Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 31;69(Pt 9):o1487–o1488. doi: 10.1107/S1600536813023660

3,3-Dimethyl-cis-9a,13a-diphenyl-2,3,9a,11,12,13a-hexa­hydro-1H-benzo[h][1,4]dioxino[2′,3′:5,6][1,4]dioxino[2,3-f]chromene

Bauer O Bernardes a,, Aurelio B Buarque Ferreira a, James L Wardell b,c,§, Solange M S V Wardell d, José C Netto-Ferreira a, Edward R T Tiekink e,*
PMCID: PMC3884479  PMID: 24427106

Abstract

In the title di­hydro­dioxin, C31H28O5, the dioxane ring has a chair conformation, whereas each of the pyran and dioxine rings has an envelope conformation with methyl­ene and quaternary C atoms, respectively, being the flap atoms. The phenyl rings are cis and form a dihedral angle of 82.11 (10)°. The molecular structure is stabilized by C—H⋯O contacts. In the crystal packing, supra­molecular layers parallel to (101) are sustained by C—H⋯π inter­actions.

Related literature  

For the biological activity of lapachol and its isomers, see: de Almeida (2009); Ferreira et al. (2010); Medeiros et al. (2010); Neves-Pinto et al. (2002). For reactions of the quinone O atoms in lapachol, see: da Silva et al. (2011); Ferreira et al. (2006); Neves-Pinto et al. (2002). For the preparation of di­hydro­dioxins, see: Schönberg & Mustafa (1944), and for their DNA photo-cleavage, see: Mack et al. (2004). For the synthesis, see: Summerbell & Berger (1959). For the crystal structure of β-lapachone, see: Cunha-Filho et al. (2006).graphic file with name e-69-o1487-scheme1.jpg

Experimental  

Crystal data  

  • C31H28O5

  • M r = 480.53

  • Monoclinic, Inline graphic

  • a = 15.1335 (6) Å

  • b = 9.6048 (2) Å

  • c = 16.9739 (6) Å

  • β = 97.384 (1)°

  • V = 2446.77 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 K

  • 0.36 × 0.28 × 0.07 mm

Data collection  

  • Bruker-Nonius Roper CCD camera on a κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.831, T max = 1.000

  • 23103 measured reflections

  • 5549 independent reflections

  • 3390 reflections with I > 2σ(I)

  • R int = 0.059

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.139

  • S = 1.02

  • 5549 reflections

  • 355 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) general, I. DOI: 10.1107/S1600536813023660/hg5343sup1.cif

e-69-o1487-sup1.cif (26.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813023660/hg5343Isup2.hkl

e-69-o1487-Isup2.hkl (266.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C4A,C5,C6,C6A,C10A,C10B benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O3 0.95 2.36 3.001 (3) 124
C22—H22⋯O4 0.95 2.32 2.683 (3) 102
C24—H24⋯O4 0.95 2.44 3.071 (2) 124
C8—H8⋯Cg1i 0.95 2.65 3.3134 (19) 128
C15—H15ACg1ii 0.99 2.39 3.336 (2) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. BB and JLW thank CAPES (Brazil) for support. Dr Maira Fasciotti, Inmetro (Brazil), is gratefuly acknowledged for the HRMS analysis. Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR-MOHE/SC/12) is also gratefully acknowledged.

supplementary crystallographic information

1. Comment

Isomeric, lapachol, 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone, β-lapachone, 2,2-dimethyl-3,4-dihydro-2H-benzo[h]chromene-5,6-dione, and α-lapachone, 2,2-dimethyl-3,4-dihydro-2H-benzo[g]chromene-5,10-dione, Fig. 1, are found in the wood of trees of the genus, Tabebuia (family Bignoniaceae), distributed throughout Central and South America. Since their discovery at the end of the 19th century, lapachol and its isomers have attracted much attention due to their biological activities (de Almeida, 2009; Ferreira et al., 2010). Studies have revealed the effectiveness of these compounds and their derivatives as anti-cancer and anti-neoplastic (de Almeida, 2009), anti-fungal (Medeiros et al., 2010) and anti-Trypanosoma cruzi agents (Neves-Pinto et al., 2002), among other activities.

The quinone O atoms in lapachol and the lapachones are active sites and reactions at these sites have led to various derivatives, including oximes (da Silva et al., 2011), α-diazocarbonyls (Ferreira et al., 2006), phenazines (Neves-Pinto et al., 2002) and as we report here, a dihydrodioxin, (I), which was obtained by photoaddition of β-lapachone to 5,6-diphenyl-2,3-dihydro-1,4-dioxine, Fig. 2. Dihydrodioxins, most readily formed by a photochemical reaction between ortho-quinones and alkenes (Schönberg & Mustafa, 1944), are able to perform efficient DNA photo-cleavage (Mack et al., 2004). The crystal structure of β-lapachone has been reported (Cunha-Filho et al., 2006).

In (I), Fig. 3, the pyran ring approximates an envelope conformation with the C3 atom being the flap atom. The dioxine ring also has an envelope conformation where the C16 atom is the flap. With respect to this ring, the C17- and C23-bound phenyl rings are in axial and equatorial positions, respectively, and make a dihedral angle of 82.11 (10)° with each other. The orientation of these rings is such to facilitate the formation of intramolecular C—H···O interactions, Table 1. Finally, a chair conformation is found for the dioxane ring.

The major feature of the crystal packing is the formation of supramolecular layers parallel to (1 0 1) and sustained by C—H···π interactions, Table 1. These stack with no specific intermolecular interactions between them, Fig. 4.

2. Experimental

β-Lapachone (0.242 g, 1 mmol) was added to a solution of 2,3-diphenyl-1,4-diox-2-ene (0.476 g, 2 mmol) in benzene (20 ml) (Summerbell & Berger, 1959). The solution was deaerated using oxygen-free nitrogen and irradiated using a medium-pressure Hg lamp (500 W; irradiation time = 15 h). The solvent was removed under reduced pressure to leave a residue, to which was added methanol (20 ml). This mixture was filtered under reduced pressure, the colourless solid was collected, and recrystallized from ethanol; M.pt: 482–484 K, yield 69%. Colourless blocks were obtained by slow evaporation of a 1:9 dichloromethane:acetonitrile solution at room temperature. UV (acetonitrile, λmax. (ε) - nm, L.mol-1.cm-1): 212 (3.9x104), 245.5 (3.08x104), 317 (5.8x103). IR (KBr) (cm-1): 3065.4, 2972.7, 2935.9, 1646.2, 1586.0, 1495.4, 1450.1, 1413.3, 1389.4, 1326.2, 1264.9, 1240.4, 1180.6, 1160.1, 1105.0, 1068.7, 1042.0, 1018.4, 953.3, 914.2, 854.2, 765.1, 725.9. GC—MS m/z (abundance): 480 (<1%), 238 (11%), 214 (1%), 199 (1%), 181 (1%), 159 (1%), 130 (1%), 105 (100%), 77 (17%), 51 (2%). HRMS: m/z 480.2020 (theoretical 480.2036) 1H NMR (CDCl3) δ (p.p.m.): 8.16 (1H, m); 8.12 (1H, m); 7.77–7.68 (4H, m); 7.44 (1H, dt, J = 7.02 and 1.36 Hz); 7.32 (1H, dt, J = 6.20 and 1.36 Hz); 7.24–7.18 (6H, m); 4.34–4.14 (2H, m); 3.96–3.89 (2H, m); 3.02–2.76 (2H, m), 1.87 (2H, J = 6.48 and 1.62 Hz); 1.42 (3H, s); 1.38 (3H, s). 13C NMR (CDCl3) δ (p.p.m.): 17.39; 26.63; 26.82; 32.09; 61.41; 61.78; 74.03; 94.43; 95.10; 106.6; 119.75; 121.54; 123.27; 123.99. 125.57; 127.27; 127.67; 128.52; 134.46. 137.46; 137.79; 144.10.

3. Refinement

The C-bound H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

Chemical structures of lapachol, α-lapachone and β-lapachone

Fig. 2.

Fig. 2.

Reaction scheme for the synthesis of the title compound, (I).

Fig. 3.

Fig. 3.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 4.

Fig. 4.

A view in projection down the b axis of the unit-cell contents of (I). The C—H···π interactions are shown as purple dashed lines respectively.

Crystal data

C31H28O5 F(000) = 1016
Mr = 480.53 Dx = 1.304 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5547 reflections
a = 15.1335 (6) Å θ = 2.9–27.5°
b = 9.6048 (2) Å µ = 0.09 mm1
c = 16.9739 (6) Å T = 120 K
β = 97.384 (1)° Slab, colourless
V = 2446.77 (14) Å3 0.36 × 0.28 × 0.07 mm
Z = 4

Data collection

Bruker-Nonius Roper CCD camera on a κ-goniostat diffractometer 5549 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode 3390 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.059
Detector resolution: 9.091 pixels mm-1 θmax = 27.4°, θmin = 3.2°
φ & ω scans h = −15→19
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) k = −12→12
Tmin = 0.831, Tmax = 1.000 l = −21→21
23103 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0726P)2] where P = (Fo2 + 2Fc2)/3
5549 reflections (Δ/σ)max < 0.001
355 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.07265 (9) 0.34146 (11) 0.23877 (7) 0.0227 (3)
O2 0.17388 (8) 0.21646 (11) −0.00687 (7) 0.0212 (3)
O3 0.22585 (8) −0.04598 (11) 0.05583 (7) 0.0197 (3)
O4 0.16943 (9) 0.13692 (12) −0.13294 (7) 0.0241 (3)
O5 0.10415 (8) −0.05976 (11) −0.03375 (7) 0.0220 (3)
C2 0.03141 (13) 0.46851 (17) 0.20263 (11) 0.0249 (4)
C3 0.09216 (14) 0.52936 (17) 0.14656 (11) 0.0272 (5)
H3A 0.1507 0.5521 0.1769 0.031 (5)*
H3B 0.0658 0.6168 0.1232 0.030 (5)*
C4 0.10551 (14) 0.42770 (17) 0.08004 (11) 0.0246 (4)
H4A 0.0510 0.4243 0.0410 0.025 (5)*
H4B 0.1555 0.4595 0.0522 0.024 (5)*
C4A 0.12557 (12) 0.28463 (16) 0.11431 (10) 0.0188 (4)
C5 0.18803 (12) 0.05363 (16) 0.10082 (10) 0.0172 (4)
C6 0.16391 (12) 0.18128 (17) 0.06989 (10) 0.0184 (4)
C6A 0.17505 (12) 0.01886 (16) 0.17947 (10) 0.0171 (4)
C7 0.19548 (12) −0.11445 (17) 0.21269 (10) 0.0200 (4)
H7 0.2207 −0.1834 0.1823 0.013 (4)*
C8 0.17912 (12) −0.14461 (18) 0.28843 (10) 0.0231 (4)
H8 0.1916 −0.2351 0.3095 0.019 (5)*
C9 0.14399 (13) −0.04266 (18) 0.33515 (11) 0.0253 (5)
H9 0.1342 −0.0639 0.3880 0.036 (6)*
C10 0.12390 (13) 0.08757 (17) 0.30443 (10) 0.0216 (4)
H10 0.1010 0.1562 0.3366 0.031 (5)*
C10A 0.13687 (12) 0.12094 (17) 0.22567 (10) 0.0181 (4)
C10B 0.11111 (12) 0.25221 (17) 0.19031 (10) 0.0184 (4)
C11 0.02511 (16) 0.56118 (19) 0.27419 (12) 0.0355 (5)
H11A 0.0849 0.5773 0.3023 0.046 (7)*
H11B −0.0118 0.5156 0.3100 0.035 (6)*
H11C −0.0018 0.6504 0.2564 0.046 (6)*
C12 −0.06075 (14) 0.4327 (2) 0.16053 (13) 0.0343 (5)
H12A −0.0552 0.3644 0.1185 0.045 (6)*
H12B −0.0893 0.5172 0.1371 0.040 (6)*
H12C −0.0971 0.3933 0.1989 0.033 (6)*
C13 0.21410 (13) 0.11661 (18) −0.05551 (10) 0.0207 (4)
C14 0.07502 (13) 0.10801 (18) −0.13920 (11) 0.0267 (5)
H14A 0.0477 0.1202 −0.1950 0.026 (5)*
H14B 0.0464 0.1745 −0.1058 0.034 (5)*
C15 0.05956 (14) −0.03797 (18) −0.11270 (11) 0.0256 (5)
H15A −0.0051 −0.0544 −0.1136 0.031 (5)*
H15B 0.0823 −0.1049 −0.1496 0.022 (5)*
C16 0.19741 (12) −0.03490 (17) −0.02661 (10) 0.0193 (4)
C17 0.31092 (13) 0.15683 (17) −0.05503 (10) 0.0220 (4)
C18 0.37148 (16) 0.1396 (3) 0.01208 (12) 0.0485 (7)
H18 0.3530 0.0973 0.0578 0.069 (8)*
C19 0.45920 (16) 0.1832 (3) 0.01376 (13) 0.0561 (7)
H19 0.5001 0.1697 0.0605 0.082 (9)*
C20 0.48716 (16) 0.2452 (2) −0.05084 (13) 0.0407 (6)
H20 0.5471 0.2755 −0.0494 0.053 (7)*
C21 0.42738 (15) 0.2634 (2) −0.11828 (14) 0.0427 (6)
H21 0.4464 0.3058 −0.1638 0.048 (6)*
C22 0.33982 (14) 0.2206 (2) −0.12029 (13) 0.0341 (5)
H22 0.2991 0.2351 −0.1670 0.050 (7)*
C23 0.24471 (13) −0.15056 (17) −0.06662 (10) 0.0216 (4)
C24 0.27317 (14) −0.13653 (19) −0.14065 (11) 0.0285 (5)
H24 0.2670 −0.0496 −0.1674 0.042 (6)*
C25 0.31066 (14) −0.2488 (2) −0.17594 (12) 0.0321 (5)
H25 0.3301 −0.2380 −0.2266 0.045 (6)*
C26 0.31977 (15) −0.3756 (2) −0.13795 (12) 0.0345 (5)
H26 0.3456 −0.4520 −0.1622 0.038 (6)*
C27 0.29106 (15) −0.3912 (2) −0.06409 (12) 0.0351 (5)
H27 0.2971 −0.4786 −0.0377 0.037 (6)*
C28 0.25370 (13) −0.28000 (18) −0.02881 (12) 0.0282 (5)
H28 0.2339 −0.2916 0.0217 0.031 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0249 (8) 0.0204 (6) 0.0237 (7) 0.0053 (5) 0.0061 (6) −0.0014 (5)
O2 0.0252 (8) 0.0203 (6) 0.0191 (7) 0.0007 (5) 0.0068 (6) 0.0029 (5)
O3 0.0209 (8) 0.0211 (6) 0.0173 (6) 0.0028 (5) 0.0035 (5) −0.0014 (5)
O4 0.0229 (8) 0.0300 (7) 0.0189 (7) −0.0040 (5) 0.0003 (6) 0.0026 (5)
O5 0.0152 (7) 0.0267 (6) 0.0234 (7) −0.0026 (5) −0.0002 (6) 0.0017 (5)
C2 0.0244 (12) 0.0183 (9) 0.0323 (11) 0.0036 (8) 0.0051 (9) −0.0006 (8)
C3 0.0301 (12) 0.0177 (9) 0.0344 (11) 0.0019 (8) 0.0058 (10) 0.0010 (8)
C4 0.0273 (12) 0.0212 (9) 0.0260 (10) 0.0019 (8) 0.0056 (9) 0.0024 (8)
C4A 0.0154 (10) 0.0187 (9) 0.0220 (10) −0.0021 (7) 0.0007 (8) 0.0016 (7)
C5 0.0141 (10) 0.0186 (9) 0.0191 (9) 0.0001 (7) 0.0024 (8) −0.0031 (7)
C6 0.0156 (10) 0.0229 (9) 0.0169 (9) −0.0050 (7) 0.0029 (8) 0.0002 (7)
C6A 0.0132 (10) 0.0186 (8) 0.0189 (9) −0.0028 (7) 0.0001 (8) 0.0009 (7)
C7 0.0170 (11) 0.0191 (9) 0.0233 (10) 0.0008 (7) 0.0003 (8) −0.0004 (7)
C8 0.0186 (11) 0.0246 (10) 0.0251 (10) 0.0022 (8) −0.0007 (8) 0.0064 (8)
C9 0.0229 (12) 0.0327 (11) 0.0208 (10) 0.0005 (8) 0.0044 (9) 0.0051 (8)
C10 0.0194 (11) 0.0250 (9) 0.0210 (10) 0.0006 (8) 0.0044 (8) −0.0020 (8)
C10A 0.0138 (10) 0.0213 (9) 0.0190 (9) −0.0019 (7) 0.0010 (8) −0.0007 (7)
C10B 0.0135 (10) 0.0201 (8) 0.0213 (10) −0.0004 (7) 0.0011 (8) −0.0031 (7)
C11 0.0412 (15) 0.0277 (11) 0.0398 (13) 0.0035 (10) 0.0137 (11) −0.0045 (9)
C12 0.0246 (13) 0.0333 (11) 0.0444 (13) 0.0052 (9) 0.0025 (10) 0.0053 (10)
C13 0.0203 (11) 0.0269 (9) 0.0154 (9) −0.0005 (8) 0.0048 (8) −0.0017 (7)
C14 0.0211 (12) 0.0299 (10) 0.0272 (11) −0.0021 (8) −0.0042 (9) 0.0037 (8)
C15 0.0205 (12) 0.0304 (10) 0.0237 (10) −0.0015 (8) −0.0049 (9) 0.0001 (8)
C16 0.0164 (11) 0.0257 (9) 0.0156 (9) −0.0034 (7) 0.0012 (8) 0.0000 (7)
C17 0.0204 (11) 0.0238 (9) 0.0225 (10) −0.0036 (8) 0.0057 (9) −0.0035 (7)
C18 0.0318 (15) 0.0891 (18) 0.0237 (12) −0.0267 (13) 0.0000 (11) 0.0119 (11)
C19 0.0288 (15) 0.110 (2) 0.0274 (13) −0.0285 (14) −0.0049 (11) 0.0131 (13)
C20 0.0234 (13) 0.0611 (14) 0.0387 (13) −0.0159 (11) 0.0079 (11) −0.0002 (11)
C21 0.0281 (14) 0.0603 (14) 0.0405 (14) −0.0078 (11) 0.0072 (11) 0.0179 (11)
C22 0.0230 (12) 0.0445 (12) 0.0344 (12) −0.0028 (9) 0.0027 (10) 0.0121 (9)
C23 0.0171 (11) 0.0250 (10) 0.0222 (10) −0.0012 (8) 0.0005 (8) −0.0057 (7)
C24 0.0295 (13) 0.0298 (10) 0.0262 (11) −0.0041 (9) 0.0033 (9) −0.0061 (8)
C25 0.0295 (13) 0.0384 (12) 0.0295 (12) −0.0050 (9) 0.0081 (10) −0.0128 (9)
C26 0.0334 (13) 0.0337 (11) 0.0358 (12) 0.0060 (9) 0.0021 (10) −0.0154 (9)
C27 0.0420 (15) 0.0278 (11) 0.0347 (12) 0.0109 (9) 0.0014 (11) −0.0049 (9)
C28 0.0290 (13) 0.0303 (11) 0.0250 (11) 0.0032 (8) 0.0028 (9) −0.0037 (8)

Geometric parameters (Å, º)

O1—C10B 1.369 (2) C11—H11B 0.9800
O1—C2 1.468 (2) C11—H11C 0.9800
O2—C6 1.373 (2) C12—H12A 0.9800
O2—C13 1.449 (2) C12—H12B 0.9800
O3—C5 1.3923 (19) C12—H12C 0.9800
O3—C16 1.414 (2) C13—C17 1.514 (3)
O4—C13 1.412 (2) C13—C16 1.567 (2)
O4—C14 1.446 (2) C14—C15 1.500 (2)
O5—C16 1.421 (2) C14—H14A 0.9900
O5—C15 1.436 (2) C14—H14B 0.9900
C2—C11 1.519 (3) C15—H15A 0.9900
C2—C12 1.523 (3) C15—H15B 0.9900
C2—C3 1.522 (3) C16—C23 1.527 (2)
C3—C4 1.526 (2) C17—C18 1.377 (3)
C3—H3A 0.9900 C17—C22 1.385 (3)
C3—H3B 0.9900 C18—C19 1.389 (3)
C4—C4A 1.508 (2) C18—H18 0.9500
C4—H4A 0.9900 C19—C20 1.362 (3)
C4—H4B 0.9900 C19—H19 0.9500
C4A—C10B 1.372 (2) C20—C21 1.376 (3)
C4A—C6 1.415 (2) C20—H20 0.9500
C5—C6 1.365 (2) C21—C22 1.384 (3)
C5—C6A 1.414 (2) C21—H21 0.9500
C6A—C7 1.417 (2) C22—H22 0.9500
C6A—C10A 1.424 (2) C23—C24 1.386 (3)
C7—C8 1.371 (2) C23—C28 1.398 (3)
C7—H7 0.9500 C24—C25 1.390 (3)
C8—C9 1.407 (2) C24—H24 0.9500
C8—H8 0.9500 C25—C26 1.376 (3)
C9—C10 1.374 (2) C25—H25 0.9500
C9—H9 0.9500 C26—C27 1.387 (3)
C10—C10A 1.413 (2) C26—H26 0.9500
C10—H10 0.9500 C27—C28 1.381 (3)
C10A—C10B 1.429 (2) C27—H27 0.9500
C11—H11A 0.9800 C28—H28 0.9500
C10B—O1—C2 117.40 (13) H12A—C12—H12C 109.5
C6—O2—C13 118.89 (12) H12B—C12—H12C 109.5
C5—O3—C16 113.37 (12) O4—C13—O2 104.65 (13)
C13—O4—C14 113.10 (13) O4—C13—C17 108.48 (14)
C16—O5—C15 113.43 (13) O2—C13—C17 107.76 (13)
O1—C2—C11 102.70 (15) O4—C13—C16 110.04 (13)
O1—C2—C12 108.83 (14) O2—C13—C16 109.86 (13)
C11—C2—C12 111.10 (17) C17—C13—C16 115.48 (15)
O1—C2—C3 108.77 (15) O4—C14—C15 110.38 (15)
C11—C2—C3 112.34 (15) O4—C14—H14A 109.6
C12—C2—C3 112.56 (17) C15—C14—H14A 109.6
C2—C3—C4 111.41 (15) O4—C14—H14B 109.6
C2—C3—H3A 109.3 C15—C14—H14B 109.6
C4—C3—H3A 109.3 H14A—C14—H14B 108.1
C2—C3—H3B 109.3 O5—C15—C14 110.08 (14)
C4—C3—H3B 109.3 O5—C15—H15A 109.6
H3A—C3—H3B 108.0 C14—C15—H15A 109.6
C4A—C4—C3 109.69 (15) O5—C15—H15B 109.6
C4A—C4—H4A 109.7 C14—C15—H15B 109.6
C3—C4—H4A 109.7 H15A—C15—H15B 108.2
C4A—C4—H4B 109.7 O3—C16—O5 104.15 (13)
C3—C4—H4B 109.7 O3—C16—C23 106.55 (13)
H4A—C4—H4B 108.2 O5—C16—C23 110.91 (13)
C10B—C4A—C6 117.89 (15) O3—C16—C13 109.81 (13)
C10B—C4A—C4 121.41 (15) O5—C16—C13 109.13 (14)
C6—C4A—C4 120.64 (15) C23—C16—C13 115.64 (14)
C6—C5—O3 120.98 (15) C18—C17—C22 118.01 (18)
C6—C5—C6A 120.83 (15) C18—C17—C13 120.96 (16)
O3—C5—C6A 118.18 (14) C22—C17—C13 120.89 (17)
C5—C6—O2 121.97 (15) C17—C18—C19 120.9 (2)
C5—C6—C4A 122.20 (15) C17—C18—H18 119.6
O2—C6—C4A 115.82 (14) C19—C18—H18 119.6
C5—C6A—C7 122.64 (15) C20—C19—C18 120.7 (2)
C5—C6A—C10A 118.22 (15) C20—C19—H19 119.7
C7—C6A—C10A 119.10 (15) C18—C19—H19 119.7
C8—C7—C6A 120.50 (16) C19—C20—C21 119.1 (2)
C8—C7—H7 119.7 C19—C20—H20 120.5
C6A—C7—H7 119.7 C21—C20—H20 120.5
C7—C8—C9 120.56 (16) C20—C21—C22 120.5 (2)
C7—C8—H8 119.7 C20—C21—H21 119.7
C9—C8—H8 119.7 C22—C21—H21 119.7
C10—C9—C8 120.06 (16) C21—C22—C17 120.8 (2)
C10—C9—H9 120.0 C21—C22—H22 119.6
C8—C9—H9 120.0 C17—C22—H22 119.6
C9—C10—C10A 120.97 (16) C24—C23—C28 118.65 (16)
C9—C10—H10 119.5 C24—C23—C16 123.39 (16)
C10A—C10—H10 119.5 C28—C23—C16 117.79 (16)
C10—C10A—C6A 118.73 (15) C23—C24—C25 120.46 (18)
C10—C10A—C10B 122.27 (15) C23—C24—H24 119.8
C6A—C10A—C10B 118.98 (15) C25—C24—H24 119.8
O1—C10B—C4A 123.68 (15) C26—C25—C24 120.42 (19)
O1—C10B—C10A 114.48 (14) C26—C25—H25 119.8
C4A—C10B—C10A 121.83 (15) C24—C25—H25 119.8
C2—C11—H11A 109.5 C25—C26—C27 119.69 (18)
C2—C11—H11B 109.5 C25—C26—H26 120.2
H11A—C11—H11B 109.5 C27—C26—H26 120.2
C2—C11—H11C 109.5 C28—C27—C26 120.10 (19)
H11A—C11—H11C 109.5 C28—C27—H27 119.9
H11B—C11—H11C 109.5 C26—C27—H27 119.9
C2—C12—H12A 109.5 C27—C28—C23 120.67 (18)
C2—C12—H12B 109.5 C27—C28—H28 119.7
H12A—C12—H12B 109.5 C23—C28—H28 119.7
C2—C12—H12C 109.5
C10B—O1—C2—C11 −161.60 (15) C6—O2—C13—O4 145.39 (14)
C10B—O1—C2—C12 80.58 (19) C6—O2—C13—C17 −99.29 (17)
C10B—O1—C2—C3 −42.4 (2) C6—O2—C13—C16 27.3 (2)
O1—C2—C3—C4 60.8 (2) C13—O4—C14—C15 −56.94 (18)
C11—C2—C3—C4 173.82 (16) C16—O5—C15—C14 −57.79 (19)
C12—C2—C3—C4 −59.9 (2) O4—C14—C15—O5 55.3 (2)
C2—C3—C4—C4A −46.2 (2) C5—O3—C16—O5 −62.68 (16)
C3—C4—C4A—C10B 14.3 (2) C5—O3—C16—C23 −179.99 (13)
C3—C4—C4A—C6 −162.79 (17) C5—O3—C16—C13 54.07 (18)
C16—O3—C5—C6 −29.5 (2) C15—O5—C16—O3 173.41 (12)
C16—O3—C5—C6A 150.33 (15) C15—O5—C16—C23 −72.34 (16)
O3—C5—C6—O2 1.4 (3) C15—O5—C16—C13 56.18 (16)
C6A—C5—C6—O2 −178.46 (16) O4—C13—C16—O3 −167.72 (13)
O3—C5—C6—C4A −179.82 (16) O2—C13—C16—O3 −53.02 (18)
C6A—C5—C6—C4A 0.3 (3) C17—C13—C16—O3 69.09 (18)
C13—O2—C6—C5 −2.2 (2) O4—C13—C16—O5 −54.14 (17)
C13—O2—C6—C4A 178.95 (15) O2—C13—C16—O5 60.56 (17)
C10B—C4A—C6—C5 −1.3 (3) C17—C13—C16—O5 −177.33 (13)
C4—C4A—C6—C5 175.85 (17) O4—C13—C16—C23 71.70 (19)
C10B—C4A—C6—O2 177.52 (16) O2—C13—C16—C23 −173.60 (14)
C4—C4A—C6—O2 −5.3 (2) C17—C13—C16—C23 −51.5 (2)
C6—C5—C6A—C7 177.14 (17) O4—C13—C17—C18 −176.17 (18)
O3—C5—C6A—C7 −2.7 (3) O2—C13—C17—C18 71.1 (2)
C6—C5—C6A—C10A −0.5 (3) C16—C13—C17—C18 −52.2 (2)
O3—C5—C6A—C10A 179.63 (15) O4—C13—C17—C22 8.2 (2)
C5—C6A—C7—C8 −177.93 (18) O2—C13—C17—C22 −104.54 (18)
C10A—C6A—C7—C8 −0.3 (3) C16—C13—C17—C22 132.24 (18)
C6A—C7—C8—C9 −1.7 (3) C22—C17—C18—C19 −0.9 (3)
C7—C8—C9—C10 1.5 (3) C13—C17—C18—C19 −176.6 (2)
C8—C9—C10—C10A 0.8 (3) C17—C18—C19—C20 0.6 (4)
C9—C10—C10A—C6A −2.8 (3) C18—C19—C20—C21 −0.4 (4)
C9—C10—C10A—C10B 175.73 (17) C19—C20—C21—C22 0.6 (4)
C5—C6A—C10A—C10 −179.76 (16) C20—C21—C22—C17 −0.9 (3)
C7—C6A—C10A—C10 2.5 (3) C18—C17—C22—C21 1.1 (3)
C5—C6A—C10A—C10B 1.7 (2) C13—C17—C22—C21 176.80 (19)
C7—C6A—C10A—C10B −176.06 (16) O3—C16—C23—C24 −145.17 (17)
C2—O1—C10B—C4A 10.7 (2) O5—C16—C23—C24 102.1 (2)
C2—O1—C10B—C10A −170.26 (15) C13—C16—C23—C24 −22.8 (2)
C6—C4A—C10B—O1 −178.42 (16) O3—C16—C23—C28 39.6 (2)
C4—C4A—C10B—O1 4.4 (3) O5—C16—C23—C28 −73.1 (2)
C6—C4A—C10B—C10A 2.6 (3) C13—C16—C23—C28 161.93 (16)
C4—C4A—C10B—C10A −174.60 (16) C28—C23—C24—C25 −0.6 (3)
C10—C10A—C10B—O1 −0.4 (2) C16—C23—C24—C25 −175.84 (18)
C6A—C10A—C10B—O1 178.11 (15) C23—C24—C25—C26 0.2 (3)
C10—C10A—C10B—C4A 178.70 (17) C24—C25—C26—C27 0.2 (3)
C6A—C10A—C10B—C4A −2.8 (3) C25—C26—C27—C28 −0.1 (3)
C14—O4—C13—O2 −62.31 (16) C26—C27—C28—C23 −0.3 (3)
C14—O4—C13—C17 −177.13 (13) C24—C23—C28—C27 0.7 (3)
C14—O4—C13—C16 55.67 (17) C16—C23—C28—C27 176.17 (18)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C4A,C5,C6,C6A,C10A,C10B benzene ring.

D—H···A D—H H···A D···A D—H···A
C18—H18···O3 0.95 2.36 3.001 (3) 124
C22—H22···O4 0.95 2.32 2.683 (3) 102
C24—H24···O4 0.95 2.44 3.071 (2) 124
C8—H8···Cg1i 0.95 2.65 3.3134 (19) 128
C15—H15A···Cg1ii 0.99 2.39 3.336 (2) 161

Symmetry codes: (i) x+1/2, −y−1/2, z+1/2; (ii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5343).

References

  1. Almeida, E. R. de (2009). Open Nat. Prod. J. 2, 42–47.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Cunha-Filho, M. S. S., Landin, M., Martinez-Pacheco, R. & Dacunha-Marinho, B. (2006). Acta Cryst. C62, o473–o475. [DOI] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Ferreira, S. B., Gonzaga, D. T. G., Santos, W. C., Araújo, K. G. L. & Ferreira, V. F. (2010). Rev. Virtual Quím 2, 140–169.
  6. Ferreira, V. F., Jorqueira, A., Leal, K. Z., Pimentel, H. R., Seidl, P. R., da Silva, M. N., da Souza, M. C., Pinto, A. V., Wardell, J. L. & Wardell, S. M. S. V. (2006). Magn. Reson. Chem. 44, 481–490. [DOI] [PubMed]
  7. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  8. Mack, E. T., Carle, A. B., Liang, J. T.-M., Coyle, W. & Wilson, R. M. (2004). J. Am. Chem. Soc. 126, 15324–15325. [DOI] [PubMed]
  9. Medeiros, C. S., Pontes-Filho, N. T., Camara, C. A., Lima-Filho, J. V., Oliveira, P. C., Lemos, S. A., Leal, A. F. G., Brandão, J. O. C. & Neves, R. P. (2010). Braz. J. Med. Biol. Res. 43, 345–349. [DOI] [PubMed]
  10. Neves-Pinto, C., Malta, V. R., Pinto, M., do, C., Santos, R. H., de Castro, S. L. & Pinto, A. V. (2002). J. Med. Chem. 45, 2112–2115. [DOI] [PubMed]
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Schönberg, A. & Mustafa, A. (1944). J. Chem. Soc. p. 387.
  13. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Silva, A. R. da, Herbst, M. H., Ferreira, A. B. B., da Silva, A. M. & Visentin, L. C. (2011). Molecules, 16, 1192–1200. [DOI] [PMC free article] [PubMed]
  16. Summerbell, R. K. & Berger, D. R. (1959). J. Am. Chem. Soc. 81, 633–639.
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) general, I. DOI: 10.1107/S1600536813023660/hg5343sup1.cif

e-69-o1487-sup1.cif (26.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813023660/hg5343Isup2.hkl

e-69-o1487-Isup2.hkl (266.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES