Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 23;69(Pt 9):i60. doi: 10.1107/S1600536813023106

BaMnII 2MnIII(PO4)3

Abderrazzak Assani a, Mohamed Saadi a, Ghaleb Alhakmi a,*, Elham Houmadi a, Lahcen El Ammari a
PMCID: PMC3884417  PMID: 24426979

Abstract

The title compound, barium trimanganese tris­(ortho­phosphate), was synthesized hydro­thermally. Its structure is isotypic with the lead and strontium analogues AMnII 2MnIII(PO4)3 (A = Pb, Sr). Except for two O atoms on general positions, all atoms are located on special positions. The Ba and one P atom exhibit mm2 symmetry, the MnII atom 2/m symmetry, the MnIII atom and the other P atom .2. symmetry and two O atoms are located on mirror planes. The crystal structure contains two types of chains running parallel to [010]. One chain is linear and is composed of alternating MnIIIO6 octa­hedra and PO4 tetra­hedra sharing vertices; the other chain has a zigzag arrangement and is built up from two edge-sharing MnIIO6 octa­hedra connected to PO4 tetra­hedra by edges and vertices. The two types of chains are linked through PO4 tetra­hedra into an open three-dimensional framework which contains channels parallel to [100] and [010] in which the BaII ions are located. The alkaline earth cation is surrounded by eight O atoms in the form of a slightly distorted bicapped trigonal prism.

Related literature  

For the isotypic lead and strontium analogues, see: Alhakmi et al. (2013a ) and (2013b ), respectively. For related structures, see: Adam et al. (2009); Assani et al. (2011a ,b ). For bond-valence analysis, see: Brown & Altermatt (1985). For the by- product phase, see: Moore & Araki (1973).

Experimental  

Crystal data  

  • BaMn3(PO4)3

  • M r = 587.07

  • Orthorhombic, Inline graphic

  • a = 10.3038 (7) Å

  • b = 14.0163 (11) Å

  • c = 6.7126 (4) Å

  • V = 969.44 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.39 mm−1

  • T = 296 K

  • 0.29 × 0.17 × 0.13 mm

Data collection  

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.164, T max = 0.376

  • 3968 measured reflections

  • 811 independent reflections

  • 732 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.055

  • S = 1.09

  • 811 reflections

  • 53 parameters

  • Δρmax = 1.86 e Å−3

  • Δρmin = −0.78 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813023106/wm2767sup1.cif

e-69-00i60-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813023106/wm2767Isup2.hkl

e-69-00i60-Isup2.hkl (39.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

1. Comment

Investigating functional compounds by means of the hydrothermal process, particularly phosphates, we have succeeded to synthesize and structurally characterize new mixed-cation orthophosphates with open frameworks, e.g. the isotypic pair Ag2M3(HPO4)(PO4)2 (M = Co, Ni) (Assani et al., 2011a,b) that is closely related to the alluaudite structure. Others investigated phosphates include compounds crystallizing in the AMnII2MnIII(PO4)3 (A = Pb, Sr) structure type (Alhakmi et al. (2013a,b) with rarely observed mixed-valent MnII/III cations (Adam et al., 2009). The present article reports on synthesis and crystal structure of the isotypic barium analogue, BaMnII2MnIII(PO4)3.

All atoms of this structure are in special positions, except two oxygen atoms (O3, O4) in general position of space group Imma. The connection of the metal-oxygen polyhedra, viz. BaO8 polyhedra, MnO6 octahedra and PO4 tetrahedra is shown in Fig. 1. The framework of the crystal structure consists of two isolated PO4 tetrahedra linked to MnO6 octahedra, building two types of chains running along [010]. The first chain is formed by alternating MnIIIO6 octahedra and PO4 tetrahedra sharing vertices. The second chain is built up from two edge-sharing MnIIO6 octahedra leading to the formation of MnII2O10 dimers that are connected to two PO4 tetrahedra by a common edge. These two types of chains are linked together by common vertices of PO4 tetrahedra to form an open three-dimensional framework that delimits two types of tunnels parallel to [100] and [010] where the BaII ions are located (Fig. 2). The coordination sphere of the BaII ion is that of a bicapped trigonal prism.

Bond valence sum calculation (Brown & Altermatt, 1985) of BaMnII2MnIII(PO4)3 resulted in expected values (in valence units) for the ions Ba1II (2.26), Mn1III (3.01), Mn2II (2.09), P1V (4.99), and P2V (4.87). The three-dimensional framework of BaMnII2MnIII(PO4)3 and its isotypic AMnII2MnIII(PO4)3 (A = Pb, Sr) analogues, resemble that of the Ag2M3(HPO4)(PO4)2 type with M = Ni or Co, whereby the two Ag+ cations in the channels are replaced by BaII, PbII or SrII.

2. Experimental

The hydrothermal treatment of a reaction mixture of barium, manganese and phosphate precursors in a proportion corresponding to the molar ratio Ba: Mn: P = 1: 3: 3 has allowed to isolate brown block-shaped crystals corresponding to the title compound as well as a parallelepipedic colourless crystals which were identified to be the known manganese phosphate Mn5(HPO4)2(PO4)2.4H2O (Moore & Araki, 1973). The hydrothermal reaction was conducted in a 23 ml Teflon-lined autoclave, filled to 50% with distilled water and under autogeneous pressure at 463 K for five days.

3. Refinement

The highest peak and the deepest hole in the final Fourier map are at 0.82 Å and 1.00 Å away from Ba1.

Figures

Fig. 1.

Fig. 1.

The main building units of the crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, -y + 1, -z; (ii) -x, y - 1/2, -z; (iii) x, y - 1/2, -z; (iv) -x, -y + 1, -z; (v) x, y, z - 1; (vi) -x, -y + 1/2, z - 1; (vii) -x, -y + 1/2, z; (viii) -x + 1/2, y - 1/2, z + 1/2; (ix) x - 1/2, -y + 1/2, -z + 1/2; (x) -x + 1/2, -y + 1/2, -z + 1/2; (xi) x - 1/2, y - 1/2, z + 1/2; (xii) -x, -y, -z + 1; (xiii) -x + 1/2, -y + 1, z + 1/2; (xiv) -x + 1/2, y, -z + 1/2.]

Fig. 2.

Fig. 2.

Polyhedral representation of BaMn3(PO4)3 with channels running parallel to [010].

Crystal data

BaMn3(PO4)3 F(000) = 1088
Mr = 587.07 Dx = 4.022 Mg m3
Orthorhombic, Imma Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2b 2 Cell parameters from 811 reflections
a = 10.3038 (7) Å θ = 3.4–30.5°
b = 14.0163 (11) Å µ = 8.39 mm1
c = 6.7126 (4) Å T = 296 K
V = 969.44 (12) Å3 Block, brown
Z = 4 0.29 × 0.17 × 0.13 mm

Data collection

Bruker X8 APEX diffractometer 811 independent reflections
Radiation source: fine-focus sealed tube 732 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
φ and ω scans θmax = 30.5°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −14→13
Tmin = 0.164, Tmax = 0.376 k = −19→20
3968 measured reflections l = −9→7

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Primary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.020 Secondary atom site location: difference Fourier map
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0353P)2] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
811 reflections Δρmax = 1.86 e Å3
53 parameters Δρmin = −0.78 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ba1 0.0000 0.2500 −0.11499 (4) 0.01125 (10)
Mn1 0.0000 0.5000 0.5000 0.00794 (15)
Mn2 0.2500 0.36758 (4) 0.2500 0.01092 (13)
P1 0.0000 0.2500 0.39677 (16) 0.0078 (2)
P2 0.2500 0.57094 (6) 0.2500 0.00851 (17)
O1 0.0000 0.15998 (16) 0.5237 (4) 0.0115 (5)
O2 0.1185 (2) 0.2500 0.2553 (3) 0.0107 (4)
O3 0.21046 (19) 0.63040 (12) 0.0721 (3) 0.0133 (3)
O4 0.36337 (16) 0.49927 (12) 0.1983 (2) 0.0103 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ba1 0.01480 (16) 0.01187 (15) 0.00707 (14) 0.000 0.000 0.000
Mn1 0.0102 (3) 0.0081 (3) 0.0056 (3) 0.000 0.000 −0.0001 (2)
Mn2 0.0154 (3) 0.0063 (2) 0.0110 (2) 0.000 −0.00074 (18) 0.000
P1 0.0104 (5) 0.0065 (5) 0.0066 (5) 0.000 0.000 0.000
P2 0.0121 (4) 0.0064 (4) 0.0071 (3) 0.000 0.0010 (3) 0.000
O1 0.0166 (12) 0.0049 (9) 0.0129 (11) 0.000 0.000 0.0014 (8)
O2 0.0121 (11) 0.0103 (11) 0.0098 (10) 0.000 0.0035 (8) 0.000
O3 0.0183 (8) 0.0114 (8) 0.0100 (7) 0.0027 (6) 0.0006 (7) 0.0033 (6)
O4 0.0123 (8) 0.0087 (7) 0.0100 (7) 0.0014 (6) 0.0016 (6) 0.0009 (5)

Geometric parameters (Å, º)

Ba1—O1i 2.734 (2) Mn2—O2 2.1337 (16)
Ba1—O1ii 2.734 (2) Mn2—O2xiii 2.1337 (16)
Ba1—O3iii 2.7560 (18) Mn2—O3iii 2.2006 (17)
Ba1—O3iv 2.7560 (18) Mn2—O3ix 2.2006 (17)
Ba1—O3v 2.7560 (18) Mn2—O4 2.2117 (17)
Ba1—O3vi 2.7560 (18) Mn2—O4x 2.2117 (17)
Ba1—O2 2.769 (2) P1—O1 1.523 (2)
Ba1—O2vii 2.769 (2) P1—O1vii 1.523 (2)
Mn1—O4viii 1.9377 (17) P1—O2vii 1.547 (2)
Mn1—O4ix 1.9377 (17) P1—O2 1.547 (2)
Mn1—O4x 1.9377 (17) P2—O3x 1.5119 (17)
Mn1—O4xi 1.9377 (17) P2—O3 1.5119 (17)
Mn1—O1vii 2.248 (2) P2—O4x 1.5792 (17)
Mn1—O1xii 2.248 (2) P2—O4 1.5792 (17)
O1i—Ba1—O1ii 54.97 (9) O4ix—Mn1—O1vii 87.51 (6)
O1i—Ba1—O3iii 111.92 (5) O4x—Mn1—O1vii 92.49 (6)
O1ii—Ba1—O3iii 79.16 (5) O4xi—Mn1—O1vii 87.51 (6)
O1i—Ba1—O3iv 79.16 (5) O4viii—Mn1—O1xii 87.51 (6)
O1ii—Ba1—O3iv 111.92 (5) O4ix—Mn1—O1xii 92.49 (6)
O3iii—Ba1—O3iv 168.02 (7) O4x—Mn1—O1xii 87.51 (6)
O1i—Ba1—O3v 79.16 (5) O4xi—Mn1—O1xii 92.49 (6)
O1ii—Ba1—O3v 111.92 (5) O1vii—Mn1—O1xii 180.0
O3iii—Ba1—O3v 74.93 (8) O2—Mn2—O2xiii 78.86 (10)
O3iv—Ba1—O3v 103.78 (8) O2—Mn2—O3iii 84.77 (8)
O1i—Ba1—O3vi 111.92 (5) O2xiii—Mn2—O3iii 96.38 (8)
O1ii—Ba1—O3vi 79.16 (5) O2—Mn2—O3ix 96.38 (8)
O3iii—Ba1—O3vi 103.78 (8) O2xiii—Mn2—O3ix 84.77 (8)
O3iv—Ba1—O3vi 74.93 (8) O3iii—Mn2—O3ix 178.52 (9)
O3v—Ba1—O3vi 168.02 (7) O2—Mn2—O4 169.28 (7)
O1i—Ba1—O2 142.77 (4) O2xiii—Mn2—O4 107.86 (7)
O1ii—Ba1—O2 142.77 (4) O3iii—Mn2—O4 86.16 (6)
O3iii—Ba1—O2 63.86 (5) O3ix—Mn2—O4 92.61 (7)
O3iv—Ba1—O2 104.67 (5) O2—Mn2—O4x 107.86 (7)
O3v—Ba1—O2 63.86 (5) O2xiii—Mn2—O4x 169.28 (7)
O3vi—Ba1—O2 104.67 (5) O3iii—Mn2—O4x 92.61 (7)
O1i—Ba1—O2vii 142.77 (4) O3ix—Mn2—O4x 86.16 (6)
O1ii—Ba1—O2vii 142.77 (4) O4—Mn2—O4x 66.86 (9)
O3iii—Ba1—O2vii 104.67 (5) O1—P1—O1vii 111.94 (19)
O3iv—Ba1—O2vii 63.86 (5) O1—P1—O2vii 110.09 (7)
O3v—Ba1—O2vii 104.67 (5) O1vii—P1—O2vii 110.09 (7)
O3vi—Ba1—O2vii 63.86 (5) O1—P1—O2 110.09 (7)
O2—Ba1—O2vii 52.33 (10) O1vii—P1—O2 110.09 (7)
O4viii—Mn1—O4ix 180.0 O2vii—P1—O2 104.27 (19)
O4viii—Mn1—O4x 93.19 (10) O3x—P2—O3 113.10 (14)
O4ix—Mn1—O4x 86.81 (10) O3x—P2—O4x 112.12 (9)
O4viii—Mn1—O4xi 86.81 (10) O3—P2—O4x 108.95 (10)
O4ix—Mn1—O4xi 93.19 (10) O3x—P2—O4 108.95 (10)
O4x—Mn1—O4xi 180.0 O3—P2—O4 112.12 (9)
O4viii—Mn1—O1vii 92.49 (6) O4x—P2—O4 100.99 (13)

Symmetry codes: (i) x, y, z−1; (ii) −x, −y+1/2, z−1; (iii) x, −y+1, −z; (iv) −x, y−1/2, −z; (v) x, y−1/2, −z; (vi) −x, −y+1, −z; (vii) −x, −y+1/2, z; (viii) x−1/2, y, −z+1/2; (ix) −x+1/2, −y+1, z+1/2; (x) −x+1/2, y, −z+1/2; (xi) x−1/2, −y+1, z+1/2; (xii) x, y+1/2, −z+1; (xiii) −x+1/2, −y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2767).

References

  1. Adam, L., Guesdon, A. & Raveau, B. (2009). J. Solid State Chem. 182, 2338–2343.
  2. Alhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2013a). Acta Cryst. E69, i40. [DOI] [PMC free article] [PubMed]
  3. Alhakmi, G., Assani, A., Saadi, M., Follet, C. & El Ammari, L. (2013b). Acta Cryst. E69, i56. [DOI] [PMC free article] [PubMed]
  4. Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011a). Acta Cryst. E67, i41. [DOI] [PMC free article] [PubMed]
  5. Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011b). Acta Cryst. E67, i40. [DOI] [PMC free article] [PubMed]
  6. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  7. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  8. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Moore, P. B. & Araki, T. (1973). Am. Mineral. 58, 302–307.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813023106/wm2767sup1.cif

e-69-00i60-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813023106/wm2767Isup2.hkl

e-69-00i60-Isup2.hkl (39.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES