Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 7;69(Pt 9):o1389–o1390. doi: 10.1107/S1600536813021168

Tetra­hydro­alstonine

Xavier Cachet a, François-Hugues Porée a,*, Sylvie Michel a, Pascale Lemoine b
PMCID: PMC3884471  PMID: 24427031

Abstract

In the title compound, C21H24N2O3 [systematic name: methyl (20α)-16,17-dide­hydro-19α-methyl-18-oxayohimban-16-carb­oxy­l­ate], the mol­ecule adopts an L-type conformation. The crystal packing is governed by one N—H⋯π and one C—H⋯π inter­actions. The crystal cohesion is ensured by inter­molecular van der Waals contacts [shortest O⋯O contact = 3.199 (2) Å].

Related literature  

For the extraction of tetra­hydro­alstonine (THA) from natural sources, see: Zenk & Juenger (2007); Mandal et al. (1983); Langlois et al. (1979). For stereochemistry studies, see: Wenkert et al. (1961); Wenkert & Roychaudhuri (1957); Shamma & Richey (1963); Lounasmaa & Kan (1980); Höfle et al. (1980). For the semisynthesis, see: Poirot (2007); Beziat & Hatinguais (1977); Zsadon et al. (1979); Guéritte et al. (1983); Hemscheidt & Zenk (1985) and for synthetic studies, see: Gutzwiller et al. (1971); Wenkert et al. (1976); Zou et al. (2010). For the biological activity of TMA, see Zou et al. (2010); Sharma et al. (1988). For a related structure, see: Laus & Wurst (2008).graphic file with name e-69-o1389-scheme1.jpg

Experimental  

Crystal data  

  • C21H24N2O3

  • M r = 352.42

  • Orthorhombic, Inline graphic

  • a = 6.719 (1) Å

  • b = 8.169 (2) Å

  • c = 34.120 (5) Å

  • V = 1872.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.50 × 0.30 × 0.10 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (COLLECT; Nonius, 2004) T min = 0.982, T max = 0.992

  • 3300 measured reflections

  • 3300 independent reflections

  • 2537 reflections with I > 2σ(I)

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.114

  • S = 1.01

  • 3300 reflections

  • 247 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.12 e Å−3

  • Absolute structure parameter: −0.3 (17)

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813021168/bq2388sup1.cif

e-69-o1389-sup1.cif (30.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813021168/bq2388Isup2.hkl

e-69-o1389-Isup2.hkl (158.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C8–C13 and C2/C7/C8/C13/N1 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cg1i 0.86 2.85 3.550 (2) 139
C6—H6ACg2ii 0.97 2.8 3.429 (3) 121

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Université Paris Descartes and the CNRS for financial support.

supplementary crystallographic information

1. Comment

Tetrahydroalstonine (THA) is an indolomonoterpenoid alkaloid possessing a 5-fused ring corynanthean type skeleton (Höfle et al. 1980; Zenk & Juenger 2007). Depending on the stereochemistry at the positions C3, C15, C19 and C20, several subgroups of corynanthe alkaloids have been distinguished (Lounasmaa & Kan, 1980). THA belongs to the alloheteroyohimbine subgroup together with rauniticine (Shamma & Richey 1963). Its distribution is restricted to plants belonging to the sole plants of the Apocynaceae, Rubiaceae and Loganiaceae families. THA constitutes the main by-product of the marketed drug raubasine (ajmalicine) industrial production (Poirot 2007; Beziat & Hatinguais 1977; Zsadon et al. 1979). Indeed, this molecule is readily available in a large amount by the reduction with NaBH4 of serpentine present in the underground parts of Catharanthus roseus (Mandal et al. 1983). This reaction directly carried out on a total alkaloid extract also affords THA resulting from alstonine reduction. Furthermore, this method followed by the isolation of THA and raubasine has been employed for a convenient determination of the alstonine and serpentine respective content in the aerial parts of Catharanthus ovalis (Langlois et al. 1979). The structure of THA has been elucidated after extensive NMR studies during the period 1950–1960 (Wenkert & Roychaudhuri 1957; Wenkert et al. 1961). In the corynanthe series, only the crystal structure of akuammigine (as picrate hydrate) has been previously reported (Laus & Wurst 2008). There have been only a few reports of the THA biological activities (Zou et al. 2010; Sharma et al. 1988). The X-ray data of THA confirmed the relative allo configuration of the C3, C15, C19 and C20 stereocenters. With reference of the known (15S)- configuration due to the biosynthesis, the absolute configuration of the other stereocenters is thus given by (3S, 19S, 20S). The aromatic rings A (C8-C13) and B (C2/C7/C8/C13/N1) are planar. Ring C (C2/C3/N4/C5-C7) adopts a half-chair conformation with N4 above the medium A/B plane by 0.437 (4) Å and C5 below the medium A/B plane by 0.334 (4) Å, respectively. The C/D ring is a trans-fused quinolizidine. Ring D (C3/C14/C15/C20/C21/N4) is a regular chair with H—C3 α axial. The D/E rings are cis-fused; H—C15 and H—C20 are α, the first one being in axial position and the second in equatorial. Ring E (C15-C20) is a half-chair with C19 above the median plan (C15—C16—C17—O18) by -0.273 (5) Å and C20 below the same plan by 0.497 (4) Å. The α Me—C19 group adopts a pseudoequatorial position (Figure 1.). The crystal packing of the compound is governed by one N—H···Cg (π ring, Cg centroid of ring A) interaction and one C—H···Cg (π ring, Cg centroid of ring B) interaction. The crystal cohesion is ensured by intermolecular van der Waals contacts, the shortest is equal to 3.199 (2) Å for O18 and O24.

2. Experimental

The typical conditions used for the semi-synthesis were followed. The pulverized dried roots of Catharanthus roseus (20.0 g) were extracted overnight with a (1:1) mixture of CH2Cl2/MeOH. After filtration and solvent removal, the alkaloid extract was dissolved in MeOH and NaBH4 (500 mg) was slowly added at 0°C. After completion of the reduction (TLC control), water was added and the solution was extracted with CH2Cl2 (alkaloids were monitored with the Dragendorff reagent). The combined organic layers were dried over MgSO4, filtered and concentrated in vacuo. The residue was purified by chromatography on silica gel (Eluent CH2Cl2/MeOH 99/1) to give THA and raubasine as white powders. The former was crystallized from MeOH to give THA as colorless plates suitable for X-ray diffraction.

3. Refinement

H3, H15 and H20 atoms bonded to C3, C15 and C20 atoms respectively were located in a difference map and refined isotropically. Other H atoms were positioned geometrically and refined using a riding model.

Figures

Fig. 1.

Fig. 1.

Molecular view of the compound showing atomic numbering. Displacements ellipsoids at the 50% probability level.

Crystal data

C21H24N2O3 F(000) = 752
Mr = 352.42 Dx = 1.250 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2ab Cell parameters from 1924 reflections
a = 6.719 (1) Å θ = 0.4–25.4°
b = 8.169 (2) Å µ = 0.08 mm1
c = 34.120 (5) Å T = 293 K
V = 1872.8 (6) Å3 Parallelepiped, colourless
Z = 4 0.50 × 0.30 × 0.10 mm

Data collection

Nonius KappaCCD diffractometer 3300 independent reflections
Radiation source: fine-focus sealed tube 2537 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromator Rint = 0.000
Detector resolution: 9 pixels mm-1 θmax = 25.3°, θmin = 3.5°
CCD scans h = −8→8
Absorption correction: multi-scan (COLLECT; Nonius, 2004) k = −9→9
Tmin = 0.982, Tmax = 0.992 l = −40→40
3300 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.175P] where P = (Fo2 + 2Fc2)/3
3300 reflections (Δ/σ)max < 0.001
247 parameters Δρmax = 0.11 e Å3
0 restraints Δρmin = −0.12 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.0941 (2) 1.03273 (19) 0.22093 (5) 0.0543 (4)
H1 0.0106 1.0929 0.2084 0.065*
C2 0.2643 (3) 0.9635 (2) 0.20539 (6) 0.0498 (4)
C3 0.3268 (3) 0.9745 (3) 0.16349 (6) 0.0554 (5)
H3 0.388 (3) 1.082 (3) 0.1594 (6) 0.072 (6)*
N4 0.4687 (2) 0.8412 (2) 0.15597 (6) 0.0661 (5)
C5 0.6291 (3) 0.8379 (3) 0.18547 (8) 0.0769 (7)
H5A 0.6887 0.9457 0.1874 0.092*
H5B 0.7315 0.7616 0.1772 0.092*
C6 0.5502 (3) 0.7872 (3) 0.22502 (8) 0.0703 (6)
H6A 0.5248 0.6704 0.2252 0.084*
H6B 0.6483 0.8111 0.2451 0.084*
C7 0.3616 (3) 0.8781 (2) 0.23357 (6) 0.0560 (5)
C8 0.2480 (3) 0.8919 (2) 0.26876 (6) 0.0561 (5)
C9 0.2699 (4) 0.8333 (3) 0.30708 (7) 0.0713 (6)
H9 0.3806 0.7713 0.3139 0.086*
C10 0.1262 (5) 0.8682 (3) 0.33441 (8) 0.0834 (8)
H10 0.1396 0.8284 0.3598 0.100*
C11 −0.0392 (5) 0.9624 (3) 0.32467 (7) 0.0834 (7)
H11 −0.1357 0.9828 0.3436 0.100*
C12 −0.0628 (4) 1.0259 (3) 0.28766 (6) 0.0701 (6)
H12 −0.1717 1.0912 0.2815 0.084*
C13 0.0803 (3) 0.9893 (2) 0.25995 (6) 0.0542 (5)
C14 0.1540 (3) 0.9621 (3) 0.13484 (5) 0.0536 (5)
H14A 0.0620 1.0515 0.1395 0.064*
H14B 0.0834 0.8602 0.1392 0.064*
C15 0.2267 (4) 0.9687 (3) 0.09227 (6) 0.0640 (6)
H15 0.281 (4) 1.076 (3) 0.0888 (7) 0.073 (7)*
C16 0.0636 (4) 0.9412 (3) 0.06288 (6) 0.0662 (6)
C17 0.0518 (5) 0.8003 (3) 0.04332 (7) 0.0847 (8)
H17 −0.0469 0.7924 0.0243 0.102*
O18 0.1678 (3) 0.6694 (2) 0.04839 (6) 0.1032 (7)
C19 0.3020 (5) 0.6744 (3) 0.08207 (8) 0.0872 (8)
H19 0.2254 0.6518 0.1059 0.105*
C20 0.3918 (4) 0.8443 (3) 0.08520 (8) 0.0797 (7)
H20 0.465 (4) 0.871 (3) 0.0595 (7) 0.088 (7)*
C21 0.5520 (4) 0.8600 (4) 0.11650 (8) 0.0887 (8)
H21A 0.6530 0.7770 0.1122 0.106*
H21B 0.6151 0.9664 0.1143 0.106*
C22 0.4475 (7) 0.5356 (4) 0.07534 (11) 0.1426 (15)
H22A 0.5421 0.5670 0.0556 0.214*
H22B 0.3765 0.4401 0.0668 0.214*
H22C 0.5162 0.5117 0.0993 0.214*
C23 −0.0746 (4) 1.0739 (3) 0.05479 (6) 0.0695 (6)
O24 −0.2128 (3) 1.0354 (2) 0.02800 (5) 0.0910 (6)
O25 −0.0672 (3) 1.2070 (2) 0.06996 (5) 0.0945 (6)
C26 −0.3520 (5) 1.1602 (4) 0.01729 (10) 0.1060 (10)
H26A −0.2815 1.2528 0.0069 0.159*
H26B −0.4264 1.1930 0.0400 0.159*
H26C −0.4414 1.1184 −0.0023 0.159*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0552 (9) 0.0540 (8) 0.0537 (9) 0.0087 (8) −0.0107 (8) −0.0008 (8)
C2 0.0463 (10) 0.0450 (9) 0.0581 (11) 0.0012 (9) −0.0105 (9) −0.0051 (8)
C3 0.0481 (11) 0.0531 (11) 0.0651 (13) −0.0025 (10) −0.0025 (9) −0.0021 (10)
N4 0.0456 (9) 0.0757 (12) 0.0770 (13) 0.0066 (9) 0.0038 (9) −0.0051 (9)
C5 0.0452 (12) 0.0821 (16) 0.103 (2) 0.0048 (12) −0.0055 (13) −0.0034 (15)
C6 0.0513 (12) 0.0617 (12) 0.0980 (18) 0.0078 (11) −0.0201 (13) −0.0022 (12)
C7 0.0530 (11) 0.0462 (10) 0.0687 (14) 0.0017 (9) −0.0153 (10) −0.0056 (9)
C8 0.0641 (12) 0.0417 (9) 0.0625 (13) −0.0021 (10) −0.0205 (11) −0.0017 (9)
C9 0.0917 (17) 0.0530 (12) 0.0691 (15) −0.0038 (13) −0.0249 (14) 0.0064 (11)
C10 0.125 (2) 0.0657 (14) 0.0599 (15) −0.0183 (17) −0.0172 (16) 0.0068 (11)
C11 0.115 (2) 0.0756 (14) 0.0595 (14) −0.0120 (18) 0.0064 (14) −0.0098 (12)
C12 0.0783 (15) 0.0660 (12) 0.0661 (14) 0.0020 (13) −0.0016 (12) −0.0122 (11)
C13 0.0597 (11) 0.0488 (10) 0.0540 (11) 0.0013 (9) −0.0095 (9) −0.0051 (8)
C14 0.0508 (11) 0.0587 (11) 0.0512 (11) 0.0008 (10) 0.0007 (9) −0.0045 (9)
C15 0.0718 (15) 0.0622 (12) 0.0579 (12) −0.0037 (13) 0.0122 (11) 0.0005 (10)
C16 0.0851 (16) 0.0686 (14) 0.0451 (11) −0.0008 (13) 0.0087 (11) 0.0000 (10)
C17 0.116 (2) 0.0844 (17) 0.0538 (14) 0.0096 (18) −0.0026 (14) −0.0102 (12)
O18 0.1444 (18) 0.0837 (12) 0.0815 (13) 0.0226 (13) −0.0117 (13) −0.0251 (10)
C19 0.116 (2) 0.0745 (16) 0.0709 (16) 0.0229 (16) 0.0094 (16) −0.0093 (12)
C20 0.0769 (16) 0.0944 (18) 0.0676 (15) 0.0116 (15) 0.0276 (14) −0.0005 (13)
C21 0.0621 (15) 0.111 (2) 0.0934 (19) 0.0084 (16) 0.0258 (15) −0.0032 (16)
C22 0.191 (4) 0.117 (2) 0.120 (3) 0.072 (3) −0.003 (3) −0.029 (2)
C23 0.0886 (17) 0.0782 (16) 0.0418 (11) 0.0033 (14) 0.0077 (12) 0.0046 (10)
O24 0.1015 (13) 0.1035 (13) 0.0679 (10) 0.0172 (12) −0.0157 (9) −0.0089 (9)
O25 0.1331 (17) 0.0745 (10) 0.0759 (12) 0.0125 (12) −0.0110 (11) −0.0040 (9)
C26 0.102 (2) 0.122 (2) 0.094 (2) 0.027 (2) −0.0055 (17) 0.0224 (17)

Geometric parameters (Å, º)

N1—C2 1.382 (3) C14—H14A 0.9700
N1—C13 1.381 (2) C14—H14B 0.9700
N1—H1 0.8600 C15—C16 1.502 (3)
C2—C7 1.356 (3) C15—C20 1.524 (3)
C2—C3 1.492 (3) C15—H15 0.96 (2)
C3—N4 1.470 (3) C16—C17 1.333 (3)
C3—C14 1.521 (3) C16—C23 1.454 (3)
C3—H3 0.98 (2) C17—O18 1.334 (3)
N4—C21 1.466 (3) C17—H17 0.9300
N4—C5 1.475 (3) O18—C19 1.461 (3)
C5—C6 1.508 (3) O18—O24i 3.199 (2)
C5—H5A 0.9700 C19—C22 1.515 (4)
C5—H5B 0.9700 C19—C20 1.517 (4)
C6—C7 1.497 (3) C19—H19 0.9800
C6—H6A 0.9700 C20—C21 1.522 (4)
C6—H6B 0.9700 C20—H20 1.03 (3)
C7—C8 1.427 (3) C21—H21A 0.9700
C8—C9 1.400 (3) C21—H21B 0.9700
C8—C13 1.412 (3) C22—H22A 0.9600
C9—C10 1.372 (4) C22—H22B 0.9600
C9—H9 0.9300 C22—H22C 0.9600
C10—C11 1.392 (4) C23—O25 1.205 (3)
C10—H10 0.9300 C23—O24 1.340 (3)
C11—C12 1.374 (3) O24—C26 1.430 (3)
C11—H11 0.9300 C26—H26A 0.9600
C12—C13 1.381 (3) C26—H26B 0.9600
C12—H12 0.9300 C26—H26C 0.9600
C14—C15 1.533 (3)
C2—N1—C13 108.68 (16) C15—C14—H14B 109.4
C2—N1—H1 125.7 H14A—C14—H14B 108.0
C13—N1—H1 125.7 C16—C15—C20 109.01 (19)
C7—C2—N1 109.74 (19) C16—C15—C14 113.25 (19)
C7—C2—C3 125.07 (18) C20—C15—C14 111.00 (19)
N1—C2—C3 125.14 (17) C16—C15—H15 109.3 (14)
N4—C3—C2 107.76 (17) C20—C15—H15 108.5 (14)
N4—C3—C14 109.48 (16) C14—C15—H15 105.7 (14)
C2—C3—C14 113.41 (16) C17—C16—C23 120.7 (2)
N4—C3—H3 111.4 (13) C17—C16—C15 120.5 (2)
C2—C3—H3 107.9 (13) C23—C16—C15 118.75 (19)
C14—C3—H3 106.9 (13) C16—C17—O18 126.3 (3)
C21—N4—C3 109.28 (18) C16—C17—H17 116.8
C21—N4—C5 110.49 (19) O18—C17—H17 116.8
C3—N4—C5 111.60 (17) C17—O18—C19 116.12 (18)
N4—C5—C6 111.05 (18) C17—O18—O24i 117.37 (15)
N4—C5—H5A 109.4 C19—O18—O24i 120.05 (15)
C6—C5—H5A 109.4 O18—C19—C22 105.0 (2)
N4—C5—H5B 109.4 O18—C19—C20 109.0 (2)
C6—C5—H5B 109.4 C22—C19—C20 116.0 (3)
H5A—C5—H5B 108.0 O18—C19—H19 108.9
C7—C6—C5 109.63 (18) C22—C19—H19 108.9
C7—C6—H6A 109.7 C20—C19—H19 108.9
C5—C6—H6A 109.7 C19—C20—C21 114.0 (2)
C7—C6—H6B 109.7 C19—C20—C15 109.4 (2)
C5—C6—H6B 109.7 C21—C20—C15 110.4 (2)
H6A—C6—H6B 108.2 C19—C20—H20 108.9 (14)
C2—C7—C8 107.32 (17) C21—C20—H20 104.1 (14)
C2—C7—C6 121.7 (2) C15—C20—H20 109.9 (14)
C8—C7—C6 130.99 (19) N4—C21—C20 111.5 (2)
C9—C8—C13 118.4 (2) N4—C21—H21A 109.3
C9—C8—C7 134.6 (2) C20—C21—H21A 109.3
C13—C8—C7 107.01 (17) N4—C21—H21B 109.3
C10—C9—C8 119.3 (2) C20—C21—H21B 109.3
C10—C9—H9 120.3 H21A—C21—H21B 108.0
C8—C9—H9 120.3 C19—C22—H22A 109.5
C9—C10—C11 120.9 (2) C19—C22—H22B 109.5
C9—C10—H10 119.5 H22A—C22—H22B 109.5
C11—C10—H10 119.5 C19—C22—H22C 109.5
C12—C11—C10 121.3 (2) H22A—C22—H22C 109.5
C12—C11—H11 119.3 H22B—C22—H22C 109.5
C10—C11—H11 119.3 O25—C23—O24 122.2 (2)
C11—C12—C13 117.8 (2) O25—C23—C16 124.4 (2)
C11—C12—H12 121.1 O24—C23—C16 113.4 (2)
C13—C12—H12 121.1 C23—O24—C26 117.4 (2)
C12—C13—N1 130.62 (19) O24—C26—H26A 109.5
C12—C13—C8 122.13 (19) O24—C26—H26B 109.5
N1—C13—C8 107.25 (18) H26A—C26—H26B 109.5
C3—C14—C15 111.33 (17) O24—C26—H26C 109.5
C3—C14—H14A 109.4 H26A—C26—H26C 109.5
C15—C14—H14A 109.4 H26B—C26—H26C 109.5
C3—C14—H14B 109.4
C13—N1—C2—C7 −0.7 (2) C7—C8—C13—N1 −0.3 (2)
C13—N1—C2—C3 176.71 (18) N4—C3—C14—C15 −57.9 (2)
C7—C2—C3—N4 17.0 (3) C2—C3—C14—C15 −178.22 (18)
N1—C2—C3—N4 −159.97 (17) C3—C14—C15—C16 174.62 (19)
C7—C2—C3—C14 138.4 (2) C3—C14—C15—C20 51.6 (3)
N1—C2—C3—C14 −38.6 (3) C20—C15—C16—C17 17.6 (3)
C2—C3—N4—C21 −173.13 (18) C14—C15—C16—C17 −106.5 (3)
C14—C3—N4—C21 63.1 (2) C20—C15—C16—C23 −159.33 (19)
C2—C3—N4—C5 −50.6 (2) C14—C15—C16—C23 76.6 (3)
C14—C3—N4—C5 −174.38 (18) C23—C16—C17—O18 −179.2 (2)
C21—N4—C5—C6 −169.4 (2) C15—C16—C17—O18 4.0 (4)
C3—N4—C5—C6 68.8 (2) C16—C17—O18—C19 8.7 (4)
N4—C5—C6—C7 −45.6 (2) C16—C17—O18—O24i −143.1 (2)
N1—C2—C7—C8 0.5 (2) C17—O18—C19—C22 −166.5 (3)
C3—C2—C7—C8 −176.90 (18) O24i—O18—C19—C22 −15.5 (3)
N1—C2—C7—C6 178.97 (16) C17—O18—C19—C20 −41.6 (3)
C3—C2—C7—C6 1.6 (3) O24i—O18—C19—C20 109.46 (19)
C5—C6—C7—C2 12.5 (3) O18—C19—C20—C21 −173.59 (19)
C5—C6—C7—C8 −169.4 (2) C22—C19—C20—C21 −55.4 (3)
C2—C7—C8—C9 −179.6 (2) O18—C19—C20—C15 62.3 (3)
C6—C7—C8—C9 2.1 (4) C22—C19—C20—C15 −179.5 (2)
C2—C7—C8—C13 −0.1 (2) C16—C15—C20—C19 −49.3 (3)
C6—C7—C8—C13 −178.41 (19) C14—C15—C20—C19 76.1 (3)
C13—C8—C9—C10 1.8 (3) C16—C15—C20—C21 −175.5 (2)
C7—C8—C9—C10 −178.8 (2) C14—C15—C20—C21 −50.1 (3)
C8—C9—C10—C11 −0.7 (3) C3—N4—C21—C20 −63.3 (3)
C9—C10—C11—C12 −1.1 (4) C5—N4—C21—C20 173.5 (2)
C10—C11—C12—C13 1.8 (3) C19—C20—C21—N4 −67.0 (3)
C11—C12—C13—N1 178.8 (2) C15—C20—C21—N4 56.6 (3)
C11—C12—C13—C8 −0.7 (3) C17—C16—C23—O25 −176.4 (3)
C2—N1—C13—C12 −179.0 (2) C15—C16—C23—O25 0.5 (3)
C2—N1—C13—C8 0.6 (2) C17—C16—C23—O24 2.8 (3)
C9—C8—C13—C12 −1.0 (3) C15—C16—C23—O24 179.7 (2)
C7—C8—C13—C12 179.33 (19) O25—C23—O24—C26 1.0 (4)
C9—C8—C13—N1 179.34 (18) C16—C23—O24—C26 −178.2 (2)

Symmetry code: (i) x+1/2, −y+3/2, −z.

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C8–C13 and C2/C7/C8/C13/N1 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1···Cg1ii 0.86 2.85 3.550 (2) 139
C6—H6A···Cg2iii 0.97 2.8 3.429 (3) 121

Symmetry codes: (ii) −x, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2388).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Beziat, D. & Hatinguais, P. (1977). Patent FR2397415.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Guéritte, F., Langlois, N. & Pétiard, V. (1983). J. Nat. Prod. 46, 144–148.
  5. Gutzwiller, J., Pizzolato, G. & Uskolović, M. (1971). J. Am. Chem. Soc. 93, 5907–5908.
  6. Hemscheidt, T. & Zenk, M. H. (1985). Plant Cell Rep. 4, 216–219. [DOI] [PubMed]
  7. Höfle, G., Heinstein, P., Stöckigt, J. & Zenk, M. H. (1980). Planta Med. 40, 120–126.
  8. Langlois, N., Diatta, L. & Andriamialisoa, R. Z. (1979). Phytochemistry, 18, 467–471.
  9. Laus, G. & Wurst, K. (2008). Helv. Chim. Acta, 91, 831–837.
  10. Lounasmaa, M. & Kan, S.-K. (1980). Tetrahedron, 36, 1607–1611.
  11. Mandal, S., Srivastava, V. K. & Maheshwari, M. L. (1983). Indian J. Pharm. Sci. pp. 23–26.
  12. Nonius (2004). COLLECT Nonius BV, Delft, The Netherlands.
  13. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  14. Poirot, R. (2007). PhD thesis, p. 129. Institut National Polytechnique de Toulouse, France.
  15. Shamma, M. & Richey, J. M. (1963). J. Am. Chem. Soc. 85, 2507–2512.
  16. Sharma, P., Shirataki, Y. & Cordell, G. A. (1988). Phytochemistry, 27, 3649–3652.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Wenkert, E., Chang, C.-J., Chawla, H. P. S., Cochran, D. W., Hagaman, E. W., King, J. C. & Orito, K. (1976). J. Am. Chem. Soc. 98, 3645–3655.
  19. Wenkert, E. & Roychaudhuri, D. K. (1957). J. Am. Chem. Soc. 79, 1519–1520.
  20. Wenkert, E., Wickberg, B. & Leicht, C. L. (1961). J. Am. Chem. Soc. 83, 5037–5038.
  21. Zenk, M. H. & Juenger, M. (2007). Phytochemistry, 68, 2757–2772. [DOI] [PubMed]
  22. Zou, H.-B., Zhu, H.-J., Zhang, L., Yang, L.-Q., Yu, Y.-P. & Stöckigt, J. (2010). Chem. Asian J. 5, 2400–2404. [DOI] [PubMed]
  23. Zsadon, B., Barta, M., Dezseri, E. & Dancsi, L. (1979). Patent FR7929088.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813021168/bq2388sup1.cif

e-69-o1389-sup1.cif (30.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813021168/bq2388Isup2.hkl

e-69-o1389-Isup2.hkl (158.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES