Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 14;69(Pt 9):o1416. doi: 10.1107/S1600536813022228

6,8-Di­chloro-4-oxochromene-3-carbalde­hyde

Yoshinobu Ishikawa a,*, Yuya Motohashi a
PMCID: PMC3884433  PMID: 24427051

Abstract

The asymmetric unit of the title compound, C10H4Cl2O3, contain two essentially planar independent mol­ecules (mean atomic deviations from the corresponding least-square planes are 0.041 and 0.045 Å for mol­ecules 1 and 2, respectively). In the crystal, mol­ecules are linked through a pair of halogen bonds [Cl⋯O separations are 3.044 (5) and 3.033 (6) Å, C—Cl⋯O angles are 160.4 (3) and 162.8 (3)°, and C=O⋯Cl angles are 138.7 (4) and 139.6 (4)°, respectively, in mol­ecules 1 and 2] and C—H⋯O hydrogen bonds into slightly folded bands [the dihedral angle between the planes of neighboring mol­ecules is 8.6 (2)°] along the c-axis direction.

Related literature  

For the biological activity of the title and related compounds, see: Shim et al. (2003); Kawase et al. (2007); Dückert et al. (2012). For related structures, see: Ishikawa et al. (2013a ,b ). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013).graphic file with name e-69-o1416-scheme1.jpg

Experimental  

Crystal data  

  • C10H4Cl2O3

  • M r = 243.05

  • Triclinic, Inline graphic

  • a = 8.288 (8) Å

  • b = 8.325 (7) Å

  • c = 13.706 (7) Å

  • α = 96.55 (6)°

  • β = 92.23 (7)°

  • γ = 101.98 (7)°

  • V = 917.2 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 100 K

  • 0.42 × 0.22 × 0.08 mm

Data collection  

  • Rigaku AFC-7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.841, T max = 0.947

  • 5130 measured reflections

  • 4203 independent reflections

  • 2596 reflections with F 2 > 2σ(F 2)

  • R int = 0.057

  • 3 standard reflections every 150 reflections intensity decay: 4.9%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.076

  • wR(F 2) = 0.212

  • S = 1.10

  • 4203 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.79 e Å−3

Data collection: WinAFC (Rigaku, 1999); cell refinement: WinAFC; data reduction: WinAFC; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S1600536813022228/ld2111sup1.cif

e-69-o1416-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813022228/ld2111Isup2.hkl

e-69-o1416-Isup2.hkl (206KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813022228/ld2111Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4b i—H2b i⋯O2a 0.95 2.35 3.246 (8) 157
C4a—H2a⋯O2b i 0.95 2.35 3.259 (8) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

We acknowledge the University of Shizuoka for instrumental support.

supplementary crystallographic information

1. Comment

6,8-Dichloro-3-formylchromone shows many biological functions such as protein tyrosine phosphatase inhibitory (Shim et al. 2003), tumor cell-cytotoxic, anti-HIV, anti-Helicobacter pylori, and urease inhibitory activities (Kawase et al. 2007). In addition, it is used as a starting material for the synthesis of biologically relevant molecules (Dückert et al. 2012).

The title compound, C10H4Cl2O3, crystallizes with two independent molecules in the asymmetric unit (Fig. 1). The mean deviations from the least-square planes for all atoms of molecule 1 and 2 are 0.0410 Å and 0.0449 Å, respectively. In addition, the largest deviations of molecule 1 and 2 are 0.1512 (17) Å for Cl1a and -0.0973 Å for H4b, respectively. This means that all atoms of each molecule are essentially coplanar.

In the crystal, the molecules 1 and 2 are linked to each other through intermolecular interactions of the Cl atoms at the 8-position with the O atoms of the formyl groups [Cl2a···O3bi; 3.033 (6) Å, Cl2bi···O3a; 3.044 (5) Å, C7a–Cl2a···O3bi = 160.4 (3)°, C7bi–Cl2bi···O3a =162.8 (3)°, C10a–O3a···Cl2bi = 138.7 (4)°, C10bi–O3bi···Cl2a = 139.6 (4)° (i): -x + 1, -y + 1, -z + 1], and the carbonyl O atoms at the 4-position with the C–H atoms at the 5-position. The short contacts and the geometries involved in the Cl atoms fall into halogen bonding (Auffinger et al. 2004). Due to these halogen and hydrogen bonds, the molecules form wavy bands along c axis, as shown in Fig. 2.

Halogen bonds have been found to occur in organic, inorganic, and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology, and supramolecular chemistry (Auffinger et al. 2004, Metrangolo et al. 2005, Wilcken et al. 2013). Our analysis suggests that the strong inhibitory activity of the title compound against urease may be attributable to the halogen bond observed in the crystal, because 3-formylchromones without any halogen atom at the 8-position in the literature do not show the urease inhibitory activity (Kawase et al. 2007).

2. Experimental

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a 2-butanone solution of commercially available 6,8-dichloro-3-formylchromone at room temperature.

3. Refinement

The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the intermolecular interactions of the title compound, represented as dashed green lines for Cl···O and dashed magenta lines for C–H···O interactions.

Crystal data

C10H4Cl2O3 Z = 4
Mr = 243.05 F(000) = 488.00
Triclinic, P1 Dx = 1.760 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71069 Å
a = 8.288 (8) Å Cell parameters from 23 reflections
b = 8.325 (7) Å θ = 15.2–17.4°
c = 13.706 (7) Å µ = 0.68 mm1
α = 96.55 (6)° T = 100 K
β = 92.23 (7)° Prismatic, colourless
γ = 101.98 (7)° 0.42 × 0.22 × 0.08 mm
V = 917.2 (13) Å3

Data collection

Rigaku AFC-7R diffractometer Rint = 0.057
ω–2θ scans θmax = 27.5°
Absorption correction: ψ scan (North et al., 1968) h = −10→6
Tmin = 0.841, Tmax = 0.947 k = −10→10
5130 measured reflections l = −17→17
4203 independent reflections 3 standard reflections every 150 reflections
2596 reflections with F2 > 2σ(F2) intensity decay: 4.9%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0531P)2 + 6.620P] where P = (Fo2 + 2Fc2)/3
4203 reflections (Δ/σ)max < 0.001
271 parameters Δρmax = 0.70 e Å3
0 restraints Δρmin = −0.79 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1a 0.9284 (2) 0.7180 (2) −0.05206 (12) 0.0275 (4)
Cl2a 0.8997 (2) 0.60177 (19) 0.32529 (11) 0.0243 (4)
Cl1b 0.8654 (3) 1.0637 (2) 0.20783 (12) 0.0293 (4)
Cl2b 0.7665 (2) 1.01839 (19) 0.59010 (11) 0.0246 (4)
O1a 0.6255 (6) 0.3339 (5) 0.2521 (3) 0.0218 (10)
O2a 0.4506 (6) 0.1743 (6) −0.0336 (4) 0.0277 (11)
O3a 0.2398 (7) −0.0767 (6) 0.1869 (4) 0.0319 (12)
O1b 0.4940 (6) 0.7493 (6) 0.5162 (3) 0.0219 (10)
O2b 0.3559 (6) 0.5491 (6) 0.2305 (3) 0.0291 (11)
O3b 0.1021 (7) 0.3424 (6) 0.4522 (4) 0.0326 (12)
C1a 0.4980 (8) 0.2042 (8) 0.2288 (5) 0.0221 (13)
C2a 0.4342 (8) 0.1454 (8) 0.1358 (5) 0.0197 (13)
C3a 0.5023 (8) 0.2255 (8) 0.0520 (5) 0.0217 (13)
C4a 0.7126 (9) 0.4638 (8) 0.0063 (5) 0.0242 (14)
C5a 0.8382 (8) 0.5956 (8) 0.0344 (5) 0.0201 (13)
C6a 0.9020 (8) 0.6399 (8) 0.1321 (5) 0.0202 (13)
C7a 0.8290 (8) 0.5497 (8) 0.2026 (5) 0.0197 (13)
C8a 0.6945 (8) 0.4171 (8) 0.1770 (5) 0.0202 (13)
C9a 0.6370 (9) 0.3695 (8) 0.0784 (5) 0.0207 (13)
C10a 0.2954 (9) −0.0026 (8) 0.1204 (5) 0.0250 (14)
C1b 0.3630 (8) 0.6197 (8) 0.4918 (5) 0.0220 (13)
C2b 0.3130 (8) 0.5479 (8) 0.4003 (5) 0.0217 (13)
C3b 0.3958 (8) 0.6127 (8) 0.3161 (5) 0.0214 (13)
C4b 0.6216 (8) 0.8361 (8) 0.2689 (5) 0.0220 (13)
C5b 0.7526 (8) 0.9654 (8) 0.2961 (5) 0.0227 (14)
C6b 0.8016 (9) 1.0234 (8) 0.3958 (5) 0.0234 (14)
C7b 0.7127 (8) 0.9495 (8) 0.4674 (5) 0.0217 (13)
C8b 0.5792 (8) 0.8170 (8) 0.4411 (5) 0.0188 (13)
C9b 0.5333 (8) 0.7557 (8) 0.3414 (5) 0.0190 (13)
C10b 0.1768 (9) 0.4034 (8) 0.3852 (5) 0.0238 (14)
H1a 0.4491 0.1499 0.2811 0.0265*
H2a 0.6755 0.4349 −0.0611 0.0290*
H3a 0.9933 0.7302 0.1493 0.0243*
H4a 0.2484 −0.0406 0.0555 0.0300*
H1b 0.3024 0.5769 0.5440 0.0264*
H2b 0.5904 0.8006 0.2012 0.0264*
H3b 0.8945 1.1120 0.4131 0.0281*
H4b 0.1440 0.3536 0.3196 0.0286*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1a 0.0338 (9) 0.0277 (9) 0.0216 (8) 0.0044 (7) 0.0053 (7) 0.0088 (6)
Cl2a 0.0312 (9) 0.0231 (8) 0.0166 (7) 0.0037 (7) −0.0028 (6) −0.0007 (6)
Cl1b 0.0345 (10) 0.0287 (9) 0.0246 (8) 0.0034 (8) 0.0082 (7) 0.0071 (7)
Cl2b 0.0311 (9) 0.0232 (8) 0.0171 (7) 0.0031 (7) −0.0008 (6) −0.0016 (6)
O1a 0.034 (3) 0.019 (3) 0.012 (2) 0.0034 (19) 0.0043 (18) 0.0014 (16)
O2a 0.035 (3) 0.032 (3) 0.014 (3) 0.005 (3) −0.0023 (19) −0.0005 (18)
O3a 0.037 (3) 0.030 (3) 0.023 (3) −0.005 (3) 0.006 (2) 0.002 (2)
O1b 0.029 (3) 0.021 (3) 0.014 (2) 0.0013 (19) 0.0014 (18) 0.0028 (17)
O2b 0.035 (3) 0.035 (3) 0.014 (3) 0.003 (3) −0.0017 (19) −0.0023 (19)
O3b 0.036 (3) 0.032 (3) 0.025 (3) −0.007 (3) −0.002 (3) 0.005 (2)
C1a 0.025 (4) 0.022 (4) 0.020 (3) 0.006 (3) 0.001 (3) 0.004 (3)
C2a 0.020 (4) 0.021 (3) 0.018 (3) 0.005 (3) 0.003 (3) 0.001 (3)
C3a 0.026 (4) 0.020 (3) 0.019 (3) 0.007 (3) −0.001 (3) −0.001 (3)
C4a 0.033 (4) 0.025 (4) 0.013 (3) 0.003 (3) 0.003 (3) 0.004 (3)
C5a 0.028 (4) 0.019 (3) 0.017 (3) 0.010 (3) 0.007 (3) 0.006 (3)
C6a 0.025 (4) 0.017 (3) 0.019 (3) 0.004 (3) 0.003 (3) 0.002 (3)
C7a 0.025 (4) 0.020 (3) 0.014 (3) 0.006 (3) −0.001 (3) −0.001 (3)
C8a 0.024 (4) 0.019 (3) 0.017 (3) 0.004 (3) 0.002 (3) 0.004 (3)
C9a 0.030 (4) 0.018 (3) 0.015 (3) 0.009 (3) 0.002 (3) 0.001 (3)
C10a 0.030 (4) 0.019 (3) 0.024 (4) 0.004 (3) −0.002 (3) −0.001 (3)
C1b 0.027 (4) 0.019 (3) 0.021 (3) 0.006 (3) 0.004 (3) 0.002 (3)
C2b 0.023 (4) 0.025 (4) 0.018 (3) 0.007 (3) −0.001 (3) 0.002 (3)
C3b 0.028 (4) 0.022 (4) 0.017 (3) 0.011 (3) −0.000 (3) 0.002 (3)
C4b 0.027 (4) 0.021 (3) 0.018 (3) 0.004 (3) 0.004 (3) 0.002 (3)
C5b 0.028 (4) 0.023 (4) 0.022 (4) 0.012 (3) 0.006 (3) 0.008 (3)
C6b 0.027 (4) 0.020 (4) 0.022 (4) 0.004 (3) −0.003 (3) 0.001 (3)
C7b 0.026 (4) 0.024 (4) 0.016 (3) 0.010 (3) −0.000 (3) 0.001 (3)
C8b 0.023 (4) 0.024 (4) 0.014 (3) 0.013 (3) 0.005 (3) 0.006 (3)
C9b 0.020 (3) 0.023 (3) 0.017 (3) 0.013 (3) 0.000 (3) 0.003 (3)
C10b 0.031 (4) 0.019 (3) 0.020 (3) 0.004 (3) 0.004 (3) 0.000 (3)

Geometric parameters (Å, º)

Cl1a—C5a 1.740 (7) C7a—C8a 1.398 (8)
Cl2a—C7a 1.735 (6) C8a—C9a 1.401 (9)
Cl1b—C5b 1.733 (7) C1b—C2b 1.338 (9)
Cl2b—C7b 1.723 (6) C2b—C3b 1.464 (9)
O1a—C1a 1.344 (7) C2b—C10b 1.458 (9)
O1a—C8a 1.381 (8) C3b—C9b 1.465 (8)
O2a—C3a 1.229 (8) C4b—C5b 1.367 (9)
O3a—C10a 1.210 (9) C4b—C9b 1.405 (9)
O1b—C1b 1.363 (7) C5b—C6b 1.411 (9)
O1b—C8b 1.379 (8) C6b—C7b 1.376 (10)
O2b—C3b 1.233 (7) C7b—C8b 1.393 (8)
O3b—C10b 1.227 (9) C8b—C9b 1.412 (8)
C1a—C2a 1.356 (9) C1a—H1a 0.950
C2a—C3a 1.467 (9) C4a—H2a 0.950
C2a—C10a 1.490 (9) C6a—H3a 0.950
C3a—C9a 1.459 (9) C10a—H4a 0.950
C4a—C5a 1.355 (9) C1b—H1b 0.950
C4a—C9a 1.416 (9) C4b—H2b 0.950
C5a—C6a 1.401 (9) C6b—H3b 0.950
C6a—C7a 1.373 (9) C10b—H4b 0.950
C1a—O1a—C8a 118.3 (5) C5b—C4b—C9b 119.9 (6)
C1b—O1b—C8b 118.1 (5) Cl1b—C5b—C4b 120.6 (5)
O1a—C1a—C2a 124.6 (6) Cl1b—C5b—C6b 117.6 (5)
C1a—C2a—C3a 120.4 (6) C4b—C5b—C6b 121.9 (6)
C1a—C2a—C10a 118.9 (6) C5b—C6b—C7b 118.9 (6)
C3a—C2a—C10a 120.7 (6) Cl2b—C7b—C6b 120.4 (5)
O2a—C3a—C2a 122.6 (6) Cl2b—C7b—C8b 119.6 (5)
O2a—C3a—C9a 122.9 (6) C6b—C7b—C8b 120.0 (6)
C2a—C3a—C9a 114.5 (5) O1b—C8b—C7b 117.3 (5)
C5a—C4a—C9a 119.4 (6) O1b—C8b—C9b 121.6 (5)
Cl1a—C5a—C4a 120.3 (5) C7b—C8b—C9b 121.1 (6)
Cl1a—C5a—C6a 117.0 (5) C3b—C9b—C4b 121.9 (6)
C4a—C5a—C6a 122.7 (6) C3b—C9b—C8b 119.8 (6)
C5a—C6a—C7a 118.3 (6) C4b—C9b—C8b 118.2 (5)
Cl2a—C7a—C6a 120.3 (5) O3b—C10b—C2b 123.8 (6)
Cl2a—C7a—C8a 119.0 (5) O1a—C1a—H1a 117.700
C6a—C7a—C8a 120.6 (6) C2a—C1a—H1a 117.702
O1a—C8a—C7a 117.4 (5) C5a—C4a—H2a 120.314
O1a—C8a—C9a 122.2 (5) C9a—C4a—H2a 120.307
C7a—C8a—C9a 120.4 (6) C5a—C6a—H3a 120.850
C3a—C9a—C4a 121.6 (6) C7a—C6a—H3a 120.844
C3a—C9a—C8a 119.9 (6) O3a—C10a—H4a 118.481
C4a—C9a—C8a 118.5 (6) C2a—C10a—H4a 118.489
O3a—C10a—C2a 123.0 (6) O1b—C1b—H1b 117.382
O1b—C1b—C2b 125.2 (6) C2b—C1b—H1b 117.374
C1b—C2b—C3b 120.2 (6) C5b—C4b—H2b 120.070
C1b—C2b—C10b 119.4 (6) C9b—C4b—H2b 120.068
C3b—C2b—C10b 120.3 (6) C5b—C6b—H3b 120.568
O2b—C3b—C2b 122.6 (6) C7b—C6b—H3b 120.567
O2b—C3b—C9b 122.5 (6) O3b—C10b—H4b 118.104
C2b—C3b—C9b 114.9 (5) C2b—C10b—H4b 118.102
C1a—O1a—C8a—C7a −178.8 (6) O1a—C8a—C9a—C3a −1.4 (10)
C1a—O1a—C8a—C9a −0.7 (9) O1a—C8a—C9a—C4a 178.7 (6)
C8a—O1a—C1a—C2a 1.9 (10) C7a—C8a—C9a—C3a 176.7 (6)
C8a—O1a—C1a—H1a −178.1 C7a—C8a—C9a—C4a −3.2 (10)
C1b—O1b—C8b—C7b 180.0 (6) O1b—C1b—C2b—C3b −2.9 (11)
C1b—O1b—C8b—C9b 0.3 (9) O1b—C1b—C2b—C10b 176.3 (6)
C8b—O1b—C1b—C2b 2.5 (10) H1b—C1b—C2b—C3b 177.1
C8b—O1b—C1b—H1b −177.5 H1b—C1b—C2b—C10b −3.7
O1a—C1a—C2a—C3a −1.0 (11) C1b—C2b—C3b—O2b 178.7 (7)
O1a—C1a—C2a—C10a 178.3 (6) C1b—C2b—C3b—C9b 0.7 (10)
H1a—C1a—C2a—C3a 179.0 C1b—C2b—C10b—O3b 0.7 (11)
H1a—C1a—C2a—C10a −1.7 C1b—C2b—C10b—H4b −179.3
C1a—C2a—C3a—O2a 178.4 (7) C3b—C2b—C10b—O3b 179.9 (7)
C1a—C2a—C3a—C9a −1.1 (10) C3b—C2b—C10b—H4b −0.1
C1a—C2a—C10a—O3a −2.4 (11) C10b—C2b—C3b—O2b −0.4 (11)
C1a—C2a—C10a—H4a 177.6 C10b—C2b—C3b—C9b −178.5 (6)
C3a—C2a—C10a—O3a 176.9 (7) O2b—C3b—C9b—C4b 4.2 (11)
C3a—C2a—C10a—H4a −3.1 O2b—C3b—C9b—C8b −176.2 (6)
C10a—C2a—C3a—O2a −0.9 (11) C2b—C3b—C9b—C4b −177.7 (6)
C10a—C2a—C3a—C9a 179.7 (6) C2b—C3b—C9b—C8b 1.8 (9)
O2a—C3a—C9a—C4a 2.6 (11) C5b—C4b—C9b—C3b −177.7 (6)
O2a—C3a—C9a—C8a −177.3 (6) C5b—C4b—C9b—C8b 2.7 (10)
C2a—C3a—C9a—C4a −178.0 (6) C9b—C4b—C5b—Cl1b 178.8 (6)
C2a—C3a—C9a—C8a 2.2 (10) C9b—C4b—C5b—C6b −0.9 (11)
C5a—C4a—C9a—C3a −179.4 (6) H2b—C4b—C5b—Cl1b −1.2
C5a—C4a—C9a—C8a 0.5 (11) H2b—C4b—C5b—C6b 179.1
C9a—C4a—C5a—Cl1a −177.7 (6) H2b—C4b—C9b—C3b 2.3
C9a—C4a—C5a—C6a 2.5 (11) H2b—C4b—C9b—C8b −177.3
H2a—C4a—C5a—Cl1a 2.3 Cl1b—C5b—C6b—C7b 179.0 (5)
H2a—C4a—C5a—C6a −177.5 Cl1b—C5b—C6b—H3b −1.0
H2a—C4a—C9a—C3a 0.6 C4b—C5b—C6b—C7b −1.3 (11)
H2a—C4a—C9a—C8a −179.5 C4b—C5b—C6b—H3b 178.6
Cl1a—C5a—C6a—C7a 177.5 (5) C5b—C6b—C7b—Cl2b −179.1 (6)
Cl1a—C5a—C6a—H3a −2.5 C5b—C6b—C7b—C8b 1.6 (11)
C4a—C5a—C6a—C7a −2.7 (11) H3b—C6b—C7b—Cl2b 0.9
C4a—C5a—C6a—H3a 177.3 H3b—C6b—C7b—C8b −178.4
C5a—C6a—C7a—Cl2a −178.6 (6) Cl2b—C7b—C8b—O1b 1.3 (9)
C5a—C6a—C7a—C8a −0.1 (10) Cl2b—C7b—C8b—C9b −179.0 (5)
H3a—C6a—C7a—Cl2a 1.4 C6b—C7b—C8b—O1b −179.3 (6)
H3a—C6a—C7a—C8a 179.9 C6b—C7b—C8b—C9b 0.3 (11)
Cl2a—C7a—C8a—O1a −0.3 (9) O1b—C8b—C9b—C3b −2.4 (10)
Cl2a—C7a—C8a—C9a −178.5 (5) O1b—C8b—C9b—C4b 177.2 (6)
C6a—C7a—C8a—O1a −178.8 (6) C7b—C8b—C9b—C3b 178.0 (6)
C6a—C7a—C8a—C9a 3.0 (10) C7b—C8b—C9b—C4b −2.5 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4bi—H2bi···O2a 0.95 2.35 3.246 (8) 157
C4a—H2a···O2bi 0.95 2.35 3.259 (8) 160

Symmetry code: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2111).

References

  1. Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794. [DOI] [PMC free article] [PubMed]
  2. Dückert, H., Pries, V., Khedkar, V., Menninger, S., Bruss, H., Bird, A. W., Maliga, Z., Brockmeyer, A., Janning, P., Hyman, A., Grimme, S., Schürmann, M., Preut, H., Hübel, K., Ziegler, S., Kumar, K. & Waldmann, H. (2012). Nat. Chem. Biol. 8, 179–184. [DOI] [PubMed]
  3. Ishikawa, Y. & Motohashi, Y. (2013a). Acta Cryst. E69, o1225. [DOI] [PMC free article] [PubMed]
  4. Ishikawa, Y. & Motohashi, Y. (2013b). Acta Cryst. E69, o1226. [DOI] [PMC free article] [PubMed]
  5. Kawase, M., Tanaka, T., Kan, H., Tani, S., Nakashima, H. & Sakagami, H. (2007). In Vivo, 21, 829–834. [PubMed]
  6. Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395. [DOI] [PubMed]
  7. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  8. Rigaku (1999). WinAFC Diffractometer Control Software Rigaku Corporation, Tokyo, Japan.
  9. Rigaku (2010). CrystalStructure Rigaku Corporation, Tokyo, Japan.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shim, Y. S., Kim, K. C., Chi, D. Y., Lee, K. H. & Cho, H. (2003). Bioorg. Med. Chem. Lett. 13, 2561–2563. [DOI] [PubMed]
  12. Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S1600536813022228/ld2111sup1.cif

e-69-o1416-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813022228/ld2111Isup2.hkl

e-69-o1416-Isup2.hkl (206KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813022228/ld2111Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES