Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 23;69(Pt 9):o1466. doi: 10.1107/S1600536813022964

1′,1′′-Dimethyl-4′-(4-methyl­phen­yl)di­spiro­[11H-indeno­[1,2-b]quinoxaline-11,2′-pyrrolidine-3′,3′′-piperidin]-4′′-one

R A Nagalakshmi a, J Suresh a, K Malathi b, R Ranjith Kumar b, P L N Lakshman c,*
PMCID: PMC3884467  PMID: 24427088

Abstract

In the title compound, C31H30N4O, the central pyrrolidine ring adopts an envelope conformation with the methyl­ene C atom being the flap. The quinoxaline and indane rings are each planar, having r.m.s. deviations of 0.030 and 0.050 Å, respectively. The pyrrolidine ring mean plane forms dihedral angles of 88.25 (1) and 83.76 (1)° with the quinoxaline and indane rings, respectively. Intra­molecular C—H⋯O and C—H⋯N inter­actions are observed. In the crystal, C—H⋯π inter­actions lead to helical supra­molecular chains along the b-axis direction.

Related literature  

For the importance of pyrrolidine compounds, see: Witherup et al. (1995). For the importance of heterocycles with piperidine sub-structures, see: El-Subbagh et al. (2000); Dimmock et al. (2001); Lee et al. (2001). For additional conformation analysis, see: Cremer & Pople (1975).graphic file with name e-69-o1466-scheme1.jpg

Experimental  

Crystal data  

  • C31H30N4O

  • M r = 474.59

  • Monoclinic, Inline graphic

  • a = 22.3183 (7) Å

  • b = 14.4411 (5) Å

  • c = 17.2474 (6) Å

  • β = 116.547 (2)°

  • V = 4972.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

Data collection  

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.967, T max = 0.974

  • 22517 measured reflections

  • 4550 independent reflections

  • 3034 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.124

  • S = 1.04

  • 4550 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813022964/tk5247sup1.cif

e-69-o1466-sup1.cif (27KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813022964/tk5247Isup2.hkl

e-69-o1466-Isup2.hkl (218.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1 0.98 2.36 2.804 (2) 107
C41—H41B⋯N3 0.97 2.39 2.980 (2) 119
C11—H11⋯Cg1i 0.93 2.94 3.692 (2) 139

Symmetry code: (i) Inline graphic.

Acknowledgments

JS and RAN thank the management of the Madura College for their encouragement and support. RRK thanks the DST, New Delhi, for funds under their fast-track scheme (No. SR/FT/CS-073/2009)

supplementary crystallographic information

1. Comment

Pyrrolidine-containing compounds are of significant importance because of their biological activities and widespread employment in catalysis (Witherup et al., 1995). Heterocycles with piperidine sub-structures display important biological activities, such as cytotoxic (El-Subbagh et al., 2000) and anti-cancer (Dimmock et al., 2001) besides being useful as synthons in the construction of alkaloid natural products (Lee et al., 2001). The high medicinal value of these compounds, in conjunction with our research interests, prompted us to synthesize and report the X-ray studies of the title compound.

In the title compound (Fig. 1), the central pyrrolidine ring is an envelope on C2 with asymmetry parameters ΔCs(C2) = 7.1 (2)° and puckering parameters q2 = 0.4303 (18) Å and φ2 = 211.5 (2)° (Cremer & Pople, 1975). The quinoxaline and the indane group forms dihedral angles of 88.25 (1) and 83.76 (1)°, respectively, with the central pyrrolidine ring. The quinoxaline ring system (C12—C17/N3,N4) is planar, with r.m.s. deviation = 0.030 Å. The indane group is also planar with r.m.s deviation = 0.050 Å. The dihedral angle between the mean planes of the fused quinoxaline and the indane groups is 8.43 (1)°, indicate that the fused rings is slightly folded about the C12—C13 bond. The six-membered ring, N2/C41—C45, exhibits a twisted chair conformation, as indicated by the asymmetry parameters ΔCs(N2) = 7.58 (16)°, ΔCs(C45) = 7.58 (16)° and with the puckering parameters Q = 0.558 (2) Å, Θ = 164.1 (2)° and Φ = 207.1 (8)°. The torsion angle C4—C42—N2—C42 is -167.62 (16)° and corresponds to an antiperiplanar conformation. The sum of bond angles around N1(339.9°) and N2 (331.4°) indicate the atoms N1 and N2 are each in a pyramidal geometry. Weak intramolecular C—H···O, N interactions are observed (Table 1). In the crystal structure, C—H···π interactions, involving the benzene ring C14···C19, lead to the helical supramolecular chains along the b axis, as shown in Fig. 2.

2. Experimental

A mixture of 1-methyl-3-[E-(4-methylphenyl)methylidene]tetrahydro-2(1H)- pyridinone (1 mmol), ninhydrin (1 mmol), o-phenylenediamine (1 mmol) and sarcosine (1 mmol) in methanol was refluxed for 3–4 h. After completion of the reaction as indicated by TLC the reaction mixture was poured into cold water. The solid precipitate obtained was filtered and dried. The product was purified by column chromatography using petroleum ether:ethylacetate mixture (90:10 v/v). Suitable crystals were obtained by recrystallizing the product from methanol. Yield: 37%, M. pt: 498–500 K.

3. Refinement

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å, and with Uiso = 1.2Ueq(C) for CH2 and CH groups, and Uiso = 1.5Ueq(C) for CH3 groups. The (-1 1 1) reflection was affected by the beam-stop and was removed from the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H-atoms are omitted for clarity.

Fig. 2.

Fig. 2.

The partial packing diagram showing C—H···π interactions as dashed lines. All H-atoms are omitted for clarity except for the H atom involved in the intermolecular interaction.

Crystal data

C31H30N4O F(000) = 2016
Mr = 474.59 Dx = 1.268 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2000 reflections
a = 22.3183 (7) Å θ = 2–31°
b = 14.4411 (5) Å µ = 0.08 mm1
c = 17.2474 (6) Å T = 293 K
β = 116.547 (2)° Block, green
V = 4972.8 (3) Å3 0.21 × 0.19 × 0.18 mm
Z = 8

Data collection

Bruker Kappa APEXII diffractometer 4550 independent reflections
Radiation source: fine-focus sealed tube 3034 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
Detector resolution: 0 pixels mm-1 θmax = 25.4°, θmin = 2.0°
ω & \j scans h = −26→25
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −17→17
Tmin = 0.967, Tmax = 0.974 l = −20→20
22517 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.8964P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4550 reflections Δρmax = 0.18 e Å3
327 parameters Δρmin = −0.12 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0021 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ (F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F.2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.19283 (9) 0.44011 (12) 0.17083 (12) 0.0662 (5)
H1A 0.1556 0.4180 0.1193 0.099*
H1B 0.2142 0.4902 0.1562 0.099*
H1C 0.1772 0.4614 0.2113 0.099*
C2 0.26183 (9) 0.31684 (11) 0.15307 (11) 0.0566 (4)
H2A 0.2837 0.3582 0.1293 0.068*
H2B 0.2245 0.2865 0.1060 0.068*
C3 0.31046 (8) 0.24719 (10) 0.21449 (10) 0.0515 (4)
H3 0.2835 0.2026 0.2282 0.062*
C4 0.35031 (8) 0.30452 (10) 0.29852 (10) 0.0497 (4)
C5 0.30037 (8) 0.38860 (10) 0.28912 (10) 0.0494 (4)
C6 0.28097 (8) 0.40162 (11) 0.36293 (11) 0.0522 (4)
C7 0.30097 (8) 0.48735 (12) 0.40302 (10) 0.0548 (4)
C8 0.28659 (10) 0.51283 (14) 0.47011 (11) 0.0694 (5)
H8 0.3003 0.5699 0.4972 0.083*
C9 0.25172 (11) 0.45217 (16) 0.49585 (13) 0.0780 (6)
H9 0.2422 0.4680 0.5414 0.094*
C10 0.23070 (10) 0.36849 (15) 0.45534 (12) 0.0714 (5)
H10 0.2065 0.3288 0.4733 0.086*
C11 0.24484 (9) 0.34188 (13) 0.38817 (11) 0.0615 (5)
H11 0.2303 0.2851 0.3607 0.074*
C12 0.32976 (8) 0.48350 (10) 0.28851 (10) 0.0489 (4)
C13 0.33176 (8) 0.53940 (11) 0.35792 (10) 0.0510 (4)
C14 0.37575 (8) 0.65677 (11) 0.31451 (11) 0.0554 (4)
C15 0.37010 (8) 0.60413 (11) 0.24282 (11) 0.0540 (4)
C16 0.39018 (9) 0.64307 (13) 0.18372 (12) 0.0653 (5)
H16 0.3863 0.6091 0.1359 0.078*
C17 0.41534 (10) 0.73044 (14) 0.19630 (15) 0.0768 (6)
H17 0.4282 0.7561 0.1566 0.092*
C18 0.42209 (10) 0.78177 (14) 0.26775 (15) 0.0787 (6)
H18 0.4400 0.8412 0.2759 0.094*
C19 0.40282 (10) 0.74624 (12) 0.32589 (13) 0.0688 (5)
H19 0.4076 0.7814 0.3735 0.083*
C31 0.35014 (8) 0.19158 (10) 0.17934 (11) 0.0518 (4)
C32 0.35959 (11) 0.21834 (12) 0.10931 (12) 0.0686 (5)
H32 0.3428 0.2751 0.0832 0.082*
C33 0.39341 (11) 0.16312 (14) 0.07647 (13) 0.0769 (6)
H33 0.3988 0.1840 0.0290 0.092*
C34 0.41901 (11) 0.07944 (15) 0.11128 (14) 0.0785 (6)
C35 0.40965 (15) 0.05333 (16) 0.18085 (18) 0.1093 (9)
H35 0.4264 −0.0036 0.2066 0.131*
C36 0.37650 (13) 0.10758 (14) 0.21450 (16) 0.0908 (7)
H36 0.3718 0.0866 0.2625 0.109*
C37 0.45532 (15) 0.0190 (2) 0.07414 (18) 0.1260 (10)
H37A 0.4938 −0.0084 0.1206 0.189*
H37B 0.4694 0.0560 0.0390 0.189*
H37C 0.4258 −0.0290 0.0393 0.189*
C41 0.41760 (8) 0.33778 (12) 0.30566 (11) 0.0563 (4)
H41A 0.4444 0.2846 0.3062 0.068*
H41B 0.4100 0.3751 0.2554 0.068*
C42 0.51060 (10) 0.44002 (16) 0.38092 (16) 0.0959 (7)
H42A 0.4946 0.4798 0.3311 0.144*
H42B 0.5410 0.3953 0.3771 0.144*
H42C 0.5334 0.4763 0.4325 0.144*
C43 0.47597 (11) 0.33179 (16) 0.45900 (13) 0.0862 (7)
H43A 0.5019 0.3672 0.5112 0.103*
H43B 0.5045 0.2835 0.4547 0.103*
C44 0.41635 (11) 0.28845 (15) 0.46469 (12) 0.0812 (6)
H44A 0.4321 0.2401 0.5083 0.097*
H44B 0.3944 0.3352 0.4834 0.097*
C45 0.36603 (10) 0.24775 (13) 0.38038 (12) 0.0633 (5)
N1 0.24057 (7) 0.36540 (9) 0.20961 (9) 0.0539 (4)
N2 0.45411 (7) 0.39221 (11) 0.38393 (10) 0.0678 (4)
N3 0.34651 (7) 0.51439 (9) 0.22985 (9) 0.0539 (4)
N4 0.35471 (7) 0.62400 (9) 0.37323 (9) 0.0581 (4)
O1 0.34059 (9) 0.17381 (10) 0.37835 (10) 0.0914 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0577 (11) 0.0755 (12) 0.0587 (12) 0.0110 (9) 0.0200 (10) 0.0029 (9)
C2 0.0560 (10) 0.0630 (10) 0.0429 (10) −0.0017 (8) 0.0151 (9) −0.0044 (8)
C3 0.0545 (10) 0.0525 (9) 0.0458 (10) −0.0054 (8) 0.0207 (8) 0.0003 (7)
C4 0.0529 (10) 0.0545 (9) 0.0402 (9) 0.0012 (8) 0.0194 (8) 0.0015 (7)
C5 0.0488 (9) 0.0563 (9) 0.0410 (9) −0.0019 (7) 0.0183 (8) −0.0003 (7)
C6 0.0484 (10) 0.0637 (10) 0.0434 (10) 0.0044 (8) 0.0194 (8) 0.0042 (8)
C7 0.0516 (10) 0.0692 (11) 0.0409 (10) 0.0051 (8) 0.0182 (8) 0.0006 (8)
C8 0.0735 (13) 0.0864 (13) 0.0489 (11) 0.0002 (11) 0.0278 (11) −0.0106 (9)
C9 0.0778 (14) 0.1113 (16) 0.0546 (12) 0.0052 (13) 0.0382 (12) −0.0022 (11)
C10 0.0655 (13) 0.0987 (15) 0.0574 (12) 0.0015 (11) 0.0340 (11) 0.0109 (11)
C11 0.0584 (11) 0.0710 (11) 0.0551 (11) −0.0014 (9) 0.0253 (10) 0.0046 (9)
C12 0.0459 (9) 0.0567 (9) 0.0388 (9) 0.0025 (7) 0.0142 (8) 0.0017 (7)
C13 0.0478 (9) 0.0570 (9) 0.0401 (9) 0.0044 (8) 0.0125 (8) −0.0005 (7)
C14 0.0460 (10) 0.0554 (10) 0.0531 (11) 0.0040 (8) 0.0116 (9) 0.0055 (8)
C15 0.0452 (9) 0.0595 (10) 0.0488 (10) 0.0002 (8) 0.0135 (8) 0.0054 (8)
C16 0.0568 (11) 0.0755 (12) 0.0581 (11) −0.0078 (10) 0.0206 (9) 0.0066 (9)
C17 0.0658 (13) 0.0817 (14) 0.0754 (15) −0.0125 (11) 0.0249 (12) 0.0156 (11)
C18 0.0703 (13) 0.0621 (11) 0.0868 (16) −0.0120 (10) 0.0200 (12) 0.0099 (11)
C19 0.0633 (12) 0.0571 (10) 0.0694 (13) −0.0012 (9) 0.0148 (11) −0.0001 (9)
C31 0.0562 (10) 0.0485 (9) 0.0479 (10) −0.0066 (8) 0.0208 (9) −0.0032 (7)
C32 0.0949 (15) 0.0591 (10) 0.0577 (12) 0.0070 (10) 0.0393 (12) 0.0031 (9)
C33 0.0916 (16) 0.0868 (14) 0.0614 (13) 0.0064 (12) 0.0424 (12) −0.0036 (10)
C34 0.0772 (14) 0.0866 (14) 0.0653 (14) 0.0195 (12) 0.0261 (12) −0.0074 (11)
C35 0.154 (3) 0.0787 (15) 0.117 (2) 0.0533 (16) 0.080 (2) 0.0320 (14)
C36 0.131 (2) 0.0701 (12) 0.0980 (18) 0.0313 (13) 0.0746 (17) 0.0290 (11)
C37 0.132 (2) 0.145 (2) 0.102 (2) 0.062 (2) 0.0533 (19) −0.0064 (17)
C41 0.0504 (10) 0.0623 (10) 0.0505 (10) 0.0030 (8) 0.0175 (9) −0.0039 (8)
C42 0.0582 (13) 0.1049 (17) 0.1071 (19) −0.0202 (12) 0.0213 (13) −0.0308 (14)
C43 0.0697 (14) 0.1080 (17) 0.0532 (13) 0.0155 (13) 0.0028 (11) −0.0076 (11)
C44 0.0850 (15) 0.1026 (15) 0.0442 (12) 0.0253 (13) 0.0184 (11) 0.0128 (10)
C45 0.0728 (13) 0.0675 (11) 0.0522 (11) 0.0126 (10) 0.0302 (10) 0.0098 (9)
N1 0.0486 (8) 0.0615 (8) 0.0444 (8) 0.0015 (7) 0.0145 (7) −0.0019 (6)
N2 0.0520 (9) 0.0787 (10) 0.0581 (10) −0.0012 (8) 0.0116 (8) −0.0140 (8)
N3 0.0557 (9) 0.0589 (8) 0.0449 (8) −0.0018 (7) 0.0205 (7) 0.0019 (6)
N4 0.0559 (9) 0.0584 (8) 0.0507 (9) 0.0016 (7) 0.0154 (7) −0.0038 (7)
O1 0.1314 (14) 0.0729 (9) 0.0757 (10) −0.0015 (9) 0.0515 (10) 0.0191 (7)

Geometric parameters (Å, º)

C1—N1 1.452 (2) C16—C17 1.359 (3)
C1—H1A 0.9600 C16—H16 0.9300
C1—H1B 0.9600 C17—C18 1.387 (3)
C1—H1C 0.9600 C17—H17 0.9300
C2—N1 1.443 (2) C18—C19 1.356 (3)
C2—C3 1.511 (2) C18—H18 0.9300
C2—H2A 0.9700 C19—H19 0.9300
C2—H2B 0.9700 C31—C36 1.366 (2)
C3—C31 1.509 (2) C31—C32 1.371 (2)
C3—C4 1.557 (2) C32—C33 1.382 (3)
C3—H3 0.9800 C32—H32 0.9300
C4—C41 1.528 (2) C33—C34 1.357 (3)
C4—C45 1.532 (2) C33—H33 0.9300
C4—C5 1.607 (2) C34—C35 1.360 (3)
C5—N1 1.462 (2) C34—C37 1.515 (3)
C5—C12 1.521 (2) C35—C36 1.372 (3)
C5—C6 1.528 (2) C35—H35 0.9300
C6—C11 1.378 (2) C36—H36 0.9300
C6—C7 1.391 (2) C37—H37A 0.9600
C7—C8 1.382 (2) C37—H37B 0.9600
C7—C13 1.456 (2) C37—H37C 0.9600
C8—C9 1.371 (3) C41—N2 1.456 (2)
C8—H8 0.9300 C41—H41A 0.9700
C9—C10 1.369 (3) C41—H41B 0.9700
C9—H9 0.9300 C42—N2 1.459 (2)
C10—C11 1.384 (2) C42—H42A 0.9600
C10—H10 0.9300 C42—H42B 0.9600
C11—H11 0.9300 C42—H42C 0.9600
C12—N3 1.3041 (19) C43—N2 1.453 (3)
C12—C13 1.428 (2) C43—C44 1.513 (3)
C13—N4 1.305 (2) C43—H43A 0.9700
C14—N4 1.377 (2) C43—H43B 0.9700
C14—C19 1.403 (2) C44—C45 1.504 (3)
C14—C15 1.408 (2) C44—H44A 0.9700
C15—N3 1.379 (2) C44—H44B 0.9700
C15—C16 1.401 (2) C45—O1 1.202 (2)
N1—C1—H1A 109.5 C19—C18—C17 120.68 (18)
N1—C1—H1B 109.5 C19—C18—H18 119.7
H1A—C1—H1B 109.5 C17—C18—H18 119.7
N1—C1—H1C 109.5 C18—C19—C14 120.28 (19)
H1A—C1—H1C 109.5 C18—C19—H19 119.9
H1B—C1—H1C 109.5 C14—C19—H19 119.9
N1—C2—C3 101.52 (13) C36—C31—C32 115.86 (16)
N1—C2—H2A 111.5 C36—C31—C3 120.51 (15)
C3—C2—H2A 111.5 C32—C31—C3 123.56 (15)
N1—C2—H2B 111.5 C31—C32—C33 121.72 (17)
C3—C2—H2B 111.5 C31—C32—H32 119.1
H2A—C2—H2B 109.3 C33—C32—H32 119.1
C31—C3—C2 116.05 (13) C34—C33—C32 122.13 (18)
C31—C3—C4 117.60 (14) C34—C33—H33 118.9
C2—C3—C4 103.36 (12) C32—C33—H33 118.9
C31—C3—H3 106.3 C33—C34—C35 115.91 (18)
C2—C3—H3 106.3 C33—C34—C37 121.7 (2)
C4—C3—H3 106.3 C35—C34—C37 122.4 (2)
C41—C4—C45 106.37 (14) C34—C35—C36 122.7 (2)
C41—C4—C3 111.96 (12) C34—C35—H35 118.7
C45—C4—C3 111.94 (13) C36—C35—H35 118.7
C41—C4—C5 112.52 (12) C31—C36—C35 121.73 (19)
C45—C4—C5 111.13 (12) C31—C36—H36 119.1
C3—C4—C5 103.06 (12) C35—C36—H36 119.1
N1—C5—C12 114.56 (13) C34—C37—H37A 109.5
N1—C5—C6 109.26 (13) C34—C37—H37B 109.5
C12—C5—C6 100.27 (12) H37A—C37—H37B 109.5
N1—C5—C4 102.87 (12) C34—C37—H37C 109.5
C12—C5—C4 113.56 (12) H37A—C37—H37C 109.5
C6—C5—C4 116.79 (12) H37B—C37—H37C 109.5
C11—C6—C7 120.22 (15) N2—C41—C4 111.52 (13)
C11—C6—C5 127.58 (15) N2—C41—H41A 109.3
C7—C6—C5 112.10 (14) C4—C41—H41A 109.3
C8—C7—C6 120.69 (16) N2—C41—H41B 109.3
C8—C7—C13 130.67 (16) C4—C41—H41B 109.3
C6—C7—C13 108.49 (13) H41A—C41—H41B 108.0
C9—C8—C7 118.62 (18) N2—C42—H42A 109.5
C9—C8—H8 120.7 N2—C42—H42B 109.5
C7—C8—H8 120.7 H42A—C42—H42B 109.5
C10—C9—C8 120.89 (17) N2—C42—H42C 109.5
C10—C9—H9 119.6 H42A—C42—H42C 109.5
C8—C9—H9 119.6 H42B—C42—H42C 109.5
C9—C10—C11 121.17 (18) N2—C43—C44 110.57 (17)
C9—C10—H10 119.4 N2—C43—H43A 109.5
C11—C10—H10 119.4 C44—C43—H43A 109.5
C6—C11—C10 118.38 (17) N2—C43—H43B 109.5
C6—C11—H11 120.8 C44—C43—H43B 109.5
C10—C11—H11 120.8 H43A—C43—H43B 108.1
N3—C12—C13 123.00 (14) C45—C44—C43 113.41 (16)
N3—C12—C5 125.97 (14) C45—C44—H44A 108.9
C13—C12—C5 110.83 (13) C43—C44—H44A 108.9
N4—C13—C12 124.14 (15) C45—C44—H44B 108.9
N4—C13—C7 127.68 (15) C43—C44—H44B 108.9
C12—C13—C7 108.10 (14) H44A—C44—H44B 107.7
N4—C14—C19 118.75 (16) O1—C45—C44 120.93 (18)
N4—C14—C15 122.30 (15) O1—C45—C4 122.54 (18)
C19—C14—C15 118.95 (16) C44—C45—C4 116.52 (17)
N3—C15—C16 118.83 (16) C2—N1—C1 116.41 (13)
N3—C15—C14 121.84 (15) C2—N1—C5 107.90 (12)
C16—C15—C14 119.32 (16) C1—N1—C5 115.85 (13)
C17—C16—C15 120.02 (19) C43—N2—C41 109.14 (15)
C17—C16—H16 120.0 C43—N2—C42 111.38 (17)
C15—C16—H16 120.0 C41—N2—C42 110.91 (15)
C16—C17—C18 120.73 (19) C12—N3—C15 114.63 (14)
C16—C17—H17 119.6 C13—N4—C14 113.89 (14)
C18—C17—H17 119.6
N1—C2—C3—C31 −172.10 (13) C14—C15—C16—C17 0.6 (3)
N1—C2—C3—C4 −41.85 (15) C15—C16—C17—C18 0.6 (3)
C31—C3—C4—C41 30.84 (19) C16—C17—C18—C19 −0.9 (3)
C2—C3—C4—C41 −98.47 (15) C17—C18—C19—C14 0.0 (3)
C31—C3—C4—C45 −88.50 (17) N4—C14—C19—C18 −177.93 (16)
C2—C3—C4—C45 142.19 (14) C15—C14—C19—C18 1.1 (3)
C31—C3—C4—C5 152.00 (13) C2—C3—C31—C36 −156.72 (18)
C2—C3—C4—C5 22.69 (14) C4—C3—C31—C36 80.2 (2)
C41—C4—C5—N1 124.83 (13) C2—C3—C31—C32 20.2 (2)
C45—C4—C5—N1 −116.00 (15) C4—C3—C31—C32 −102.9 (2)
C3—C4—C5—N1 4.05 (14) C36—C31—C32—C33 0.3 (3)
C41—C4—C5—C12 0.45 (18) C3—C31—C32—C33 −176.66 (18)
C45—C4—C5—C12 119.62 (15) C31—C32—C33—C34 0.2 (3)
C3—C4—C5—C12 −120.33 (13) C32—C33—C34—C35 −0.3 (3)
C41—C4—C5—C6 −115.54 (15) C32—C33—C34—C37 179.3 (2)
C45—C4—C5—C6 3.63 (19) C33—C34—C35—C36 0.0 (4)
C3—C4—C5—C6 123.68 (14) C37—C34—C35—C36 −179.6 (3)
N1—C5—C6—C11 51.5 (2) C32—C31—C36—C35 −0.7 (3)
C12—C5—C6—C11 172.17 (17) C3—C31—C36—C35 176.4 (2)
C4—C5—C6—C11 −64.7 (2) C34—C35—C36—C31 0.6 (4)
N1—C5—C6—C7 −125.00 (15) C45—C4—C41—N2 −58.10 (18)
C12—C5—C6—C7 −4.29 (17) C3—C4—C41—N2 179.34 (13)
C4—C5—C6—C7 118.85 (16) C5—C4—C41—N2 63.81 (17)
C11—C6—C7—C8 1.8 (3) N2—C43—C44—C45 48.0 (2)
C5—C6—C7—C8 178.55 (15) C43—C44—C45—O1 137.3 (2)
C11—C6—C7—C13 −174.11 (15) C43—C44—C45—C4 −41.7 (2)
C5—C6—C7—C13 2.64 (19) C41—C4—C45—O1 −134.21 (18)
C6—C7—C8—C9 −0.5 (3) C3—C4—C45—O1 −11.6 (2)
C13—C7—C8—C9 174.35 (18) C5—C4—C45—O1 103.01 (19)
C7—C8—C9—C10 −0.9 (3) C41—C4—C45—C44 44.83 (19)
C8—C9—C10—C11 1.0 (3) C3—C4—C45—C44 167.41 (15)
C7—C6—C11—C10 −1.6 (3) C5—C4—C45—C44 −77.95 (19)
C5—C6—C11—C10 −177.83 (17) C3—C2—N1—C1 179.32 (13)
C9—C10—C11—C6 0.2 (3) C3—C2—N1—C5 47.10 (16)
N1—C5—C12—N3 −53.7 (2) C12—C5—N1—C2 92.15 (15)
C6—C5—C12—N3 −170.56 (15) C6—C5—N1—C2 −156.30 (13)
C4—C5—C12—N3 64.1 (2) C4—C5—N1—C2 −31.57 (15)
N1—C5—C12—C13 121.29 (15) C12—C5—N1—C1 −40.37 (18)
C6—C5—C12—C13 4.46 (17) C6—C5—N1—C1 71.18 (16)
C4—C5—C12—C13 −120.91 (14) C4—C5—N1—C1 −164.10 (13)
N3—C12—C13—N4 −5.0 (3) C44—C43—N2—C41 −61.5 (2)
C5—C12—C13—N4 179.81 (15) C44—C43—N2—C42 175.73 (17)
N3—C12—C13—C7 171.94 (15) C4—C41—N2—C43 69.31 (18)
C5—C12—C13—C7 −3.26 (18) C4—C41—N2—C42 −167.62 (16)
C8—C7—C13—N4 1.8 (3) C13—C12—N3—C15 3.6 (2)
C6—C7—C13—N4 177.18 (16) C5—C12—N3—C15 178.01 (14)
C8—C7—C13—C12 −174.98 (18) C16—C15—N3—C12 179.20 (15)
C6—C7—C13—C12 0.39 (19) C14—C15—N3—C12 0.5 (2)
N4—C14—C15—N3 −3.7 (3) C12—C13—N4—C14 1.6 (2)
C19—C14—C15—N3 177.29 (15) C7—C13—N4—C14 −174.70 (15)
N4—C14—C15—C16 177.59 (16) C19—C14—N4—C13 −178.54 (15)
C19—C14—C15—C16 −1.4 (2) C15—C14—N4—C13 2.4 (2)
N3—C15—C16—C17 −178.18 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···O1 0.98 2.36 2.804 (2) 107
C41—H41B···N3 0.97 2.39 2.980 (2) 119
C11—H11···Cg1i 0.93 2.94 3.692 (2) 139

Symmetry code: (i) x, −y−1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5247).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593. [DOI] [PubMed]
  4. El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921. [DOI] [PubMed]
  5. Lee, H. K., Chun, J. S. & Pak, C. S. (2001). Tetrahedron Lett. 42, 3483–3486.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Witherup, K., Ranson, R. W., Graham, A. C., Barnard, A. M., Salvatore, M. J., Limma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682–6685.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813022964/tk5247sup1.cif

e-69-o1466-sup1.cif (27KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813022964/tk5247Isup2.hkl

e-69-o1466-Isup2.hkl (218.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES