Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 14;69(Pt 9):o1413. doi: 10.1107/S160053681302196X

tert-Butyl N-(thio­phen-2-yl)carbamate

Gene C Hsu a, Laci M Singer a, David B Cordes a, Michael Findlater a,*
PMCID: PMC3884429  PMID: 24427049

Abstract

In the title compound, C9H13NO2S, the dihedral angle between the thiophene ring and the carbamate group is 15.79 (14)°. In the crystal structure, intra­molecular C—H⋯O inter­actions in tandem with the tert-butyl groups render the packing of adjacent mol­ecules in the [001] direction nearly perpendicular [the angle between adjacent thio­phene rings is 74.83 (7)°]. An inter­molecular N—H⋯O hydrogen bond gives rise to a chain extending along [001]. The crystal studied was found to be a racemic twin.

Related literature  

For the synthesis of the title compound, see: Binder et al. (1977); Kruse et al. (1989). For related structures, see: Arsenyan et al. (2008); Elshaarawy & Janiak (2011); Low et al. (2009); Hsu et al. (2013).graphic file with name e-69-o1413-scheme1.jpg

Experimental  

Crystal data  

  • C9H13NO2S

  • M r = 199.26

  • Orthorhombic, Inline graphic

  • a = 11.732 (2) Å

  • b = 8.6513 (17) Å

  • c = 9.879 (2) Å

  • V = 1002.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 153 K

  • 0.20 × 0.10 × 0.08 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) T min = 0.944, T max = 0.977

  • 2112 measured reflections

  • 2112 independent reflections

  • 1816 reflections with I > 2σ(I)

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.078

  • S = 1.04

  • 2112 reflections

  • 125 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack x determined using 703 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004)

  • Absolute structure parameter: 0.53 (4)

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681302196X/zs2273sup1.cif

e-69-o1413-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681302196X/zs2273Isup2.hkl

e-69-o1413-Isup2.hkl (116.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681302196X/zs2273Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.90 (2) 2.04 (2) 2.920 (3) 165 (3)
C7—H7A⋯O1 0.98 2.33 2.938 (4) 119
C8—H8C⋯O1 0.98 2.55 3.109 (4) 116

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the Robert A. Welch Foundation for their support of GCH via the Welch Summer Scholars Program, and Texas Tech University for start-up funds.

supplementary crystallographic information

1. Comment

The title compound tert-butyl N-(thiophene-2-yl)carbamate, C9H13NO2S, (Fig. 1) is a precursor in the synthesis of diimine ligands suitable for metal complex formation. This compound exhibits intramolecular methyl C7—H···O1 and C8—H···O1 interactions [2.938 (4) and 3.109 (4), respectively] in addition to bulky tert -butyl groups. These two features in tandem allow the packing in the crystal to be nearly perpendicular [the angle between adjacent thiophene rings = 74.83 (7)°]. An intermolecular N1—H···O1i hydrogen bond (Table 1) gives a one-dimensional chain which extends along [0 0 1]. The compound was synthesized via a typical Curtius Rearrangement from thiophene-2-carbonyl azide (Binder et al., 1977; Kruse et al., 1989).

2. Experimental

The title compound was prepared by a typical Curtius Rearrangement. Thiophene-2-carbonyl azide (270 mg; 1.77 mmol) was reacted with 1.0 equivalent of tert-butyl alcohol (131 mg; 1.77 mmol) and dissolved in 15 ml of toluene. The solution was heated at 100 °C overnight. Excess solvent and tert-butyl alcohol was removed in vacuo. Crystals suitable for X-ray structure determination were obtained by cooling a toluene solution to -30 °C. 1H NMR (400 MHz, chloroform-d): δ=6.9(br, 1H, –NH), 6.79(m, 2H, –CH), 6.5(dd, 1H, –CH), 1.5(s, 9H, tBu).

3. Refinement

The NH hydrogen atom was located from the difference-Fourier map and refined isotropically subject to a distance restraint (N—H = 0.98 Å). Carbon-bound H atoms were included in calculated positions (C—H distances are 0.98 Å for methyl H atoms and 0.95 Å for thiophene H atoms) and refined as riding atoms with Uiso(H) = 1.2 Ueq(thiophene H atom) or Uiso(H) = 1.5 Ueq(methyl H atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C9H13NO2S Dx = 1.320 Mg m3
Mr = 199.26 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21 Cell parameters from 1327 reflections
a = 11.732 (2) Å θ = 1.0–27.5°
b = 8.6513 (17) Å µ = 0.29 mm1
c = 9.879 (2) Å T = 153 K
V = 1002.7 (3) Å3 Rod, colorless
Z = 4 0.20 × 0.10 × 0.08 mm
F(000) = 424

Data collection

Nonius KappaCCD diffractometer 2112 independent reflections
Radiation source: fine-focus sealed tube 1816 reflections with I > 2σ(I)
φ and ω scans θmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) h = −15→15
Tmin = 0.944, Tmax = 0.977 k = −11→11
2112 measured reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0301P)2 + 0.2397P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2112 reflections Δρmax = 0.25 e Å3
125 parameters Δρmin = −0.19 e Å3
2 restraints Absolute structure: Flack x determined using 703 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004).
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.53 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.13622 (6) 0.05380 (7) 0.63359 (7) 0.02745 (19)
O1 0.29399 (16) 0.2992 (2) 0.61913 (19) 0.0273 (4)
O2 0.32467 (18) 0.4564 (2) 0.80079 (18) 0.0289 (5)
N1 0.23352 (19) 0.2367 (2) 0.8305 (2) 0.0224 (5)
H1N 0.238 (3) 0.264 (4) 0.919 (2) 0.036 (9)*
C1 0.1713 (2) 0.1041 (3) 0.7987 (3) 0.0209 (5)
C2 0.1219 (3) 0.0067 (3) 0.8902 (3) 0.0241 (6)
H2 0.1317 0.0150 0.9854 0.029*
C3 0.0542 (2) −0.1082 (3) 0.8269 (3) 0.0289 (6)
H3 0.0137 −0.1855 0.8754 0.035*
C4 0.0533 (3) −0.0964 (3) 0.6907 (3) 0.0306 (7)
H4 0.0115 −0.1635 0.6329 0.037*
C5 0.2857 (2) 0.3295 (3) 0.7389 (3) 0.0220 (6)
C6 0.3798 (2) 0.5829 (3) 0.7233 (3) 0.0250 (6)
C7 0.3034 (3) 0.6385 (4) 0.6108 (4) 0.0438 (9)
H7A 0.2928 0.5554 0.5446 0.066*
H7B 0.3384 0.7280 0.5663 0.066*
H7C 0.2292 0.6684 0.6483 0.066*
C8 0.4940 (3) 0.5271 (4) 0.6722 (4) 0.0445 (9)
H8A 0.5384 0.4856 0.7480 0.067*
H8B 0.5354 0.6135 0.6310 0.067*
H8C 0.4823 0.4458 0.6045 0.067*
C9 0.3945 (3) 0.7083 (3) 0.8284 (4) 0.0459 (9)
H9A 0.3196 0.7408 0.8617 0.069*
H9B 0.4337 0.7970 0.7878 0.069*
H9C 0.4399 0.6685 0.9040 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0369 (4) 0.0261 (3) 0.0194 (3) −0.0050 (3) 0.0003 (3) −0.0034 (3)
O1 0.0377 (11) 0.0268 (9) 0.0173 (10) −0.0043 (8) 0.0014 (9) −0.0012 (8)
O2 0.0425 (12) 0.0258 (10) 0.0182 (9) −0.0120 (8) 0.0029 (9) 0.0003 (8)
N1 0.0293 (13) 0.0232 (11) 0.0147 (9) −0.0051 (9) 0.0006 (10) −0.0009 (10)
C1 0.0234 (13) 0.0211 (12) 0.0183 (12) 0.0033 (11) 0.0000 (11) −0.0012 (11)
C2 0.0277 (16) 0.0226 (13) 0.0221 (13) 0.0002 (11) −0.0017 (11) 0.0006 (11)
C3 0.0300 (16) 0.0227 (14) 0.0340 (15) −0.0037 (12) −0.0002 (13) 0.0029 (13)
C4 0.0329 (18) 0.0259 (15) 0.0330 (15) −0.0030 (12) −0.0029 (14) −0.0039 (13)
C5 0.0238 (15) 0.0227 (14) 0.0195 (15) 0.0016 (11) −0.0023 (11) −0.0005 (11)
C6 0.0288 (17) 0.0228 (14) 0.0234 (13) −0.0047 (12) 0.0053 (11) 0.0019 (11)
C7 0.0453 (19) 0.0306 (15) 0.056 (2) −0.0046 (14) −0.0128 (18) 0.0135 (16)
C8 0.0299 (17) 0.0339 (16) 0.070 (2) −0.0022 (13) 0.0128 (18) 0.0021 (16)
C9 0.070 (2) 0.0327 (17) 0.0347 (17) −0.0212 (17) 0.0122 (17) −0.0068 (15)

Geometric parameters (Å, º)

S1—C4 1.718 (3) C4—H4 0.9500
S1—C1 1.737 (3) C6—C7 1.507 (4)
O1—C5 1.216 (3) C6—C8 1.511 (4)
O2—C5 1.337 (3) C6—C9 1.512 (4)
O2—C6 1.484 (3) C7—H7A 0.9800
N1—C5 1.356 (3) C7—H7B 0.9800
N1—C1 1.396 (3) C7—H7C 0.9800
N1—H1N 0.90 (2) C8—H8A 0.9800
C1—C2 1.365 (4) C8—H8B 0.9800
C2—C3 1.418 (4) C8—H8C 0.9800
C2—H2 0.9500 C9—H9A 0.9800
C3—C4 1.350 (4) C9—H9B 0.9800
C3—H3 0.9500 C9—H9C 0.9800
C4—S1—C1 90.88 (14) C7—C6—C8 112.6 (3)
C5—O2—C6 121.3 (2) O2—C6—C9 103.0 (2)
C5—N1—C1 124.9 (2) C7—C6—C9 110.2 (3)
C5—N1—H1N 117 (2) C8—C6—C9 111.0 (3)
C1—N1—H1N 118 (2) C6—C7—H7A 109.5
C2—C1—N1 125.4 (2) C6—C7—H7B 109.5
C2—C1—S1 111.5 (2) H7A—C7—H7B 109.5
N1—C1—S1 122.77 (19) C6—C7—H7C 109.5
C1—C2—C3 112.2 (3) H7A—C7—H7C 109.5
C1—C2—H2 123.9 H7B—C7—H7C 109.5
C3—C2—H2 123.9 C6—C8—H8A 109.5
C4—C3—C2 113.0 (3) C6—C8—H8B 109.5
C4—C3—H3 123.5 H8A—C8—H8B 109.5
C2—C3—H3 123.5 C6—C8—H8C 109.5
C3—C4—S1 112.3 (2) H8A—C8—H8C 109.5
C3—C4—H4 123.8 H8B—C8—H8C 109.5
S1—C4—H4 123.8 C6—C9—H9A 109.5
O1—C5—O2 126.4 (2) C6—C9—H9B 109.5
O1—C5—N1 123.9 (2) H9A—C9—H9B 109.5
O2—C5—N1 109.6 (2) C6—C9—H9C 109.5
O2—C6—C7 110.9 (2) H9A—C9—H9C 109.5
O2—C6—C8 108.8 (2) H9B—C9—H9C 109.5
C5—N1—C1—C2 177.5 (3) C1—S1—C4—C3 −0.9 (3)
C5—N1—C1—S1 −8.9 (4) C6—O2—C5—O1 3.3 (4)
C4—S1—C1—C2 0.9 (2) C6—O2—C5—N1 −176.4 (2)
C4—S1—C1—N1 −173.5 (2) C1—N1—C5—O1 −7.8 (4)
N1—C1—C2—C3 173.6 (2) C1—N1—C5—O2 171.9 (2)
S1—C1—C2—C3 −0.7 (3) C5—O2—C6—C7 54.5 (3)
C1—C2—C3—C4 0.0 (4) C5—O2—C6—C8 −69.8 (3)
C2—C3—C4—S1 0.7 (4) C5—O2—C6—C9 172.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.90 (2) 2.04 (2) 2.920 (3) 165 (3)
C7—H7A···O1 0.98 2.33 2.938 (4) 119
C8—H8C···O1 0.98 2.55 3.109 (4) 116

Symmetry code: (i) −x+1/2, y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2273).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Arsenyan, P., Petrenko, A. & Belyakov, S. (2008). Tetrahedron Lett. 49, 5255–5257.
  4. Binder, D., Habison, G. & Noe, C. R. (1977). Synthesis, pp. 255–256.
  5. Elshaarawy, R. F. & Janiak, C. (2011). Z. Naturforsch. Teil B, 66, 1201–1208.
  6. Hsu, G. C., Singer, L. M., Cordes, D. B. & Findlater, M. (2013). Acta Cryst. E69, o1298. [DOI] [PMC free article] [PubMed]
  7. Kruse, L. I., Ladd, D. L., Harrsch, P. B., McCabe, F. L., Mong, S.-M., Faucette, L. & Johnson, R. (1989). J. Med. Chem. 32, 409–417. [DOI] [PubMed]
  8. Low, J. N., Quesada, A., Santos, L. M. N. B. F., Schröder, B. & Gomes, L. R. (2009). J. Chem. Crystallogr. 39, 747–752.
  9. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681302196X/zs2273sup1.cif

e-69-o1413-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681302196X/zs2273Isup2.hkl

e-69-o1413-Isup2.hkl (116.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681302196X/zs2273Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES