16) C20—H20B 0.9900
C8—H8 0.9500 C21—H21A 0.9900
C9—C16 1.5672 (17) C21—H21B 0.9900
C9—C10 1.5717 (18) C22—O2 1.4424 (15)
C9—B1 1.6034 (18) C22—C23 1.5238 (19)
C10—C11 1.5369 (18) C22—H22A 0.9900
C10—C15 1.5386 (17) C22—H22B 0.9900
C10—H10 1.0000 C23—C24 1.5227 (18)
C11—C12 1.525 (2) C23—C25 1.523 (2)
C11—H11A 0.9900 C23—C26 1.5285 (18)
C11—H11B 0.9900 C24—O1 1.4408 (15)
C12—C13 1.523 (2) C24—H24A 0.9900
C12—H12A 0.9900 C24—H24B 0.9900
C12—H12B 0.9900 C25—H25A 0.9800
C13—C14 1.524 (2) C25—H25B 0.9800
C13—H13A 0.9900 C25—H25C 0.9800
C13—H13B 0.9900 C26—H26A 0.9800
C14—C15 1.528 (2) C26—H26B 0.9800
C14—H14A 0.9900 C26—H26C 0.9800
C14—H14B 0.9900 B1—O1 1.3565 (17)
C15—H15A 0.9900 B1—O2 1.3682 (16)
C15—H15B 0.9900
C6—C1—C2 117.89 (12) C17—C16—H16 106.8
C6—C1—C7 122.74 (12) C21—C16—H16 106.8
C2—C1—C7 119.37 (12) C9—C16—H16 106.8
C3—C2—C1 120.89 (14) C18—C17—C16 111.14 (12)
C3—C2—H2 119.6 C18—C17—H17A 109.4
C1—C2—H2 119.6 C16—C17—H17A 109.4
C4—C3—C2 120.37 (14) C18—C17—H17B 109.4
C4—C3—H3 119.8 C16—C17—H17B 109.4
C2—C3—H3 119.8 H17A—C17—H17B 108.0
C3—C4—C5 119.46 (13) C19—C18—C17 111.29 (13)
C3—C4—H4 120.3 C19—C18—H18A 109.4
C5—C4—H4 120.3 C17—C18—H18A 109.4
C4—C5—C6 120.36 (14) C19—C18—H18B 109.4
C4—C5—H5 119.8 C17—C18—H18B 109.4
C6—C5—H5 119.8 H18A—C18—H18B 108.0
C5—C6—C1 121.03 (13) C20—C19—C18 111.51 (12)
C5—C6—H6 119.5 C20—C19—H19A 109.3
C1—C6—H6 119.5 C18—C19—H19A 109.3
C8—C7—C1 125.85 (12) C20—C19—H19B 109.3
C8—C7—H7 117.1 C18—C19—H19B 109.3
C1—C7—H7 117.1 H19A—C19—H19B 108.0
C7—C8—C9 127.42 (12) C19—C20—C21 111.18 (13)
C7—C8—H8 116.3 C19—C20—H20A 109.4
C9—C8—H8 116.3 C21—C20—H20A 109.4
C8—C9—C16 109.58 (10) C19—C20—H20B 109.4
C8—C9—C10 110.43 (10) C21—C20—H20B 109.4
C16—C9—C10 111.93 (10) H20A—C20—H20B 108.0
C8—C9—B1 109.36 (10) C16—C21—C20 110.77 (12)
C16—C9—B1 108.39 (10) C16—C21—H21A 109.5
C10—C9—B1 107.06 (10) C20—C21—H21A 109.5
C11—C10—C15 109.13 (11) C16—C21—H21B 109.5
C11—C10—C9 110.54 (10) C20—C21—H21B 109.5
C15—C10—C9 115.16 (11) H21A—C21—H21B 108.1
C11—C10—H10 107.2 O2—C22—C23 112.27 (10)
C15—C10—H10 107.2 O2—C22—H22A 109.2
C9—C10—H10 107.2 C23—C22—H22A 109.2
C12—C11—C10 112.66 (11) O2—C22—H22B 109.2
C12—C11—H11A 109.1 C23—C22—H22B 109.2
C10—C11—H11A 109.1 H22A—C22—H22B 107.9
C12—C11—H11B 109.1 C24—C23—C25 111.00 (12)
C10—C11—H11B 109.1 C24—C23—C22 107.48 (11)
H11A—C11—H11B 107.8 C25—C23—C22 110.22 (12)
C13—C12—C11 111.29 (12) C24—C23—C26 108.90 (12)
C13—C12—H12A 109.4 C25—C23—C26 110.06 (12)
C11—C12—H12A 109.4 C22—C23—C26 109.12 (11)
C13—C12—H12B 109.4 O1—C24—C23 112.89 (11)
C11—C12—H12B 109.4 O1—C24—H24A 109.0
H12A—C12—H12B 108.0 C23—C24—H24A 109.0
C12—C13—C14 110.08 (12) O1—C24—H24B 109.0
C12—C13—H13A 109.6 C23—C24—H24B 109.0
C14—C13—H13A 109.6 H24A—C24—H24B 107.8
C12—C13—H13B 109.6 C23—C25—H25A 109.5
C14—C13—H13B 109.6 C23—C25—H25B 109.5
H13A—C13—H13B 108.2 H25A—C25—H25B 109.5
C13—C14—C15 111.34 (12) C23—C25—H25C 109.5
C13—C14—H14A 109.4 H25A—C25—H25C 109.5
C15—C14—H14A 109.4 H25B—C25—H25C 109.5
C13—C14—H14B 109.4 C23—C26—H26A 109.5
C15—C14—H14B 109.4 C23—C26—H26B 109.5
H14A—C14—H14B 108.0 H26A—C26—H26B 109.5
C14—C15—C10 111.18 (12) C23—C26—H26C 109.5
C14—C15—H15A 109.4 H26A—C26—H26C 109.5
C10—C15—H15A 109.4 H26B—C26—H26C 109.5
C14—C15—H15B 109.4 O1—B1—O2 122.35 (11)
C10—C15—H15B 109.4 O1—B1—C9 119.72 (11)
H15A—C15—H15B 108.0 O2—B1—C9 117.93 (11)
C17—C16—C21 108.63 (11) B1—O1—C24 120.49 (10)
C17—C16—C9 112.83 (11) B1—O2—C22 119.36 (10)
C21—C16—C9 114.57 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C22—H22B···O2i 0.99 2.69 3.5773 (18) 150

Symmetry code: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2094).

References

  1. Althaus, M., Mahmood, A., Suárez, J. R., Thomas, S. P. & Aggarwal, V. K. (2010). J. Am. Chem. Soc. 132, 4025–4028. [DOI] [PubMed]
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Cambridge Soft (2001). CHEMDRAW Ultra Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
  4. Carosi, L. & Hall, D. G. (2007). Angew. Chem. Int. Ed. 46, 5913–5915. [DOI] [PubMed]
  5. Clary, J. W., Rettenmaier, T. J., Snelling, R., Bryks, W., Banwell, J., Wipke, W. T. & Singaram, B. (2011). J. Org. Chem. 76, 9602–9610. [DOI] [PubMed]
  6. Fandrick, K. R., Fandrick, D. R., Gao, J. J., Reeves, J. T., Tan, Z., Li, W., Song, J. J., Lu, B., Yee, N. K. & Senanayake, C. H. (2010). Org. Lett. 12, 3748–3751. [DOI] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Hesse, M. J., Butts, C. P., Willis, C. L. & Aggarwal, V. K. (2012). Angew. Chem. Int. Ed. 51, 12444–12448. [DOI] [PubMed]
  9. Incerti-Pradillos, C. A., Kabeshov, M. A. & Malkov, A. V. (2013). Angew. Chem. Int. Ed. 52, 5338–5341. [DOI] [PubMed]
  10. Lombardo, M., Morganti, S., Tozzi, M. & Trombini, C. (2002). Eur. J. Org. Chem. pp. 2823–2830.
  11. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sopková-de Oliveira Santos, J., Lancelot, J.-C., Bouillon, A. & Rault, S. (2003). Acta Cryst. C59, o111–o113. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813021739/go2094sup1.cif

e-69-o1403-sup1.cif (29.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813021739/go2094Isup2.hkl

e-69-o1403-Isup2.hkl (253.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813021739/go2094Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES