Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 17;69(Pt 9):o1443. doi: 10.1107/S1600536813022563

Benzene-1,2,4,5-tetra­carb­oxy­lic acid bis­(1,3,7-trimethyl-2,3,6,7-tetra­hydro-1H-purine-2,6-dione)

Hadi D Arman a, Edward R T Tiekink b,*
PMCID: PMC3884421  PMID: 24427071

Abstract

The asymmetric unit of the title co-crystal, C10H6O8·2C8H10N4O2, comprises a centrosymmetric benzene-1,2,4,5-tetra­carb­oxy­lic acid (LH4) mol­ecule and a mol­ecule of caffeine in a general position. LH4 is nonplanar, with the dihedral angles between the ring and pendent carb­oxy­lic acid groups being 44.22 (7) and 49.74 (7)°. By contrast, the caffeine mol­ecule is planar (r.m.s. deviation = 0.040 Å). Supra­molecular layers parallel to (-1-10) are sustained by carb­oxy­lic acid O—H⋯O(carbon­yl) and O—H⋯N(imidazole) hydrogen bonds, as well as by meth­yl–carbonyl C—H⋯O inter­actions. These stack via π–π inter­actions between the benzene and imidazole rings [inter-centroid distance = 3.4503 (10) Å].

Related literature  

For cocrystallization studies with benzene-1,2,4,5-tetra­carb­oxy­lic acid, see: Arman & Tiekink (2013).graphic file with name e-69-o1443-scheme1.jpg

Experimental  

Crystal data  

  • C10H6O8·2C8H10N4O2

  • M r = 642.55

  • Triclinic, Inline graphic

  • a = 7.4570 (15) Å

  • b = 9.0490 (15) Å

  • c = 11.782 (2) Å

  • α = 68.800 (11)°

  • β = 81.124 (13)°

  • γ = 73.441 (9)°

  • V = 709.3 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 98 K

  • 0.55 × 0.30 × 0.25 mm

Data collection  

  • Rigaku AFC12 Kappa/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.838, T max = 1

  • 4935 measured reflections

  • 3213 independent reflections

  • 3006 reflections with I > 2σ(I)

  • R int = 0.020

  • Standard reflections: 0

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.120

  • S = 1.04

  • 3213 reflections

  • 218 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813022563/hg5340sup1.cif

e-69-o1443-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813022563/hg5340Isup2.hkl

e-69-o1443-Isup2.hkl (154.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813022563/hg5340Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O⋯N3i 0.86 (1) 1.83 (1) 2.6774 (17) 171 (2)
O4—H2O⋯O5 0.84 (2) 1.84 (2) 2.6571 (15) 162 (2)
C12—H12B⋯O6ii 0.98 2.30 3.239 (2) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors gratefully thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR-MOHE/SC/03).

supplementary crystallographic information

1. Comment

The title co-crystal was investigated in continuation of recent structural studies of the products obtained from the co-crystallization of benzene-1,2,4,5-tetracarboxylic acid (LH4) with various pyridyl-containing molecules (Arman & Tiekink, 2013).

The asymmetric unit comprises half a molecule of LH4, being disposed about a centre of inversion, and a molecule of caffeine in a general position, Fig. 1. Twists are evident in LH4 as seen in the dihedral angles of 44.22 (7) and 49.74 (7)° formed, respectively, between the O1- and O3-carboxylic acids and the benzene ring to which they are attached. The 14 non-hydrogen atoms of the caffeine molecule are co-planar with an r.m.s. deviation = 0.040 Å.

In the crystal packing, the HL4 molecule forms two O2—H···O5-carbonyl and two O4—H···N3-imidazole hydrogen bonds to form a supramolecular chain constructed about centrosymmetric 26-membered {···HO—C4OH···OCNCN}2 synthons, Table 1. Chains are connected into a layer approximately parallel to (110) by methyl-C12—H···O6(carbonyl) interactions via centrosymmetric and 10-membered {···OCNCH}2 synthons, Fig. 2. Layers are connected into a three-dimensional architecture by π–π interactions between the benzene and imidazolyl rings [inter-centroid distance = 3.4503 (10) Å, angle of inclination = 9.54 (7)° for symmetry operation x, y, 1 + z], Fig. 3.

2. Experimental

Crystals of (I) were obtained by the co-crystallization of caffeine (Sigma–Aldrich, 0.08 mmol) and benzene-1,2,4,5-tetracarboxylic acid (Sigma–Aldrich, 0.09 mmol) in acetone solution. Crystals were obtained by slow evaporation.

3. Refinement

C-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The O- and N-bound H atoms were located in a difference Fourier map and were refined with distance restraints of O—H = 0.84 (1) Å and N—H = 0.88 (1) Å, and with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

Molecular structures of the components of (I), showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The unlabelled atoms of HL4 (a) are generated by the symmetry operation 1 - x, 2 - y, 2 - z.

Fig. 2.

Fig. 2.

Views of the supramolecular layer in (I). The O—H···O (orange), O—H···N (blue) and C—H···O (green) interactions are shown as dashed lines.

Fig. 3.

Fig. 3.

Unit-cell contents in (I) highlighting the stacking of layers shown in Fig. 2.

Crystal data

C10H6O8·2C8H10N4O2 Z = 1
Mr = 642.55 F(000) = 334
Triclinic, P1 Dx = 1.504 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.4570 (15) Å Cell parameters from 2842 reflections
b = 9.0490 (15) Å θ = 3.3–40.4°
c = 11.782 (2) Å µ = 0.12 mm1
α = 68.800 (11)° T = 98 K
β = 81.124 (13)° Block, colourless
γ = 73.441 (9)° 0.55 × 0.30 × 0.25 mm
V = 709.3 (2) Å3

Data collection

Rigaku AFC12 Kappa/SATURN724 diffractometer 3213 independent reflections
Radiation source: fine-focus sealed tube 3006 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
ω scans θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −9→9
Tmin = 0.838, Tmax = 1 k = −11→11
4935 measured reflections l = −14→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0679P)2 + 0.3025P] where P = (Fo2 + 2Fc2)/3
3213 reflections (Δ/σ)max < 0.001
218 parameters Δρmax = 0.37 e Å3
2 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.10476 (13) 0.94888 (12) 0.88177 (9) 0.0215 (2)
O2 0.05750 (13) 1.21613 (12) 0.85531 (9) 0.0216 (2)
H1O −0.0516 (16) 1.226 (2) 0.8350 (17) 0.032*
O3 0.56478 (16) 0.70162 (12) 0.84529 (9) 0.0283 (3)
O4 0.43724 (14) 0.95115 (12) 0.71641 (8) 0.0202 (2)
H2O 0.430 (3) 0.902 (2) 0.6695 (17) 0.051 (6)*
O5 0.35494 (13) 0.85084 (12) 0.54930 (8) 0.0225 (2)
O6 0.84545 (14) 0.50918 (14) 0.40808 (10) 0.0283 (2)
N1 0.30711 (15) 0.79348 (14) 0.38575 (10) 0.0189 (2)
N2 0.60054 (15) 0.68600 (13) 0.47529 (10) 0.0175 (2)
N3 0.29341 (15) 0.71840 (13) 0.20867 (10) 0.0180 (2)
N4 0.58825 (16) 0.56529 (14) 0.20875 (10) 0.0191 (2)
C1 0.33603 (17) 1.03685 (15) 0.94094 (11) 0.0162 (3)
C2 0.49837 (17) 0.92882 (15) 0.91321 (11) 0.0159 (2)
C3 0.66122 (18) 0.89199 (15) 0.97280 (11) 0.0168 (3)
H3 0.7709 0.8179 0.9544 0.020*
C4 0.15397 (18) 1.06201 (16) 0.88843 (11) 0.0174 (3)
C5 0.50294 (18) 0.84709 (16) 0.82237 (11) 0.0179 (3)
C6 0.41768 (18) 0.78078 (16) 0.47369 (11) 0.0178 (3)
C7 0.68657 (18) 0.59678 (16) 0.39564 (12) 0.0187 (3)
C8 0.56313 (18) 0.62252 (15) 0.30563 (11) 0.0174 (3)
C9 0.38190 (18) 0.71494 (15) 0.30277 (11) 0.0167 (3)
C10 0.42496 (19) 0.62623 (16) 0.15447 (12) 0.0193 (3)
H10 0.4046 0.6060 0.0844 0.023*
C11 0.1111 (2) 0.8869 (2) 0.38356 (14) 0.0312 (3)
H11A 0.0737 0.9370 0.2991 0.047*
H11B 0.0969 0.9727 0.4189 0.047*
H11C 0.0316 0.8135 0.4312 0.047*
C12 0.71544 (19) 0.68114 (17) 0.56767 (12) 0.0217 (3)
H12A 0.7238 0.7922 0.5549 0.033*
H12B 0.8414 0.6118 0.5607 0.033*
H12C 0.6579 0.6362 0.6491 0.033*
C13 0.7597 (2) 0.46116 (18) 0.17183 (13) 0.0251 (3)
H13A 0.7855 0.3524 0.2344 0.038*
H13B 0.8650 0.5102 0.1623 0.038*
H13C 0.7433 0.4514 0.0941 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0199 (5) 0.0252 (5) 0.0241 (5) −0.0084 (4) −0.0032 (4) −0.0109 (4)
O2 0.0180 (5) 0.0209 (5) 0.0262 (5) −0.0038 (4) −0.0101 (4) −0.0055 (4)
O3 0.0414 (6) 0.0210 (5) 0.0249 (5) −0.0036 (4) −0.0113 (4) −0.0099 (4)
O4 0.0250 (5) 0.0225 (5) 0.0154 (4) −0.0064 (4) −0.0052 (3) −0.0072 (4)
O5 0.0203 (5) 0.0306 (5) 0.0201 (5) −0.0043 (4) −0.0040 (4) −0.0129 (4)
O6 0.0192 (5) 0.0350 (6) 0.0301 (5) 0.0028 (4) −0.0086 (4) −0.0147 (4)
N1 0.0148 (5) 0.0249 (6) 0.0188 (5) −0.0036 (4) −0.0036 (4) −0.0093 (4)
N2 0.0159 (5) 0.0215 (5) 0.0163 (5) −0.0054 (4) −0.0039 (4) −0.0059 (4)
N3 0.0194 (5) 0.0191 (5) 0.0172 (5) −0.0051 (4) −0.0042 (4) −0.0065 (4)
N4 0.0196 (5) 0.0205 (5) 0.0193 (5) −0.0056 (4) −0.0017 (4) −0.0083 (4)
C1 0.0166 (6) 0.0174 (6) 0.0148 (5) −0.0062 (5) −0.0038 (4) −0.0030 (4)
C2 0.0186 (6) 0.0170 (5) 0.0140 (5) −0.0067 (5) −0.0030 (4) −0.0048 (4)
C3 0.0173 (6) 0.0175 (5) 0.0163 (5) −0.0050 (4) −0.0029 (4) −0.0049 (4)
C4 0.0167 (6) 0.0227 (6) 0.0139 (5) −0.0064 (5) −0.0019 (4) −0.0060 (5)
C5 0.0184 (6) 0.0206 (6) 0.0174 (6) −0.0061 (5) −0.0036 (4) −0.0075 (5)
C6 0.0175 (6) 0.0205 (6) 0.0163 (6) −0.0067 (5) −0.0023 (4) −0.0050 (5)
C7 0.0180 (6) 0.0203 (6) 0.0180 (6) −0.0056 (5) −0.0022 (5) −0.0057 (5)
C8 0.0178 (6) 0.0187 (6) 0.0161 (6) −0.0052 (5) −0.0015 (5) −0.0056 (5)
C9 0.0163 (6) 0.0183 (6) 0.0164 (5) −0.0064 (5) −0.0022 (4) −0.0046 (4)
C10 0.0228 (6) 0.0189 (6) 0.0176 (6) −0.0064 (5) −0.0042 (5) −0.0058 (5)
C11 0.0177 (7) 0.0470 (9) 0.0312 (7) 0.0037 (6) −0.0071 (5) −0.0225 (7)
C12 0.0188 (6) 0.0291 (7) 0.0198 (6) −0.0061 (5) −0.0065 (5) −0.0090 (5)
C13 0.0213 (6) 0.0279 (7) 0.0291 (7) −0.0035 (5) −0.0007 (5) −0.0154 (6)

Geometric parameters (Å, º)

O1—C4 1.2123 (16) C1—C3i 1.3911 (17)
O2—C4 1.3176 (16) C1—C2 1.4008 (18)
O2—H1O 0.855 (9) C1—C4 1.5030 (17)
O3—C5 1.2057 (17) C2—C3 1.3935 (17)
O4—C5 1.3270 (15) C2—C5 1.4968 (17)
O4—H2O 0.843 (9) C3—C1i 1.3911 (17)
O5—C6 1.2349 (16) C3—H3 0.9500
O6—C7 1.2197 (17) C7—C8 1.4236 (17)
N1—C9 1.3713 (17) C8—C9 1.3698 (18)
N1—C6 1.3747 (16) C10—H10 0.9500
N1—C11 1.4638 (17) C11—H11A 0.9800
N2—C6 1.3875 (17) C11—H11B 0.9800
N2—C7 1.4181 (17) C11—H11C 0.9800
N2—C12 1.4671 (15) C12—H12A 0.9800
N3—C10 1.3384 (17) C12—H12B 0.9800
N3—C9 1.3618 (16) C12—H12C 0.9800
N4—C10 1.3410 (17) C13—H13A 0.9800
N4—C8 1.3829 (16) C13—H13B 0.9800
N4—C13 1.4664 (17) C13—H13C 0.9800
C4—O2—H1O 110.9 (13) O6—C7—N2 121.91 (12)
C5—O4—H2O 111.5 (16) O6—C7—C8 126.89 (13)
C9—N1—C6 119.13 (11) N2—C7—C8 111.20 (11)
C9—N1—C11 121.00 (11) C9—C8—N4 105.48 (11)
C6—N1—C11 119.85 (11) C9—C8—C7 123.20 (12)
C6—N2—C7 126.45 (11) N4—C8—C7 131.32 (12)
C6—N2—C12 116.05 (11) N3—C9—C8 111.54 (11)
C7—N2—C12 117.50 (11) N3—C9—N1 126.48 (12)
C10—N3—C9 103.47 (11) C8—C9—N1 121.97 (11)
C10—N4—C8 106.08 (11) N3—C10—N4 113.43 (11)
C10—N4—C13 127.01 (11) N3—C10—H10 123.3
C8—N4—C13 126.90 (11) N4—C10—H10 123.3
C3i—C1—C2 119.74 (12) N1—C11—H11A 109.5
C3i—C1—C4 119.61 (11) N1—C11—H11B 109.5
C2—C1—C4 120.31 (11) H11A—C11—H11B 109.5
C3—C2—C1 119.94 (11) N1—C11—H11C 109.5
C3—C2—C5 117.97 (11) H11A—C11—H11C 109.5
C1—C2—C5 122.07 (11) H11B—C11—H11C 109.5
C1i—C3—C2 120.31 (12) N2—C12—H12A 109.5
C1i—C3—H3 119.8 N2—C12—H12B 109.5
C2—C3—H3 119.8 H12A—C12—H12B 109.5
O1—C4—O2 125.76 (12) N2—C12—H12C 109.5
O1—C4—C1 121.79 (12) H12A—C12—H12C 109.5
O2—C4—C1 112.42 (11) H12B—C12—H12C 109.5
O3—C5—O4 125.01 (12) N4—C13—H13A 109.5
O3—C5—C2 121.87 (11) N4—C13—H13B 109.5
O4—C5—C2 113.10 (11) H13A—C13—H13B 109.5
O5—C6—N1 120.74 (12) N4—C13—H13C 109.5
O5—C6—N2 121.29 (11) H13A—C13—H13C 109.5
N1—C6—N2 117.97 (11) H13B—C13—H13C 109.5
C3i—C1—C2—C3 0.6 (2) C6—N2—C7—C8 3.16 (18)
C4—C1—C2—C3 −172.74 (11) C12—N2—C7—C8 −175.68 (10)
C3i—C1—C2—C5 179.23 (11) C10—N4—C8—C9 0.39 (14)
C4—C1—C2—C5 5.92 (18) C13—N4—C8—C9 179.52 (12)
C1—C2—C3—C1i −0.6 (2) C10—N4—C8—C7 179.29 (13)
C5—C2—C3—C1i −179.28 (11) C13—N4—C8—C7 −1.6 (2)
C3i—C1—C4—O1 −131.94 (13) O6—C7—C8—C9 175.61 (13)
C2—C1—C4—O1 41.37 (18) N2—C7—C8—C9 −3.34 (18)
C3i—C1—C4—O2 46.39 (15) O6—C7—C8—N4 −3.1 (2)
C2—C1—C4—O2 −140.30 (12) N2—C7—C8—N4 177.92 (12)
C3—C2—C5—O3 48.27 (18) C10—N3—C9—C8 −0.07 (14)
C1—C2—C5—O3 −130.41 (14) C10—N3—C9—N1 179.02 (12)
C3—C2—C5—O4 −130.22 (12) N4—C8—C9—N3 −0.20 (14)
C1—C2—C5—O4 51.09 (16) C7—C8—C9—N3 −179.22 (11)
C9—N1—C6—O5 179.55 (11) N4—C8—C9—N1 −179.34 (11)
C11—N1—C6—O5 −1.85 (19) C7—C8—C9—N1 1.6 (2)
C9—N1—C6—N2 −1.00 (18) C6—N1—C9—N3 −178.25 (12)
C11—N1—C6—N2 177.60 (12) C11—N1—C9—N3 3.2 (2)
C7—N2—C6—O5 178.31 (12) C6—N1—C9—C8 0.75 (19)
C12—N2—C6—O5 −2.83 (18) C11—N1—C9—C8 −177.83 (13)
C7—N2—C6—N1 −1.14 (19) C9—N3—C10—N4 0.33 (15)
C12—N2—C6—N1 177.72 (11) C8—N4—C10—N3 −0.47 (15)
C6—N2—C7—O6 −175.85 (12) C13—N4—C10—N3 −179.60 (12)
C12—N2—C7—O6 5.31 (19)

Symmetry code: (i) −x+1, −y+2, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H1O···N3ii 0.86 (1) 1.83 (1) 2.6774 (17) 171 (2)
O4—H2O···O5 0.84 (2) 1.84 (2) 2.6571 (15) 162 (2)
C12—H12B···O6iii 0.98 2.30 3.239 (2) 159

Symmetry codes: (ii) −x, −y+2, −z+1; (iii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5340).

References

  1. Arman, H. D. & Tiekink, E. R. T. (2013). Z. Kristallogr. Cryst. Mat. 228, 289–294.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  5. Molecular Structure Corporation & Rigaku (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813022563/hg5340sup1.cif

e-69-o1443-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813022563/hg5340Isup2.hkl

e-69-o1443-Isup2.hkl (154.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813022563/hg5340Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES