Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 14;69(Pt 9):o1424. doi: 10.1107/S1600536813022289

2-Chloro-1-(3,3-dimethyl-2,6-di­phenyl­piperidin-1-yl)ethanone

K Prathebha a, B K Revathi a, G Usha a,*, S Ponnuswamy b, S Abdul Basheer b
PMCID: PMC3884441  PMID: 24427057

Abstract

In the title compound, C21H24ClNO, the piperidine ring adopts a chair conformation. The two phenyl rings are inclined to one another by 20.7 (1)°, and are inclined to the mean plane of the four planar atoms of the piperidine ring by 87.64 (10) and 70.8 (1)°. The mol­ecular structure features short intra­molecular C—H⋯Cl and C—H⋯O contacts. In the crystal, there are no significant inter­molecular inter­actions present.

Related literature  

For the synthesis of the title compound, see: Venkatraj et al. (2008). For the biological activity of piperdine derivatives, see: Ramalingan et al. (2004), We­intraub et al. (2003); Ramachandran et al. (2011). For a related structure, see: Aridoss et al. (2011). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-69-o1424-scheme1.jpg

Experimental  

Crystal data  

  • C21H24ClNO

  • M r = 341.86

  • Triclinic, Inline graphic

  • a = 7.5488 (6) Å

  • b = 9.9706 (7) Å

  • c = 12.9887 (10) Å

  • α = 106.783 (4)°

  • β = 93.022 (4)°

  • γ = 102.347 (4)°

  • V = 907.45 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.953, T max = 0.958

  • 13736 measured reflections

  • 3806 independent reflections

  • 3169 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.131

  • S = 1.02

  • 3806 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813022289/su2628sup1.cif

e-69-o1424-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813022289/su2628Isup2.hkl

e-69-o1424-Isup2.hkl (182.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813022289/su2628Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cl1 0.98 2.68 3.3736 (16) 128
C13—H13⋯O1 0.98 2.27 2.732 (2) 108

Acknowledgments

SP and SA thank the UGC, New Delhi, for financial assistance in the form of a Major Research Project. The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data collection and computer facilities.

supplementary crystallographic information

1. Comment

The piperidine sub-structure is a ubiquitous structural feature of many alkaloids, natural products and drug candidates (Weintraub et al., 2003). The motivation for biological trials arises as piperidine derivatives are an important class of heterocyclic compounds with potent pharmacological and biological activities (Ramalingan et al., 2004; Ramachandran et al., 2011). We report herein on the synthesis and crystal structure of a new piperidine derivative.

In the title molecule, Fig. 1, the phenyl rings are attached to the piperidine ring in the symmetric position through bonds C6—C7 [1.5252( ) Å] and C13—C14 [1.523( ) Å]. These bond distances are comparable with those in a related structure (Aridoss et al., 2011). The two phenyl rings (A = C1-C6 and B = C14-C19) are inclined to one another by 20.7 (1) °. The sum of the bond angles around the N atom of the piperidine ring (360 °) shows sp3 hybridization. The piperidine ring (C7-C10/C13/N1) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) of Q(2) = 0.0311 (16) Å, φ(2) = 135 (3) ° Q(3) = 0.5222 (16) Å with Puckering Amplitude (Q) = 0.5231 (16) Å, θ = 3.42 (18) °, π = 135 (3) °. The two phenyl rings (A and B) are inclined to the mean plane of the four planar atoms (N1/C13/C9/C8) of piperidine ring by 87.64 (10) and 70.8 (1) °, respectively.

The molecule is stabilized by short intramolecular C—H···Cl and C—H···O contacts (Table 1).

In the crystal, the molecules stack along the c axis direction without any specific interactions (Fig. 2).

2. Experimental

The title compound was synthesized according to the published procedure (Venkatraj et al., 2008). A mixture of piperidine (5 mmol), chloroacetylchloride (20 mmol) and triethylamine (20 mmol) in anhydrous benzene (20 ml) was stirred at rt for 7 h. The precipitated ammonium salt was washed with water (4 × 10 ml) and the benzene solution was dried and concentrated. The pasty mass was purified by crystallization from ethanol giving colourless block-like crystals [M.p. 377-379 K].

3. Refinement

H atoms were positioned geometrically and treated as riding atoms: C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis. The dashed lines indicate the short intramolecular C-H···O and C-H···Cl contacts (see Table 1 for details).

Crystal data

C21H24ClNO Z = 2
Mr = 341.86 F(000) = 364
Triclinic, P1 Dx = 1.251 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.5488 (6) Å Cell parameters from 3806 reflections
b = 9.9706 (7) Å θ = 1.7–26.7°
c = 12.9887 (10) Å µ = 0.22 mm1
α = 106.783 (4)° T = 293 K
β = 93.022 (4)° Block, colourless
γ = 102.347 (4)° 0.22 × 0.20 × 0.20 mm
V = 907.45 (12) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 3806 independent reflections
Radiation source: fine-focus sealed tube 3169 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
ω and φ scan θmax = 26.7°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −9→9
Tmin = 0.953, Tmax = 0.958 k = −12→12
13736 measured reflections l = −15→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.068P)2 + 0.2438P] where P = (Fo2 + 2Fc2)/3
3806 reflections (Δ/σ)max < 0.001
219 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5516 (3) 0.48807 (17) 0.32195 (15) 0.0580 (4)
H1 0.5332 0.5009 0.3941 0.070*
C2 0.5903 (3) 0.6061 (2) 0.2849 (2) 0.0786 (6)
H2 0.5981 0.6977 0.3322 0.094*
C3 0.6172 (3) 0.5900 (2) 0.1796 (2) 0.0799 (7)
H3 0.6462 0.6701 0.1553 0.096*
C4 0.6009 (3) 0.4528 (2) 0.10924 (17) 0.0667 (5)
H4 0.6164 0.4405 0.0368 0.080*
C5 0.5619 (2) 0.33496 (17) 0.14573 (13) 0.0482 (4)
H5 0.5503 0.2432 0.0976 0.058*
C6 0.53966 (19) 0.35088 (14) 0.25340 (11) 0.0391 (3)
C7 0.49478 (19) 0.21737 (14) 0.29103 (11) 0.0368 (3)
H7 0.3659 0.1703 0.2648 0.044*
C8 0.5168 (2) 0.24431 (17) 0.41304 (12) 0.0457 (3)
H8A 0.4581 0.3206 0.4471 0.055*
H8B 0.4553 0.1576 0.4284 0.055*
C9 0.7153 (2) 0.28648 (18) 0.46186 (11) 0.0490 (4)
H9A 0.7209 0.2955 0.5384 0.059*
H9B 0.7728 0.3799 0.4552 0.059*
C10 0.8214 (2) 0.17659 (16) 0.40704 (12) 0.0455 (3)
C11 0.7480 (3) 0.0335 (2) 0.43042 (16) 0.0647 (5)
H11A 0.8242 −0.0315 0.4036 0.097*
H11B 0.6254 −0.0088 0.3951 0.097*
H11C 0.7486 0.0514 0.5071 0.097*
C12 1.0240 (3) 0.2299 (2) 0.45228 (16) 0.0638 (5)
H12A 1.0714 0.3230 0.4439 0.096*
H12B 1.0901 0.1630 0.4136 0.096*
H12C 1.0374 0.2371 0.5277 0.096*
C13 0.79807 (19) 0.14287 (14) 0.28205 (11) 0.0386 (3)
H13 0.8313 0.0504 0.2540 0.046*
C14 0.91734 (19) 0.24389 (16) 0.23129 (12) 0.0424 (3)
C15 0.9668 (2) 0.39355 (18) 0.27324 (15) 0.0541 (4)
H15 0.9322 0.4386 0.3397 0.065*
C16 1.0665 (3) 0.4759 (2) 0.21753 (19) 0.0718 (6)
H16 1.0980 0.5759 0.2464 0.086*
C17 1.1192 (3) 0.4109 (3) 0.1199 (2) 0.0850 (7)
H17 1.1846 0.4669 0.0820 0.102*
C18 1.0757 (3) 0.2639 (3) 0.07813 (18) 0.0800 (7)
H18 1.1131 0.2197 0.0124 0.096*
C19 0.9761 (2) 0.1810 (2) 0.13376 (14) 0.0572 (4)
H19 0.9479 0.0810 0.1051 0.069*
C20 0.5286 (2) −0.00943 (15) 0.15914 (12) 0.0437 (3)
C21 0.3245 (2) −0.05018 (19) 0.12339 (14) 0.0570 (4)
H21A 0.2973 −0.1266 0.0546 0.068*
H21B 0.2871 0.0326 0.1129 0.068*
N1 0.60093 (15) 0.11277 (11) 0.24134 (9) 0.0357 (3)
O1 0.62001 (18) −0.08988 (13) 0.11198 (11) 0.0661 (4)
Cl1 0.19890 (8) −0.10917 (6) 0.22079 (5) 0.0865 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0763 (12) 0.0397 (8) 0.0540 (10) 0.0194 (8) 0.0015 (8) 0.0055 (7)
C2 0.1003 (17) 0.0380 (9) 0.0930 (16) 0.0173 (9) −0.0070 (12) 0.0162 (9)
C3 0.0786 (14) 0.0593 (11) 0.1160 (19) 0.0119 (10) −0.0009 (13) 0.0540 (12)
C4 0.0679 (12) 0.0803 (13) 0.0706 (12) 0.0237 (10) 0.0102 (9) 0.0470 (10)
C5 0.0533 (9) 0.0506 (8) 0.0447 (8) 0.0168 (7) 0.0043 (7) 0.0178 (7)
C6 0.0399 (7) 0.0361 (7) 0.0401 (7) 0.0114 (6) 0.0008 (6) 0.0089 (5)
C7 0.0368 (7) 0.0348 (6) 0.0361 (7) 0.0092 (5) 0.0055 (5) 0.0062 (5)
C8 0.0507 (9) 0.0489 (8) 0.0375 (7) 0.0123 (7) 0.0134 (6) 0.0118 (6)
C9 0.0589 (10) 0.0537 (9) 0.0302 (7) 0.0081 (7) 0.0029 (6) 0.0112 (6)
C10 0.0470 (8) 0.0481 (8) 0.0422 (8) 0.0078 (6) −0.0021 (6) 0.0189 (6)
C11 0.0736 (12) 0.0623 (10) 0.0682 (11) 0.0131 (9) 0.0026 (9) 0.0388 (9)
C12 0.0537 (10) 0.0718 (11) 0.0631 (11) 0.0091 (9) −0.0133 (8) 0.0242 (9)
C13 0.0382 (7) 0.0345 (6) 0.0423 (7) 0.0101 (5) 0.0032 (6) 0.0099 (5)
C14 0.0326 (7) 0.0518 (8) 0.0452 (8) 0.0102 (6) 0.0038 (6) 0.0186 (6)
C15 0.0470 (9) 0.0522 (9) 0.0629 (10) 0.0047 (7) 0.0092 (7) 0.0225 (8)
C16 0.0549 (11) 0.0711 (12) 0.0933 (15) −0.0019 (9) 0.0085 (10) 0.0439 (11)
C17 0.0565 (12) 0.121 (2) 0.0891 (16) −0.0019 (12) 0.0158 (11) 0.0653 (15)
C18 0.0545 (11) 0.126 (2) 0.0589 (11) 0.0107 (12) 0.0201 (9) 0.0330 (12)
C19 0.0432 (9) 0.0762 (11) 0.0496 (9) 0.0142 (8) 0.0084 (7) 0.0149 (8)
C20 0.0495 (8) 0.0341 (7) 0.0413 (7) 0.0065 (6) 0.0041 (6) 0.0049 (6)
C21 0.0521 (10) 0.0507 (9) 0.0508 (9) 0.0007 (7) −0.0027 (7) −0.0011 (7)
N1 0.0376 (6) 0.0304 (5) 0.0363 (6) 0.0075 (4) 0.0030 (5) 0.0067 (4)
O1 0.0637 (8) 0.0485 (6) 0.0685 (8) 0.0174 (6) 0.0048 (6) −0.0115 (6)
Cl1 0.0704 (4) 0.0732 (4) 0.1052 (5) −0.0123 (3) 0.0181 (3) 0.0310 (3)

Geometric parameters (Å, º)

C1—C6 1.381 (2) C11—H11B 0.9600
C1—C2 1.377 (3) C11—H11C 0.9600
C1—H1 0.9300 C12—H12A 0.9600
C2—C3 1.361 (3) C12—H12B 0.9600
C2—H2 0.9300 C12—H12C 0.9600
C3—C4 1.384 (3) C13—N1 1.4896 (17)
C3—H3 0.9300 C13—C14 1.523 (2)
C4—C5 1.371 (2) C13—H13 0.9800
C4—H4 0.9300 C14—C19 1.384 (2)
C5—C6 1.385 (2) C14—C15 1.391 (2)
C5—H5 0.9300 C15—C16 1.378 (3)
C6—C7 1.5252 (19) C15—H15 0.9300
C7—N1 1.4729 (17) C16—C17 1.369 (4)
C7—C8 1.5228 (19) C16—H16 0.9300
C7—H7 0.9800 C17—C18 1.367 (4)
C8—C9 1.517 (2) C17—H17 0.9300
C8—H8A 0.9700 C18—C19 1.381 (3)
C8—H8B 0.9700 C18—H18 0.9300
C9—C10 1.528 (2) C19—H19 0.9300
C9—H9A 0.9700 C20—O1 1.2214 (19)
C9—H9B 0.9700 C20—N1 1.3510 (17)
C10—C12 1.531 (2) C20—C21 1.518 (2)
C10—C11 1.538 (2) C21—Cl1 1.779 (2)
C10—C13 1.552 (2) C21—H21A 0.9700
C11—H11A 0.9600 C21—H21B 0.9700
C6—C1—C2 120.83 (18) C10—C11—H11C 109.5
C6—C1—H1 119.6 H11A—C11—H11C 109.5
C2—C1—H1 119.6 H11B—C11—H11C 109.5
C3—C2—C1 120.67 (18) C10—C12—H12A 109.5
C3—C2—H2 119.7 C10—C12—H12B 109.5
C1—C2—H2 119.7 H12A—C12—H12B 109.5
C2—C3—C4 119.18 (17) C10—C12—H12C 109.5
C2—C3—H3 120.4 H12A—C12—H12C 109.5
C4—C3—H3 120.4 H12B—C12—H12C 109.5
C5—C4—C3 120.35 (19) N1—C13—C14 111.88 (11)
C5—C4—H4 119.8 N1—C13—C10 109.68 (11)
C3—C4—H4 119.8 C14—C13—C10 119.26 (12)
C4—C5—C6 120.80 (16) N1—C13—H13 104.9
C4—C5—H5 119.6 C14—C13—H13 104.9
C6—C5—H5 119.6 C10—C13—H13 104.9
C1—C6—C5 118.13 (14) C19—C14—C15 117.72 (16)
C1—C6—C7 122.40 (14) C19—C14—C13 116.89 (14)
C5—C6—C7 119.42 (12) C15—C14—C13 125.35 (14)
N1—C7—C8 108.53 (11) C16—C15—C14 120.80 (18)
N1—C7—C6 111.44 (11) C16—C15—H15 119.6
C8—C7—C6 116.13 (11) C14—C15—H15 119.6
N1—C7—H7 106.7 C15—C16—C17 120.2 (2)
C8—C7—H7 106.7 C15—C16—H16 119.9
C6—C7—H7 106.7 C17—C16—H16 119.9
C9—C8—C7 112.77 (12) C18—C17—C16 120.09 (19)
C9—C8—H8A 109.0 C18—C17—H17 120.0
C7—C8—H8A 109.0 C16—C17—H17 120.0
C9—C8—H8B 109.0 C17—C18—C19 119.9 (2)
C7—C8—H8B 109.0 C17—C18—H18 120.1
H8A—C8—H8B 107.8 C19—C18—H18 120.1
C8—C9—C10 112.41 (12) C14—C19—C18 121.28 (19)
C8—C9—H9A 109.1 C14—C19—H19 119.4
C10—C9—H9A 109.1 C18—C19—H19 119.4
C8—C9—H9B 109.1 O1—C20—N1 123.03 (14)
C10—C9—H9B 109.1 O1—C20—C21 117.96 (13)
H9A—C9—H9B 107.9 N1—C20—C21 119.00 (13)
C12—C10—C9 110.51 (14) C20—C21—Cl1 111.42 (12)
C12—C10—C11 107.52 (13) C20—C21—H21A 109.3
C9—C10—C11 109.57 (14) Cl1—C21—H21A 109.3
C12—C10—C13 110.43 (14) C20—C21—H21B 109.3
C9—C10—C13 111.76 (11) Cl1—C21—H21B 109.3
C11—C10—C13 106.88 (13) H21A—C21—H21B 108.0
C10—C11—H11A 109.5 C20—N1—C7 123.13 (12)
C10—C11—H11B 109.5 C20—N1—C13 117.91 (11)
H11A—C11—H11B 109.5 C7—N1—C13 118.95 (10)
C6—C1—C2—C3 0.2 (3) C10—C13—C14—C19 142.88 (14)
C1—C2—C3—C4 1.5 (4) N1—C13—C14—C15 90.66 (17)
C2—C3—C4—C5 −1.4 (3) C10—C13—C14—C15 −39.2 (2)
C3—C4—C5—C6 −0.5 (3) C19—C14—C15—C16 1.8 (2)
C2—C1—C6—C5 −2.0 (3) C13—C14—C15—C16 −176.05 (15)
C2—C1—C6—C7 −179.24 (17) C14—C15—C16—C17 −0.4 (3)
C4—C5—C6—C1 2.2 (2) C15—C16—C17—C18 −1.1 (3)
C4—C5—C6—C7 179.49 (15) C16—C17—C18—C19 1.0 (3)
C1—C6—C7—N1 −141.81 (15) C15—C14—C19—C18 −1.9 (2)
C5—C6—C7—N1 41.02 (17) C13—C14—C19—C18 176.13 (16)
C1—C6—C7—C8 −16.9 (2) C17—C18—C19—C14 0.6 (3)
C5—C6—C7—C8 165.97 (13) O1—C20—C21—Cl1 107.89 (16)
N1—C7—C8—C9 52.72 (16) N1—C20—C21—Cl1 −71.80 (17)
C6—C7—C8—C9 −73.70 (16) O1—C20—N1—C7 173.64 (14)
C7—C8—C9—C10 −54.77 (17) C21—C20—N1—C7 −6.7 (2)
C8—C9—C10—C12 175.17 (13) O1—C20—N1—C13 −5.6 (2)
C8—C9—C10—C11 −66.52 (16) C21—C20—N1—C13 174.10 (13)
C8—C9—C10—C13 51.76 (17) C8—C7—N1—C20 126.99 (14)
C12—C10—C13—N1 −171.49 (12) C6—C7—N1—C20 −103.91 (15)
C9—C10—C13—N1 −48.04 (15) C8—C7—N1—C13 −53.80 (15)
C11—C10—C13—N1 71.84 (15) C6—C7—N1—C13 75.29 (14)
C12—C10—C13—C14 −40.64 (18) C14—C13—N1—C20 96.58 (15)
C9—C10—C13—C14 82.81 (16) C10—C13—N1—C20 −128.75 (13)
C11—C10—C13—C14 −157.31 (13) C14—C13—N1—C7 −82.66 (14)
N1—C13—C14—C19 −87.25 (15) C10—C13—N1—C7 52.00 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7···Cl1 0.98 2.68 3.3736 (16) 128
C13—H13···O1 0.98 2.27 2.732 (2) 108

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2628).

References

  1. Aridoss, G., Sundaramoorthy, S., Velmurugan, D. & Jeong, Y. T. (2011). Acta Cryst. E67, o540. [DOI] [PMC free article] [PubMed]
  2. Bruker (2004). APEX2, SAINT, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Ramachandran, R., Rani, M., Senthan, S., Jeong, Y. T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926–1934. [DOI] [PubMed]
  6. Ramalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527–533. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Venkatraj, M., Ponnuswamy, S. & Jeyaraman, R. (2008). Indian J. Chem. Sect. B, 47, 411–426.
  10. Weintraub, P. M., Sabol, J. S., Kane, J. M. & Borcherding, D. R. (2003). Tetrahedron, 59, 2953–2989.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813022289/su2628sup1.cif

e-69-o1424-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813022289/su2628Isup2.hkl

e-69-o1424-Isup2.hkl (182.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813022289/su2628Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES