Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 31;69(Pt 9):o1491–o1492. doi: 10.1107/S1600536813023830

1,1′,4,5-Tetra­hydro­tri­spiro­[1,3,2-di­aza­phosphole-2,2′-[1,3,5,2,4,6]tri­aza­triphosphinine-4′,6′′-dibenzo[d,f][1,3,2]dioxaphosphepine-6′,6′′′-dibenzo[d,f][1,3,2]dioxaphosphepine] acetone monosolvate

Krystal R Fontenot a, Michael W Easson a,*, Frank R Fronczek b, Brian D Condon a
PMCID: PMC3884451  PMID: 24427109

Abstract

The title compound, C26H22N5O4P3·C3H6O, has been achieved in a two-step synthesis that does not require chromatography. This mol­ecule contains a seven-membered spiro­cyclic ring at two P-atom positions and a five-membered ring containing new P—N bonds at the other P-atom position. Endocyclic torsion angles about the central biphenyl C—C bonds are −41.5 (3) and −44.4 (3)°, and P—N bonds of the central P3N3 ring are within the range 1.5665 (17)–1.6171 (17) Å, while the P—O distances are in the range 1.5940 (14)–1.6041 (14) Å. One N—H group makes an inter­molecular N—H⋯N hydrogen bond, forming centrosymmetric dimers, while the other N—H group makes an N—H⋯O hydrogen bond to the acetone solvent mol­ecule. The crystal was a two-component non-merohedral twin with ratio 0.811/0.189.

Related literature  

For phosphazene-based flame retardants, see: Bakos et al. (1982); Drews & Barker (1985). For related structures, bond angles and lengths, see: Allcock (1972); Ciftci et al. (2013). For the geometry of phosphazene rings, see: Olthof (1969); Barclay et al. (2002). For the synthesis, see: Allen (1991); Carriedo et al. (1996). For related structures, see: Chandrasekhar et al. (2007; 2011; 2012); Harmjanz et al. (2004). For graph-set analysis, see: Etter (1990). For ring asymmetry parameters, see: Duax et al. (1976).graphic file with name e-69-o1491-scheme1.jpg

Experimental  

Crystal data  

  • C26H22N5O4P3·C3H6O

  • M r = 619.47

  • Monoclinic, Inline graphic

  • a = 9.4901 (9) Å

  • b = 22.9466 (19) Å

  • c = 13.1776 (13) Å

  • β = 97.978 (6)°

  • V = 2841.9 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.34 mm−1

  • T = 100 K

  • 0.19 × 0.12 × 0.03 mm

Data collection  

  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2004) T min = 0.664, T max = 0.933

  • 33208 measured reflections

  • 5065 independent reflections

  • 4276 reflections with I > 2σ(I)

  • R int = 0.051

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.102

  • S = 1.08

  • 5065 reflections

  • 387 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813023830/jj2173sup1.cif

e-69-o1491-sup1.cif (35.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813023830/jj2173Isup2.hkl

e-69-o1491-Isup2.hkl (248.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O5 0.82 (3) 2.22 (3) 2.991 (2) 158 (2)
N5—H5N⋯N3i 0.83 (3) 2.53 (3) 3.285 (2) 151 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

We would like to thank Dr Casey Grimm for the MS analysis. Upgrade of the diffractometer was made possible by grant No. LEQSF(2011–12)-ENH-TR-01, administered by the Louisiana Board of Regents.

supplementary crystallographic information

1. Comment

The non-halogenated title compound contains two key elements phosphorus and nitrogen, which are incorporated into the backbone moiety of the molecule to achieve flame retardant properties (Bakos et al., 1982). Studies have shown that an increase in the number of phosphorus (P), nitrogen (N), or P—N bonds leads to improved flame retardancy (Drews & Barker, 1985). The substitution of two biphenol groups and ethylenediamine onto phosphazene was achieved through nucleophilic substitution in high yield. This compound was applied to cotton fabric and has shown promising preliminary results as a potential flame retardant.

The proposed efficacy and novelty of this flame retardant is based on the design of phosphorus (P3) surrounded by four nitrogen (N2, N3, N4, N5) atoms, thereby increasing the number of P—N bonds in the molecule. Incorporation of the 2,2'-biphenol moiety at P1 and P2 promotes a seven membered spirocyclic structure with endocyclic torsion angles about the central biphenol C—C bonds being nearly equal, -44.4 (3)° for C1/C6/C7/C12 and -41.5 (3)° for C13/C18/C19/C24. Both seven-membered rings have twist conformations with the P atom on the local twofold axis; however the deviation from C2 local symmetry is substantial for both. The asymmetry parameter (Duax et al., 1976) is 14.83 (13)° for the ring containing P1 and 18.44 (14)° for that containing P2.

The utilization of ethylenediamine at the P3 position forms a five-membered ring with new P—N bonds, which lies roughly perpendicular (dihedral angle 81.42 (4)°) to the phosphazene ring. The conformation of the 5-membered ring is closest to an envelope with C25 at the flap position. C25 lies 0.554 (2) Å out of the plane of the other four atoms, and the Cs asymmetry parameter is 3.44 (17)°. The N—P—N bonds have angles of 94.47 (9)° to 113.64 (9)°, which is lower than typical angles of ~118° (Allcock, 1972). The narrowing of the angle may be due to van der Waals repulsions from the four N atoms surrounding P3 (Allcock, 1972). It has been reported that N—P—N bonds with two bulky phenyl groups on P have a narrowed angle of 115° due to mutual repulsions form the bulky phenyl group (Allcock, 1972). The phosphazene ring itself is slightly nonplanar, having a boat distortion, with P2 lying 0.1982 (4) Å and N3 lying 0.161 (2) Å on the same side of the plane defined by P1, P3, N1, and N2. The phosphazene ring has P—N bond lengths ranging from 1.5665 (17) to 1.6171 (17) Å. These values are typical for phosphazene rings (Barclay et al. 2002; Olthof, 1969). This molecule has similar bond angles and bond lengths, when substituted with the same or comparable spiro molecules, as found in the literature (Allcock, 1972, Ciftci et al., 2013). Overall, the molecule has approximate C2 symmetry, as seen in Fig. 1.

Both NH groups donate intermolecular hydrogen bonds, as shown in Fig. 2. The N5—H···N3 (at 2 - x, 1 - y, 1 - z) bond leads to centrosymmetric hydrogen-bonded dimers, with graph set R22(8) (Etter, 1990), while N4 donates a hydrogen bond to acetone O. The acetone molecule forms two C—H···O hydrogen bonds with the phosphazene molecule, one as a donor and the other as an acceptor (Table 1).

2. Experimental

All reagent grade chemicals were purchased from Sigma Aldrich and were used without further purification. ESI Mass Spectra were recorded on an Agilent Technologies 6520 Accurate Mass Q-TOF LC/MS. NMR spectra were recorded using a Varian 400MHZ spectrometer. 1H and 13C are given in δ relative to TMS and 31P is given δ relative to external 85% aqueous H3PO4.

2,2-Dichloro-4,4,6,6-bis[spiro(2,2'-dioxy-1'1"-biphenyl)] Cyclotriphosphazene (1) was synthesized as previously reported in the literature (Allen, 1991; Carriedo et al. 1996).

A 3-neck round bottom flask was equipped with an argon inlet, an addition funnel, and a stopper. (1) was allowed to stir in CH2C12 until completely dissolved. A solution of ethylenediamine in CH2C12 was added drop-wise to the round bottom flask at 0°C and allowed to warm to room temperature. The reaction was allowed to stir for 24 h. Thin Layer Chromatography (TLC) was used to follow the reaction using Hexanes/ CH2C12 (50:50) and DCM/MeOH (90:10). Purification was achieved by gently extracting the organic layer with warm distilled water. The organic layer was dried by anhydrous sodium sulfate and concentrated. The product (2) obtained was a white solid with a yield of 84%. The compound was tested by ESI-MS and 1H, 13C, 31P –NMR using Acetone-d6. Crystals of (2) were grown in an NMR tube from acetone.

3. Refinement

H atoms on C were placed in idealized positions with C—H distances 0.95 - 0.99 Å and thereafter treated as riding, with a torsional parameter refined for each methyl group. Coordinates of the NH hydrogen atoms were refined isotropically. Uiso for H were assigned as 1.2 times Ueq of the attached atoms (1.5 for methyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atomic numbering scheme and 50% ellipsoids. The solvent molecule is not shown.

Fig. 2.

Fig. 2.

Hydrogen bonding, illustrating the centrosymmetic dimer about 1, 1/2, 1/2 and the two acetone acceptors. H atoms on C are not shown.

Crystal data

C26H22N5O4P3·C3H6O F(000) = 1288
Mr = 619.47 Dx = 1.448 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 3314 reflections
a = 9.4901 (9) Å θ = 3.9–67.8°
b = 22.9466 (19) Å µ = 2.34 mm1
c = 13.1776 (13) Å T = 100 K
β = 97.978 (6)° Plate, colorless
V = 2841.9 (5) Å3 0.19 × 0.12 × 0.03 mm
Z = 4

Data collection

Bruker Kappa APEXII DUO CCD diffractometer 5065 independent reflections
Radiation source: IµS microfocus 4276 reflections with I > 2σ(I)
QUAZAR multilayer optics monochromator Rint = 0.051
φ and ω scans θmax = 68.7°, θmin = 3.9°
Absorption correction: multi-scan (TWINABS; Sheldrick, 2004) h = −11→11
Tmin = 0.664, Tmax = 0.933 k = 0→27
33208 measured reflections l = 0→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.7869P] where P = (Fo2 + 2Fc2)/3
5065 reflections (Δ/σ)max = 0.001
387 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Experimental. The sample was a multiple crystal ("twin") with two components. The second domain was rotated from first domain by 2.6 degrees about reciprocal axis -0.141 1.000 0.976 and real axis -0.085 0.341 1.000The twin law to convert hkl from first to this domain (SHELXL TWIN matrix): 1.002 - 0.016 0.017, 0.096 0.999 0.015, -0.032 - 0.001 0.996
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections, using a TWIN4 hkl file prepared by TWINABS (Sheldrick, 2004).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.86867 (5) 0.57153 (2) 0.27605 (4) 0.01501 (13)
P2 0.70274 (5) 0.47853 (2) 0.30698 (4) 0.01500 (13)
P3 0.79507 (5) 0.55177 (2) 0.47261 (4) 0.01498 (13)
O1 1.02561 (15) 0.56625 (6) 0.24629 (11) 0.0169 (3)
O2 0.80895 (14) 0.62781 (6) 0.21219 (11) 0.0171 (3)
O3 0.77860 (14) 0.41639 (6) 0.30107 (11) 0.0165 (3)
O4 0.54174 (14) 0.46339 (6) 0.26346 (11) 0.0174 (3)
N1 0.77084 (18) 0.51945 (7) 0.22950 (13) 0.0173 (4)
N2 0.69897 (18) 0.49976 (7) 0.41955 (13) 0.0178 (4)
N3 0.89141 (18) 0.58162 (7) 0.39485 (13) 0.0172 (4)
N4 0.70206 (19) 0.59910 (8) 0.52986 (14) 0.0190 (4)
H4N 0.659 (3) 0.6247 (11) 0.4945 (19) 0.023*
N5 0.89724 (19) 0.53234 (8) 0.57900 (13) 0.0182 (4)
H5N 0.921 (3) 0.4976 (11) 0.5831 (19) 0.022*
C1 1.0620 (2) 0.58150 (9) 0.14985 (16) 0.0175 (4)
C2 1.1120 (2) 0.53795 (9) 0.09149 (16) 0.0195 (4)
H2 1.1120 0.4985 0.1134 0.023*
C3 1.1619 (2) 0.55245 (9) 0.00081 (17) 0.0231 (5)
H3 1.1962 0.5228 −0.0399 0.028*
C4 1.1620 (2) 0.61020 (10) −0.03067 (16) 0.0233 (5)
H4 1.1973 0.6201 −0.0925 0.028*
C5 1.1105 (2) 0.65351 (9) 0.02810 (16) 0.0205 (4)
H5 1.1096 0.6928 0.0054 0.025*
C6 1.0600 (2) 0.64004 (9) 0.12034 (15) 0.0170 (4)
C7 1.0101 (2) 0.68643 (8) 0.18533 (15) 0.0174 (4)
C8 1.0836 (2) 0.73950 (9) 0.20275 (16) 0.0203 (4)
H8 1.1679 0.7460 0.1730 0.024*
C9 1.0346 (2) 0.78235 (9) 0.26264 (16) 0.0225 (5)
H9 1.0854 0.8180 0.2735 0.027*
C10 0.9119 (2) 0.77390 (9) 0.30718 (16) 0.0218 (4)
H10 0.8794 0.8035 0.3486 0.026*
C11 0.8369 (2) 0.72215 (9) 0.29101 (16) 0.0205 (4)
H11 0.7523 0.7159 0.3206 0.025*
C12 0.8877 (2) 0.67975 (8) 0.23097 (16) 0.0175 (4)
C13 0.7274 (2) 0.37086 (8) 0.35739 (16) 0.0170 (4)
C14 0.8068 (2) 0.35465 (9) 0.44930 (16) 0.0207 (4)
H14 0.8913 0.3751 0.4752 0.025*
C15 0.7602 (3) 0.30792 (9) 0.50272 (17) 0.0265 (5)
H15 0.8124 0.2964 0.5663 0.032*
C16 0.6377 (2) 0.27796 (9) 0.46347 (18) 0.0265 (5)
H16 0.6068 0.2458 0.5000 0.032*
C17 0.5602 (2) 0.29493 (9) 0.37092 (18) 0.0234 (5)
H17 0.4765 0.2741 0.3446 0.028*
C18 0.6038 (2) 0.34235 (8) 0.31581 (16) 0.0182 (4)
C19 0.5226 (2) 0.36114 (9) 0.21647 (16) 0.0182 (4)
C20 0.4629 (2) 0.32016 (9) 0.14425 (18) 0.0246 (5)
H20 0.4762 0.2798 0.1586 0.029*
C21 0.3846 (2) 0.33719 (11) 0.05215 (19) 0.0296 (5)
H21 0.3440 0.3086 0.0047 0.036*
C22 0.3657 (2) 0.39597 (11) 0.02949 (18) 0.0291 (5)
H22 0.3130 0.4077 −0.0338 0.035*
C23 0.4239 (2) 0.43759 (10) 0.09950 (17) 0.0237 (5)
H23 0.4115 0.4779 0.0845 0.028*
C24 0.5001 (2) 0.41980 (9) 0.19118 (16) 0.0178 (4)
C25 0.7808 (2) 0.61684 (9) 0.62821 (16) 0.0233 (5)
H25A 0.7156 0.6317 0.6748 0.028*
H25B 0.8514 0.6475 0.6188 0.028*
C26 0.8542 (2) 0.56094 (9) 0.67000 (16) 0.0213 (4)
H26A 0.9382 0.5698 0.7211 0.026*
H26B 0.7880 0.5360 0.7024 0.026*
O5 0.53486 (16) 0.66469 (7) 0.35745 (12) 0.0258 (3)
C27 0.4623 (2) 0.62727 (9) 0.30959 (17) 0.0220 (5)
C28 0.3829 (2) 0.58239 (9) 0.36180 (18) 0.0255 (5)
H28A 0.4119 0.5846 0.4360 0.038*
H28B 0.4045 0.5435 0.3373 0.038*
H28C 0.2805 0.5897 0.3462 0.038*
C29 0.4499 (3) 0.62433 (11) 0.19530 (18) 0.0307 (5)
H29A 0.4922 0.6594 0.1695 0.046*
H29B 0.3493 0.6219 0.1661 0.046*
H29C 0.5002 0.5898 0.1754 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0158 (3) 0.0150 (2) 0.0145 (3) −0.00015 (19) 0.00280 (19) 0.00056 (18)
P2 0.0159 (3) 0.0140 (2) 0.0153 (3) −0.00058 (19) 0.00309 (19) −0.00092 (18)
P3 0.0156 (3) 0.0156 (2) 0.0139 (3) 0.00053 (19) 0.00267 (19) −0.00072 (18)
O1 0.0168 (7) 0.0184 (7) 0.0161 (7) 0.0007 (5) 0.0041 (6) 0.0038 (5)
O2 0.0156 (7) 0.0159 (7) 0.0194 (7) −0.0013 (5) 0.0007 (6) 0.0012 (5)
O3 0.0165 (7) 0.0152 (6) 0.0183 (7) −0.0007 (5) 0.0041 (5) −0.0009 (5)
O4 0.0157 (7) 0.0159 (6) 0.0206 (8) 0.0000 (5) 0.0024 (6) −0.0040 (6)
N1 0.0196 (9) 0.0177 (8) 0.0151 (9) −0.0020 (7) 0.0042 (7) −0.0015 (6)
N2 0.0195 (9) 0.0173 (8) 0.0173 (9) −0.0020 (7) 0.0051 (7) 0.0005 (7)
N3 0.0181 (9) 0.0174 (8) 0.0158 (9) −0.0023 (7) 0.0016 (7) −0.0005 (7)
N4 0.0203 (9) 0.0193 (8) 0.0176 (9) 0.0041 (7) 0.0030 (7) −0.0017 (7)
N5 0.0204 (9) 0.0187 (8) 0.0154 (9) 0.0028 (7) 0.0019 (7) 0.0007 (7)
C1 0.0141 (10) 0.0234 (10) 0.0151 (10) −0.0017 (8) 0.0029 (8) 0.0003 (8)
C2 0.0189 (10) 0.0177 (9) 0.0215 (11) −0.0003 (8) 0.0013 (8) −0.0007 (8)
C3 0.0216 (11) 0.0263 (11) 0.0212 (11) 0.0020 (9) 0.0025 (9) −0.0039 (9)
C4 0.0239 (11) 0.0307 (11) 0.0160 (11) −0.0022 (9) 0.0051 (9) 0.0007 (9)
C5 0.0215 (11) 0.0203 (10) 0.0198 (11) −0.0004 (8) 0.0031 (8) 0.0031 (8)
C6 0.0151 (10) 0.0193 (10) 0.0167 (10) −0.0017 (8) 0.0025 (8) −0.0015 (8)
C7 0.0191 (10) 0.0181 (9) 0.0148 (10) 0.0008 (8) 0.0016 (8) 0.0033 (8)
C8 0.0225 (11) 0.0207 (10) 0.0184 (11) −0.0024 (8) 0.0054 (8) 0.0034 (8)
C9 0.0307 (12) 0.0159 (9) 0.0209 (11) −0.0046 (9) 0.0031 (9) 0.0009 (8)
C10 0.0286 (11) 0.0171 (10) 0.0201 (11) 0.0019 (9) 0.0051 (9) −0.0019 (8)
C11 0.0199 (10) 0.0204 (10) 0.0212 (11) 0.0029 (8) 0.0036 (8) 0.0038 (8)
C12 0.0198 (10) 0.0132 (9) 0.0186 (10) −0.0013 (8) −0.0004 (8) 0.0023 (7)
C13 0.0207 (10) 0.0139 (9) 0.0182 (10) 0.0005 (8) 0.0091 (8) −0.0011 (8)
C14 0.0228 (11) 0.0184 (9) 0.0213 (11) 0.0052 (8) 0.0044 (9) −0.0030 (8)
C15 0.0379 (13) 0.0220 (10) 0.0208 (11) 0.0116 (10) 0.0087 (10) 0.0028 (9)
C16 0.0331 (13) 0.0194 (10) 0.0308 (13) 0.0044 (9) 0.0181 (10) 0.0044 (9)
C17 0.0236 (11) 0.0172 (10) 0.0316 (13) 0.0004 (8) 0.0113 (9) −0.0014 (9)
C18 0.0185 (10) 0.0152 (9) 0.0227 (11) 0.0021 (8) 0.0092 (8) −0.0027 (8)
C19 0.0148 (10) 0.0212 (10) 0.0202 (11) −0.0021 (8) 0.0073 (8) −0.0031 (8)
C20 0.0216 (11) 0.0228 (11) 0.0307 (13) −0.0033 (9) 0.0086 (9) −0.0087 (9)
C21 0.0229 (11) 0.0378 (13) 0.0276 (13) −0.0032 (10) 0.0015 (9) −0.0167 (10)
C22 0.0231 (12) 0.0412 (13) 0.0218 (12) 0.0024 (10) −0.0015 (9) −0.0063 (10)
C23 0.0209 (11) 0.0257 (11) 0.0241 (12) 0.0025 (9) 0.0019 (9) −0.0006 (9)
C24 0.0138 (10) 0.0202 (10) 0.0196 (11) −0.0008 (8) 0.0038 (8) −0.0046 (8)
C25 0.0234 (11) 0.0275 (11) 0.0188 (11) 0.0003 (9) 0.0023 (9) −0.0057 (9)
C26 0.0213 (11) 0.0268 (10) 0.0159 (11) −0.0005 (9) 0.0029 (8) −0.0013 (8)
O5 0.0236 (8) 0.0247 (8) 0.0291 (9) −0.0022 (6) 0.0034 (7) −0.0016 (6)
C27 0.0162 (10) 0.0234 (10) 0.0268 (12) 0.0065 (9) 0.0039 (9) −0.0008 (9)
C28 0.0210 (11) 0.0245 (11) 0.0319 (13) 0.0012 (9) 0.0069 (9) −0.0014 (9)
C29 0.0257 (12) 0.0403 (13) 0.0255 (13) −0.0010 (10) 0.0017 (10) 0.0027 (10)

Geometric parameters (Å, º)

P1—N3 1.5675 (17) C10—H10 0.9500
P1—N1 1.5837 (17) C11—C12 1.382 (3)
P1—O1 1.5965 (14) C11—H11 0.9500
P1—O2 1.6016 (14) C13—C14 1.385 (3)
P2—N2 1.5665 (17) C13—C18 1.388 (3)
P2—N1 1.5890 (17) C14—C15 1.388 (3)
P2—O4 1.5940 (14) C14—H14 0.9500
P2—O3 1.6041 (14) C15—C16 1.387 (3)
P3—N2 1.6024 (17) C15—H15 0.9500
P3—N3 1.6171 (17) C16—C17 1.390 (3)
P3—N4 1.6471 (17) C16—H16 0.9500
P3—N5 1.6514 (18) C17—C18 1.402 (3)
O1—C1 1.407 (2) C17—H17 0.9500
O2—C12 1.410 (2) C18—C19 1.488 (3)
O3—C13 1.407 (2) C19—C24 1.396 (3)
O4—C24 1.400 (2) C19—C20 1.401 (3)
N4—C25 1.461 (3) C20—C21 1.388 (3)
N4—H4N 0.82 (3) C20—H20 0.9500
N5—C26 1.473 (3) C21—C22 1.388 (4)
N5—H5N 0.83 (3) C21—H21 0.9500
C1—C2 1.384 (3) C22—C23 1.388 (3)
C1—C6 1.398 (3) C22—H22 0.9500
C2—C3 1.386 (3) C23—C24 1.381 (3)
C2—H2 0.9500 C23—H23 0.9500
C3—C4 1.389 (3) C25—C26 1.526 (3)
C3—H3 0.9500 C25—H25A 0.9900
C4—C5 1.390 (3) C25—H25B 0.9900
C4—H4 0.9500 C26—H26A 0.9900
C5—C6 1.402 (3) C26—H26B 0.9900
C5—H5 0.9500 O5—C27 1.220 (3)
C6—C7 1.484 (3) C27—C29 1.496 (3)
C7—C12 1.389 (3) C27—C28 1.498 (3)
C7—C8 1.406 (3) C28—H28A 0.9800
C8—C9 1.381 (3) C28—H28B 0.9800
C8—H8 0.9500 C28—H28C 0.9800
C9—C10 1.388 (3) C29—H29A 0.9800
C9—H9 0.9500 C29—H29B 0.9800
C10—C11 1.386 (3) C29—H29C 0.9800
N3—P1—N1 119.36 (9) C11—C12—O2 118.47 (18)
N3—P1—O1 104.64 (8) C7—C12—O2 118.17 (17)
N1—P1—O1 111.37 (8) C14—C13—C18 123.09 (19)
N3—P1—O2 113.28 (8) C14—C13—O3 118.37 (18)
N1—P1—O2 105.03 (8) C18—C13—O3 118.46 (18)
O1—P1—O2 101.90 (7) C13—C14—C15 118.6 (2)
N2—P2—N1 119.30 (9) C13—C14—H14 120.7
N2—P2—O4 105.18 (8) C15—C14—H14 120.7
N1—P2—O4 110.65 (8) C16—C15—C14 120.2 (2)
N2—P2—O3 113.07 (9) C16—C15—H15 119.9
N1—P2—O3 105.59 (8) C14—C15—H15 119.9
O4—P2—O3 101.71 (7) C15—C16—C17 120.2 (2)
N2—P3—N3 112.12 (9) C15—C16—H16 119.9
N2—P3—N4 112.47 (9) C17—C16—H16 119.9
N3—P3—N4 113.39 (9) C16—C17—C18 120.9 (2)
N2—P3—N5 113.64 (9) C16—C17—H17 119.6
N3—P3—N5 109.59 (9) C18—C17—H17 119.6
N4—P3—N5 94.47 (9) C13—C18—C17 117.1 (2)
C1—O1—P1 123.88 (13) C13—C18—C19 121.14 (18)
C12—O2—P1 116.68 (12) C17—C18—C19 121.76 (19)
C13—O3—P2 116.39 (12) C24—C19—C20 116.8 (2)
C24—O4—P2 124.52 (12) C24—C19—C18 122.21 (18)
P1—N1—P2 117.77 (11) C20—C19—C18 120.98 (19)
P2—N2—P3 123.95 (11) C21—C20—C19 121.5 (2)
P1—N3—P3 123.96 (11) C21—C20—H20 119.3
C25—N4—P3 110.45 (14) C19—C20—H20 119.3
C25—N4—H4N 117.0 (17) C22—C21—C20 119.9 (2)
P3—N4—H4N 117.8 (18) C22—C21—H21 120.0
C26—N5—P3 111.99 (14) C20—C21—H21 120.0
C26—N5—H5N 118.6 (17) C21—C22—C23 119.9 (2)
P3—N5—H5N 115.9 (17) C21—C22—H22 120.1
C2—C1—C6 122.12 (19) C23—C22—H22 120.1
C2—C1—O1 117.93 (18) C24—C23—C22 119.3 (2)
C6—C1—O1 119.65 (18) C24—C23—H23 120.3
C1—C2—C3 119.36 (19) C22—C23—H23 120.3
C1—C2—H2 120.3 C23—C24—C19 122.56 (19)
C3—C2—H2 120.3 C23—C24—O4 116.64 (18)
C2—C3—C4 120.1 (2) C19—C24—O4 120.46 (18)
C2—C3—H3 120.0 N4—C25—C26 103.74 (17)
C4—C3—H3 120.0 N4—C25—H25A 111.0
C3—C4—C5 120.1 (2) C26—C25—H25A 111.0
C3—C4—H4 120.0 N4—C25—H25B 111.0
C5—C4—H4 120.0 C26—C25—H25B 111.0
C4—C5—C6 120.97 (19) H25A—C25—H25B 109.0
C4—C5—H5 119.5 N5—C26—C25 104.18 (17)
C6—C5—H5 119.5 N5—C26—H26A 110.9
C1—C6—C5 117.38 (19) C25—C26—H26A 110.9
C1—C6—C7 121.47 (18) N5—C26—H26B 110.9
C5—C6—C7 121.13 (18) C25—C26—H26B 110.9
C12—C7—C8 116.76 (18) H26A—C26—H26B 108.9
C12—C7—C6 121.56 (18) O5—C27—C29 120.8 (2)
C8—C7—C6 121.68 (18) O5—C27—C28 122.0 (2)
C9—C8—C7 120.7 (2) C29—C27—C28 117.21 (19)
C9—C8—H8 119.6 C27—C28—H28A 109.5
C7—C8—H8 119.6 C27—C28—H28B 109.5
C8—C9—C10 120.73 (19) H28A—C28—H28B 109.5
C8—C9—H9 119.6 C27—C28—H28C 109.5
C10—C9—H9 119.6 H28A—C28—H28C 109.5
C11—C10—C9 119.85 (19) H28B—C28—H28C 109.5
C11—C10—H10 120.1 C27—C29—H29A 109.5
C9—C10—H10 120.1 C27—C29—H29B 109.5
C12—C11—C10 118.6 (2) H29A—C29—H29B 109.5
C12—C11—H11 120.7 C27—C29—H29C 109.5
C10—C11—H11 120.7 H29A—C29—H29C 109.5
C11—C12—C7 123.33 (18) H29B—C29—H29C 109.5
N3—P1—O1—C1 −151.76 (15) C5—C6—C7—C12 137.4 (2)
N1—P1—O1—C1 77.97 (16) C1—C6—C7—C8 136.4 (2)
O2—P1—O1—C1 −33.56 (16) C5—C6—C7—C8 −41.9 (3)
N3—P1—O2—C12 54.75 (16) C12—C7—C8—C9 0.0 (3)
N1—P1—O2—C12 −173.32 (14) C6—C7—C8—C9 179.33 (19)
O1—P1—O2—C12 −57.08 (15) C7—C8—C9—C10 0.2 (3)
N2—P2—O3—C13 52.84 (16) C8—C9—C10—C11 −0.4 (3)
N1—P2—O3—C13 −175.00 (13) C9—C10—C11—C12 0.5 (3)
O4—P2—O3—C13 −59.42 (15) C10—C11—C12—C7 −0.3 (3)
N2—P2—O4—C24 −148.34 (15) C10—C11—C12—O2 −178.18 (18)
N1—P2—O4—C24 81.56 (17) C8—C7—C12—C11 0.1 (3)
O3—P2—O4—C24 −30.24 (17) C6—C7—C12—C11 −179.23 (19)
N3—P1—N1—P2 −1.48 (16) C8—C7—C12—O2 177.90 (17)
O1—P1—N1—P2 120.63 (11) C6—C7—C12—O2 −1.4 (3)
O2—P1—N1—P2 −129.84 (11) P1—O2—C12—C11 −103.17 (18)
N2—P2—N1—P1 16.39 (16) P1—O2—C12—C7 78.9 (2)
O4—P2—N1—P1 138.55 (10) P2—O3—C13—C14 −103.07 (18)
O3—P2—N1—P1 −112.16 (11) P2—O3—C13—C18 80.20 (19)
N1—P2—N2—P3 −17.32 (17) C18—C13—C14—C15 −0.4 (3)
O4—P2—N2—P3 −142.15 (12) O3—C13—C14—C15 −176.97 (17)
O3—P2—N2—P3 107.71 (12) C13—C14—C15—C16 0.8 (3)
N3—P3—N2—P2 2.48 (16) C14—C15—C16—C17 −0.6 (3)
N4—P3—N2—P2 131.67 (12) C15—C16—C17—C18 −0.1 (3)
N5—P3—N2—P2 −122.48 (13) C14—C13—C18—C17 −0.3 (3)
N1—P1—N3—P3 −14.21 (17) O3—C13—C18—C17 176.31 (17)
O1—P1—N3—P3 −139.60 (11) C14—C13—C18—C19 −179.62 (18)
O2—P1—N3—P3 110.26 (12) O3—C13—C18—C19 −3.0 (3)
N2—P3—N3—P1 13.44 (16) C16—C17—C18—C13 0.5 (3)
N4—P3—N3—P1 −115.26 (13) C16—C17—C18—C19 179.83 (19)
N5—P3—N3—P1 140.61 (12) C13—C18—C19—C24 −41.5 (3)
N2—P3—N4—C25 138.76 (14) C17—C18—C19—C24 139.2 (2)
N3—P3—N4—C25 −92.72 (16) C13—C18—C19—C20 139.6 (2)
N5—P3—N4—C25 20.88 (16) C17—C18—C19—C20 −39.7 (3)
N2—P3—N5—C26 −112.97 (15) C24—C19—C20—C21 −0.2 (3)
N3—P3—N5—C26 120.73 (15) C18—C19—C20—C21 178.7 (2)
N4—P3—N5—C26 3.95 (16) C19—C20—C21—C22 0.8 (3)
P1—O1—C1—C2 −117.03 (18) C20—C21—C22—C23 −0.7 (4)
P1—O1—C1—C6 69.1 (2) C21—C22—C23—C24 −0.1 (3)
C6—C1—C2—C3 0.1 (3) C22—C23—C24—C19 0.7 (3)
O1—C1—C2—C3 −173.67 (18) C22—C23—C24—O4 −172.71 (19)
C1—C2—C3—C4 0.2 (3) C20—C19—C24—C23 −0.5 (3)
C2—C3—C4—C5 −0.7 (3) C18—C19—C24—C23 −179.51 (19)
C3—C4—C5—C6 1.0 (3) C20—C19—C24—O4 172.62 (18)
C2—C1—C6—C5 0.2 (3) C18—C19—C24—O4 −6.3 (3)
O1—C1—C6—C5 173.83 (17) P2—O4—C24—C23 −118.86 (18)
C2—C1—C6—C7 −178.11 (19) P2—O4—C24—C19 67.6 (2)
O1—C1—C6—C7 −4.5 (3) P3—N4—C25—C26 −37.8 (2)
C4—C5—C6—C1 −0.7 (3) P3—N5—C26—C25 −25.7 (2)
C4—C5—C6—C7 177.58 (19) N4—C25—C26—N5 38.3 (2)
C1—C6—C7—C12 −44.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4N···O5 0.82 (3) 2.22 (3) 2.991 (2) 158 (2)
N5—H5N···N3i 0.83 (3) 2.53 (3) 3.285 (2) 151 (2)

Symmetry code: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2173).

References

  1. Allcock, H. R. (1972). In Phosphorus-Nitrogen Compounds New York: Academic Press, Inc.
  2. Allen, C. W. (1991). Chem. Rev. 91, 119–135.
  3. Bakos, D., Kosik, M., Antos, K., Karolyova, M. & Vyskocil, I. (1982). Fire Mater. 6, 10–11.
  4. Barclay, T. M., Hicks, R. G., Ichimura, A. S. & Patenaude, G. W. (2002). Can. J. Chem. 80, 1501–1506.
  5. Bruker (2011). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Carriedo, G. A., Fernandez-Catuxo, L., Alonso, F. J. G., Gomez-Elipe, P. & Gonzalez, P. A. (1996). Macromolecules, 29, 5320–5325.
  7. Chandrasekhar, V., Pandey, M. D., Das, B., Mahanti, B., Gopal, K. & Azhakar, R. (2011). Tetrahedron, 67, 6917–6926.
  8. Chandrasekhar, V., Senapati, T., Dey, A., Das, S., Kalisz, M. & Clérac, R. (2012). Inorg. Chem. 51, 2031–2038. [DOI] [PubMed]
  9. Chandrasekhar, V., Thilagar, P., Krishnan, V., Bickley, J. F. & Steiner, A. (2007). Cryst. Growth Des. 7, 668–675.
  10. Ciftci, G. Y., Ecik, E. T., Yildirim, T., Bilgin, K., Senkuytu, E., Yuksel, F., Uludag, Y. & Kilic, A. (2013). Tetrahedron, 69, 1454–1461.
  11. Drews, M. J. & Barker, R. H. (1985). Cellulose Chemistry and its applications, edited by T. P Nevell & S. H. Zeronian, pp. 423–454. John Wiley & Sons, Inc.
  12. Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, New York: New York: John Wiley, pp. 271–383.
  13. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  14. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  15. Harmjanz, M., Piglosiewicz, I. M., Scott, B. L. & Burns, C. J. (2004). Inorg. Chem. 43, 642–650. [DOI] [PubMed]
  16. Olthof, R. (1969). Acta Cryst. B25, 2040–2045.
  17. Sheldrick, G. (2004). TWINABS University of Göttingen, Germany.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813023830/jj2173sup1.cif

e-69-o1491-sup1.cif (35.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813023830/jj2173Isup2.hkl

e-69-o1491-Isup2.hkl (248.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES