Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 21;69(Pt 9):o1453. doi: 10.1107/S1600536813022836

4-Methyl­benzyl­ammonium nitrate

Sofian Gatfaoui a, Houda Marouani a,*, Mohamed Rzaigui a
PMCID: PMC3884420  PMID: 24427079

Abstract

In the title salt, C8H12N+·NO3 , the N atom of the 4-methyl­benzyl­ammonium cation is displaced by 1.366 (2) Å from the mean plane of the other atoms. In the crystal, the cations are connected to the anions by N—H⋯O and N—H⋯(O,O) hydrogen bonds, generating a layered network parallel to (100). A weak C—H⋯O inter­action also occurs.

Related literature  

For related structures, see: Kefi et al. (2011); Rahmouni et al. (2011). For a discussion on hydrogen bonding, see: Brown (1976); Blessing (1986). For aromatic π–π stacking inter­actions, see: Janiak (2000). For graph-set notation of hydrogen-bonding patterns, see: Bernstein et al. (1995).graphic file with name e-69-o1453-scheme1.jpg

Experimental  

Crystal data  

  • C8H12N+·NO3

  • M r = 184.20

  • Monoclinic, Inline graphic

  • a = 15.097 (2) Å

  • b = 5.8121 (10) Å

  • c = 10.486 (2) Å

  • β = 99.75 (2)°

  • V = 906.8 (3) Å3

  • Z = 4

  • Ag Kα radiation

  • λ = 0.56083 Å

  • μ = 0.06 mm−1

  • T = 293 K

  • 0.40 × 0.35 × 0.30 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • 6579 measured reflections

  • 4430 independent reflections

  • 2415 reflections with I > 2σ(I)

  • R int = 0.033

  • 2 standard reflections every 120 min intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.071

  • wR(F 2) = 0.216

  • S = 0.96

  • 4430 reflections

  • 122 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813022836/hb7131sup1.cif

e-69-o1453-sup1.cif (14.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813022836/hb7131Isup2.hkl

e-69-o1453-Isup2.hkl (212.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813022836/hb7131Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.89 2.07 2.936 (3) 164
N1—H1A⋯O3i 0.89 2.52 3.065 (2) 120
N1—H1B⋯O3ii 0.89 2.12 2.9378 (19) 153
N1—H1C⋯O3 0.89 2.01 2.900 (2) 179
N1—H1C⋯O2 0.89 2.55 3.158 (3) 126
C8—H8A⋯O1iii 0.97 2.45 3.234 (2) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Tunisian Ministry of HEScR.

supplementary crystallographic information

1. Comment

We report here the preparation and the crystal structure of the title compound, C8H12N·NO3 (I).

The asymmetric unit of (I) consists of one nitrate anion and one 4-methylbenzylammonium cation (Figure 1). The 4-methylbenzylammonium cations are connected to the nitrate anions through weak N—H···O and C—H···O hydrogen bonds with donor-acceptor distances varying between 2.900 (2) and 3.234 (2) Å [d (N(C)···O) > 2.73 Å] (Brown, 1976); (Blessing, 1986) (Table 1, Figure 2).

In the nitrate anion, the distance N2—O2 is significantly shorter than the N2—O1 and N2—O3 distances because O2 is applied in only one hydrogen bond (table1) while O1 and O3 are applied in two and three hydrogen bonds, respectively. These geometrical features have also been noticed in other crystal structures (Rahmouni, et al., 2011).

Each organic entity is bounded to three different nitrate anions through five N—H···O hydrogen bonds forming R12(4) and R42(8) motifs (Fig. 3) (Bernstein, et al., 1995). Examination of the 4-methylbenzylammonium cation shows that the bond distances and angles show no significant difference from those obtained in other structures involving the same organic groups (Kefi, et al., 2011). The aromatic ring of the organic cation is essentially planar with an r.m.s deviation of 0.0099 Å. The inter-planar distance between nearby phenyl rings is in the vicinity of 5.925 Å, which is much longer than 3.80 Å, value required for the formation of π–π interactions (Janiak, 2000).

The crystal cohesion and stability are ensured by electrostatic and van der Waals interactions which, together with N—H···O and C—H···O hydrogen bonds, build up a two-dimensional network.

2. Experimental

An aqueous solution containing 1 mmol of HNO3 in 10 ml of water, was added to 1 mmol of 4-xylylamine in 10 ml of ethanol. The obtained solution was stirred for 20 min and then left to stand at room temperature. Colorless prisms of the title compound were obtained after some days.

3. Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) or 0.96 Å (methyl), N—H = 0.89 Å with Uiso(H) = 1.2Ueq(C or N).

Figures

Fig. 1.

Fig. 1.

An ORTEP view of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dotted lines.

Fig. 2.

Fig. 2.

Projection of (I) along the b axis. The H-atoms not involved in H-bonding are omitted.

Fig. 3.

Fig. 3.

Hydrogen bond motifs in (I).

Crystal data

C8H12N+·NO3 F(000) = 392
Mr = 184.20 Dx = 1.349 Mg m3
Monoclinic, P21/c Ag Kα radiation, λ = 0.56083 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 15.097 (2) Å θ = 9–11°
b = 5.8121 (10) Å µ = 0.06 mm1
c = 10.486 (2) Å T = 293 K
β = 99.75 (2)° Prism, colorless
V = 906.8 (3) Å3 0.40 × 0.35 × 0.30 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.033
Radiation source: fine-focus sealed tube θmax = 28.0°, θmin = 2.2°
Graphite monochromator h = −2→25
non–profiled ω scans k = −9→2
6579 measured reflections l = −17→17
4430 independent reflections 2 standard reflections every 120 min
2415 reflections with I > 2σ(I) intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216 H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0879P)2] where P = (Fo2 + 2Fc2)/3
4430 reflections (Δ/σ)max = 0.011
122 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.42764 (9) 0.7571 (2) 0.58898 (11) 0.0491 (4)
N2 0.40982 (10) 0.7432 (3) 0.70119 (15) 0.0495 (4)
N1 0.40818 (11) 1.2425 (3) 0.52659 (18) 0.0576 (5)
H1A 0.4136 1.3250 0.5990 0.086*
H1B 0.4500 1.2859 0.4811 0.086*
H1C 0.4151 1.0940 0.5464 0.086*
C6 0.20891 (13) 1.2197 (3) 0.60241 (18) 0.0485 (5)
H6 0.2267 1.3600 0.6411 0.058*
C2 0.11570 (12) 0.8824 (3) 0.59300 (17) 0.0455 (5)
C7 0.14446 (13) 1.0904 (4) 0.64823 (18) 0.0510 (5)
H7 0.1198 1.1447 0.7180 0.061*
C5 0.24736 (12) 1.1432 (3) 0.49952 (16) 0.0420 (4)
C4 0.21981 (13) 0.9329 (3) 0.44485 (18) 0.0494 (5)
H4 0.2453 0.8768 0.3763 0.059*
C8 0.31895 (14) 1.2799 (4) 0.44969 (19) 0.0538 (5)
H8A 0.3200 1.2369 0.3606 0.065*
H8B 0.3042 1.4423 0.4511 0.065*
C3 0.15502 (13) 0.8059 (3) 0.49093 (19) 0.0517 (5)
H3 0.1373 0.6654 0.4525 0.062*
O1 0.39214 (12) 0.5519 (3) 0.74280 (15) 0.0818 (6)
O2 0.41003 (13) 0.9155 (3) 0.76752 (16) 0.0859 (6)
C1 0.04360 (14) 0.7443 (4) 0.6414 (2) 0.0632 (6)
H1D 0.0477 0.7676 0.7329 0.095*
H1E 0.0516 0.5840 0.6244 0.095*
H1F −0.0144 0.7933 0.5977 0.095*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0556 (8) 0.0473 (8) 0.0478 (7) 0.0014 (6) 0.0184 (6) 0.0008 (6)
N2 0.0483 (9) 0.0536 (10) 0.0499 (9) 0.0024 (8) 0.0175 (7) −0.0024 (8)
N1 0.0558 (10) 0.0390 (9) 0.0870 (12) −0.0007 (8) 0.0379 (9) 0.0063 (9)
C6 0.0555 (11) 0.0418 (10) 0.0504 (10) −0.0018 (9) 0.0157 (9) −0.0056 (9)
C2 0.0400 (9) 0.0471 (11) 0.0494 (10) 0.0003 (9) 0.0073 (8) 0.0096 (9)
C7 0.0523 (11) 0.0537 (12) 0.0506 (10) 0.0038 (10) 0.0197 (9) −0.0026 (9)
C5 0.0471 (10) 0.0377 (9) 0.0428 (9) −0.0005 (9) 0.0117 (8) 0.0029 (8)
C4 0.0628 (12) 0.0432 (11) 0.0459 (10) 0.0024 (10) 0.0195 (9) −0.0029 (8)
C8 0.0662 (13) 0.0471 (12) 0.0531 (10) −0.0053 (10) 0.0245 (10) 0.0021 (9)
C3 0.0607 (12) 0.0409 (11) 0.0541 (11) −0.0055 (9) 0.0116 (10) −0.0006 (9)
O1 0.1100 (14) 0.0670 (11) 0.0772 (11) −0.0136 (10) 0.0413 (10) 0.0139 (9)
O2 0.1169 (15) 0.0737 (12) 0.0739 (10) 0.0027 (11) 0.0353 (10) −0.0280 (9)
C1 0.0542 (12) 0.0675 (15) 0.0705 (13) −0.0100 (11) 0.0178 (11) 0.0083 (12)

Geometric parameters (Å, º)

O3—N2 1.2533 (19) C2—C1 1.508 (3)
N2—O2 1.219 (2) C7—H7 0.9300
N2—O1 1.240 (2) C5—C4 1.384 (3)
N1—C8 1.464 (3) C5—C8 1.505 (2)
N1—H1A 0.8900 C4—C3 1.376 (3)
N1—H1B 0.8900 C4—H4 0.9300
N1—H1C 0.8900 C8—H8A 0.9700
C6—C7 1.379 (3) C8—H8B 0.9700
C6—C5 1.383 (2) C3—H3 0.9300
C6—H6 0.9300 C1—H1D 0.9600
C2—C7 1.378 (3) C1—H1E 0.9600
C2—C3 1.382 (3) C1—H1F 0.9600
O2—N2—O1 121.05 (17) C4—C5—C8 120.39 (16)
O2—N2—O3 120.18 (18) C3—C4—C5 120.63 (17)
O1—N2—O3 118.77 (17) C3—C4—H4 119.7
C8—N1—H1A 109.5 C5—C4—H4 119.7
C8—N1—H1B 109.5 N1—C8—C5 112.22 (16)
H1A—N1—H1B 109.5 N1—C8—H8A 109.2
C8—N1—H1C 109.5 C5—C8—H8A 109.2
H1A—N1—H1C 109.5 N1—C8—H8B 109.2
H1B—N1—H1C 109.5 C5—C8—H8B 109.2
C7—C6—C5 120.72 (18) H8A—C8—H8B 107.9
C7—C6—H6 119.6 C4—C3—C2 121.56 (19)
C5—C6—H6 119.6 C4—C3—H3 119.2
C7—C2—C3 117.47 (17) C2—C3—H3 119.2
C7—C2—C1 121.30 (18) C2—C1—H1D 109.5
C3—C2—C1 121.2 (2) C2—C1—H1E 109.5
C2—C7—C6 121.50 (18) H1D—C1—H1E 109.5
C2—C7—H7 119.3 C2—C1—H1F 109.5
C6—C7—H7 119.3 H1D—C1—H1F 109.5
C6—C5—C4 118.11 (17) H1E—C1—H1F 109.5
C6—C5—C8 121.48 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.89 2.07 2.936 (3) 164
N1—H1A···O3i 0.89 2.52 3.065 (2) 120
N1—H1B···O3ii 0.89 2.12 2.9378 (19) 153
N1—H1C···O3 0.89 2.01 2.900 (2) 179
N1—H1C···O2 0.89 2.55 3.158 (3) 126
C8—H8A···O1iii 0.97 2.45 3.234 (2) 138

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+2, −z+1; (iii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7131).

References

  1. Bernstein, J., David, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Blessing, R. H. (1986). Acta Cryst. B42, 613–621.
  3. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal impact GbR, Bonn, Germany.
  4. Brown, I. D. (1976). Acta Cryst. A32, 24–31.
  5. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  8. Janiak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  9. Kefi, R., Jeanneau, E., Lefebvre, F. & Ben Nasr, C. (2011). Acta Cryst. C67, m126–m129. [DOI] [PubMed]
  10. Rahmouni, H., Smirani Sta, W., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, o2334. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813022836/hb7131sup1.cif

e-69-o1453-sup1.cif (14.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813022836/hb7131Isup2.hkl

e-69-o1453-Isup2.hkl (212.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813022836/hb7131Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES