Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 3;69(Pt 9):o1380–o1381. doi: 10.1107/S1600536813021181

(4S*)-2-Methyl­amino-3-nitro-4-(4-nitro­phen­yl)-5,6,7,8-tetra­hydro-4H-chromen-5-one

P Narayanan a, Jayabal Kamalraja b, Paramasivam T Perumal b, K Sethusankar a,*
PMCID: PMC3884480  PMID: 24427023

Abstract

The title compound, C16H15N3O6, is asymmetric with a chiral centre located in the pyran ring and crystallizes as a racemate. The six-membered carbocyclic ring adopts an envelope conformation with the central CH2 C atom as the flap. The amine N atom deviates from the mean plane of the pyran ring by 0.1365 (15) Å. The nitro­phenyl ring is almost orthogonal to the pyran ring and the mean plane of the six-membered carbocyclic ring, the dihedral angle between their mean planes being 88.30 (7) and 87.61 (8)°, respectively. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming infinite bands lying parallel to (-110) and composed of alternate R 2 2(24) and R 2 4(12) graph-set ring motifs. The crystal structure is further stabilized by C—H⋯π inter­actions, forming a three-dimensional structure.

Related literature  

For the uses and biological importance of chromene, see: Ercole et al. (2009); Geen et al. (1996); Khan et al. (2010); Raj et al. (2010). For related structures, see: Narayanan et al. (2013a ,b ). For graph-set notation, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-69-o1380-scheme1.jpg

Experimental  

Crystal data  

  • C16H15N3O6

  • M r = 345.31

  • Triclinic, Inline graphic

  • a = 8.2587 (3) Å

  • b = 8.7679 (4) Å

  • c = 10.9346 (5) Å

  • α = 101.616 (2)°

  • β = 90.426 (2)°

  • γ = 91.930 (2)°

  • V = 775.05 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.966, T max = 0.977

  • 10840 measured reflections

  • 3161 independent reflections

  • 2633 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.126

  • S = 1.04

  • 3161 reflections

  • 230 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813021181/su2627sup1.cif

e-69-o1380-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813021181/su2627Isup2.hkl

e-69-o1380-Isup2.hkl (151.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813021181/su2627Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.90 (3) 1.89 (3) 2.601 (2) 134 (2)
C11—H11A⋯O6i 0.97 2.54 3.352 (2) 141
C11—H11B⋯O5ii 0.97 2.54 3.186 (2) 124
C10—H10ACg1iii 0.97 2.90 3.515 (2) 135
C16—H16BCg1iv 0.96 2.90 3.577 (3) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank Mr T. Srinivasan and Dr D. Velmurugan, Head of the CAS in Crystallography and Biophysics, University of Madras, Chennai, India, for the data collection.

supplementary crystallographic information

1. Comment

Chromene derivatives are very important heterocyclic compounds that have a variety of industrial, biological and chemical synthesis applications (Geen et al., 1996; Ercole et al., 2009). They exhibit a number of pharmacological activities such as anti-HIV, anti-inflammatory, anti-bacterial, anti-allergic, anti-cancer (Khan et al., 2010; Raj et al., 2010). Against this background, the X-ray analysis of the title compound has been carried out to study its structural aspects.

The title compound, Fig. 1, consists of a chromene moiety attached to a nitrophenyl ring, a nitro group and a methylamine group. The molecular structure is stabilized by an intra molecular N1—H1A···O3 interaction, which generates an S(6) ring motif (Table 1 and Fig. 1). The pyran ring (C7/C8/C13-C15/O1) mean plane is almost orthogonal to the nitrophenyl ring (C1–C6), with a dihedral angle of 88.30 (7) °.

The pyran ring is almost coplanar with the mean plane of the nitro group (N2/O3/O4), with a dihedral angle of 3.99 (11)°. The mean plane of the six membered carbocyclic ring (C8–C13) makes a dihedral angle of 87.61 (8) ° with the nitrophenyl ring (C1–C6), again they are almost perpendicular to each other.

The six membered carbocyclic rings (C8–C13) of the chromene moiety adopts an envelope conformation on atom C11 with puckering parameters (Cremer & Pople, 1975): Q2 = 0.4018 (17) Å, Q3 = -0.2465 (18) Å and φ2 = 358.1 (3). Atom C11 deviates from the mean plane of the rest of the ring atoms by 0.3325 (18) Å. The amine group nitrogen atom N1 deviates by -0.1365 (15) Å from the mean plane of the pyran ring. The title compound exhibits structural similarities with already reported related structures (Narayanan et al., 2013a,b).

In the crystal, molecules are linked via C-H···O hydrogen bonds (Table 1 and Fig. 2), which form infinite bands lying parallel to plane (-1 1 0), and which enclose alternate R22(24) and R24(12) graph-set ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by C-H···\p interactions (Table 1) forming a three-dimensional structure.

2. Experimental

A solution of the requisite aldehyde (0.151 g, 1.0 mmol), cyclic 1,3-dicarbonyl compound (0.112 g, 1.0 mmol), NMSM (0.148 g, 1.0 mmol) and piperidine (0.2 equiv) in EtOH (2 ml) was stirred for 1.5 hrs. After the reaction was complete as indicated by TLC, the product was filtered and washed with EtOH (2 ml) to remove the excess base and other impurities. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethanol at room temperature.

3. Refinement

Positions of the hydrogen atoms were localized from difference electron density maps. The H-atoms of the amine group were refined with distance restraints of N—H = 0.90 (1) Å with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were treated as riding atoms: C-H = 0.93, 0.97, 0.98 and 0.96 Å for CH(aromatic), CH2, CH and CH3 H atoms, respectively, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. The rotation angles for methyl groups were optimized by least squares.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level. The intramolecular N-H···O hydrogen bond, which generates an S(6) ring motif, is shown as a dashed line (see Table 1 for details).

Fig. 2.

Fig. 2.

The crystal packing of the title compound, with the C-H···O hydrogen bonds shown as dashed lines (see Table 1 for details; symmetry codes: (i) -x+1, -y+2, -z; (ii) x-1, y-1, z).

Crystal data

C16H15N3O6 Z = 2
Mr = 345.31 F(000) = 360
Triclinic, P1 Dx = 1.480 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.2587 (3) Å Cell parameters from 2633 reflections
b = 8.7679 (4) Å θ = 1.9–26.4°
c = 10.9346 (5) Å µ = 0.12 mm1
α = 101.616 (2)° T = 296 K
β = 90.426 (2)° Block, colourless
γ = 91.930 (2)° 0.30 × 0.25 × 0.20 mm
V = 775.05 (6) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 3161 independent reflections
Radiation source: fine-focus sealed tube 2633 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
ω and φ scans θmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −10→10
Tmin = 0.966, Tmax = 0.977 k = −10→10
10840 measured reflections l = −11→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.2861P] where P = (Fo2 + 2Fc2)/3
3161 reflections (Δ/σ)max = 0.001
230 parameters Δρmax = 0.24 e Å3
1 restraint Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2531 (2) 1.32368 (19) 0.26884 (15) 0.0403 (4)
H1 0.1710 1.3834 0.3094 0.048*
C2 0.3654 (2) 1.3910 (2) 0.20151 (16) 0.0453 (4)
H2 0.3626 1.4961 0.1983 0.054*
C3 0.48192 (19) 1.2977 (2) 0.13907 (15) 0.0427 (4)
C4 0.49206 (19) 1.1433 (2) 0.14415 (16) 0.0431 (4)
H4 0.5719 1.0831 0.1008 0.052*
C5 0.38164 (18) 1.07952 (19) 0.21467 (15) 0.0373 (4)
H5 0.3883 0.9756 0.2206 0.045*
C6 0.26034 (17) 1.16853 (17) 0.27713 (13) 0.0317 (3)
C7 0.13772 (17) 1.09405 (17) 0.35343 (14) 0.0326 (3)
H7 0.0602 1.1724 0.3894 0.039*
C8 0.04677 (17) 0.96034 (18) 0.27041 (13) 0.0330 (3)
C9 −0.07332 (18) 0.9969 (2) 0.18054 (15) 0.0386 (4)
C10 −0.1554 (2) 0.8623 (2) 0.09238 (16) 0.0456 (4)
H10A −0.1777 0.8934 0.0138 0.055*
H10B −0.2583 0.8373 0.1271 0.055*
C11 −0.0557 (2) 0.7178 (2) 0.06734 (15) 0.0446 (4)
H11A 0.0400 0.7369 0.0210 0.054*
H11B −0.1188 0.6322 0.0170 0.054*
C12 −0.0052 (2) 0.6741 (2) 0.18949 (15) 0.0434 (4)
H12A −0.0992 0.6358 0.2284 0.052*
H12B 0.0720 0.5918 0.1732 0.052*
C13 0.06922 (18) 0.81242 (18) 0.27499 (14) 0.0349 (3)
C14 0.23414 (18) 0.87924 (18) 0.45824 (14) 0.0337 (3)
C15 0.21916 (18) 1.03614 (17) 0.45763 (13) 0.0336 (3)
C16 0.3124 (3) 0.6535 (2) 0.5443 (2) 0.0685 (6)
H16A 0.2041 0.6094 0.5407 0.103*
H16B 0.3655 0.6397 0.6195 0.103*
H16C 0.3714 0.6023 0.4733 0.103*
N1 0.30687 (19) 0.81832 (17) 0.54344 (13) 0.0445 (4)
N2 0.28580 (17) 1.14864 (16) 0.55398 (12) 0.0405 (3)
N3 0.5987 (2) 1.3655 (3) 0.06260 (18) 0.0627 (5)
O1 0.16935 (14) 0.76920 (13) 0.36371 (10) 0.0414 (3)
O2 −0.10506 (16) 1.13167 (16) 0.18180 (13) 0.0544 (4)
O3 0.36526 (17) 1.11096 (15) 0.64145 (11) 0.0535 (3)
O4 0.26560 (19) 1.28774 (14) 0.55197 (12) 0.0579 (4)
O5 0.6313 (2) 1.5047 (2) 0.09323 (18) 0.0934 (6)
O6 0.6534 (2) 1.2794 (2) −0.02896 (18) 0.0874 (6)
H1A 0.349 (4) 0.891 (3) 0.607 (2) 0.105*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0438 (9) 0.0379 (8) 0.0401 (8) 0.0039 (7) 0.0024 (7) 0.0098 (7)
C2 0.0522 (10) 0.0400 (9) 0.0465 (9) −0.0063 (7) −0.0046 (8) 0.0169 (7)
C3 0.0304 (8) 0.0616 (11) 0.0399 (9) −0.0091 (7) −0.0057 (6) 0.0211 (8)
C4 0.0287 (7) 0.0606 (11) 0.0427 (9) 0.0075 (7) 0.0012 (6) 0.0160 (8)
C5 0.0337 (8) 0.0403 (8) 0.0403 (8) 0.0053 (6) −0.0028 (6) 0.0130 (7)
C6 0.0303 (7) 0.0371 (8) 0.0286 (7) −0.0006 (6) −0.0050 (5) 0.0092 (6)
C7 0.0314 (7) 0.0348 (8) 0.0330 (7) 0.0036 (6) 0.0009 (6) 0.0098 (6)
C8 0.0266 (7) 0.0424 (8) 0.0315 (7) −0.0011 (6) −0.0005 (6) 0.0118 (6)
C9 0.0273 (7) 0.0544 (10) 0.0384 (8) 0.0018 (6) 0.0008 (6) 0.0195 (7)
C10 0.0316 (8) 0.0687 (12) 0.0383 (9) −0.0011 (7) −0.0075 (7) 0.0161 (8)
C11 0.0370 (8) 0.0606 (11) 0.0343 (8) −0.0054 (7) −0.0050 (6) 0.0064 (7)
C12 0.0449 (9) 0.0439 (9) 0.0401 (9) −0.0054 (7) −0.0076 (7) 0.0071 (7)
C13 0.0308 (7) 0.0435 (9) 0.0315 (7) −0.0017 (6) −0.0045 (6) 0.0109 (6)
C14 0.0327 (7) 0.0401 (8) 0.0289 (7) 0.0003 (6) −0.0026 (6) 0.0086 (6)
C15 0.0346 (7) 0.0383 (8) 0.0281 (7) −0.0011 (6) −0.0003 (6) 0.0077 (6)
C16 0.0977 (17) 0.0461 (11) 0.0639 (13) 0.0088 (11) −0.0315 (12) 0.0169 (9)
N1 0.0549 (9) 0.0423 (8) 0.0374 (7) 0.0031 (6) −0.0136 (6) 0.0110 (6)
N2 0.0481 (8) 0.0424 (8) 0.0307 (7) −0.0034 (6) −0.0006 (6) 0.0073 (5)
N3 0.0397 (8) 0.0917 (14) 0.0665 (11) −0.0157 (9) −0.0052 (8) 0.0423 (10)
O1 0.0487 (7) 0.0369 (6) 0.0386 (6) 0.0019 (5) −0.0142 (5) 0.0083 (5)
O2 0.0471 (7) 0.0585 (8) 0.0637 (8) 0.0068 (6) −0.0117 (6) 0.0261 (6)
O3 0.0675 (8) 0.0560 (8) 0.0356 (6) −0.0060 (6) −0.0162 (6) 0.0079 (5)
O4 0.0883 (10) 0.0372 (7) 0.0461 (7) −0.0028 (6) −0.0066 (7) 0.0044 (5)
O5 0.0823 (12) 0.1065 (14) 0.0976 (13) −0.0536 (11) −0.0110 (10) 0.0455 (11)
O6 0.0651 (10) 0.1239 (16) 0.0858 (12) 0.0141 (10) 0.0369 (9) 0.0481 (11)

Geometric parameters (Å, º)

C1—C2 1.378 (2) C10—H10B 0.9700
C1—C6 1.385 (2) C11—C12 1.521 (2)
C1—H1 0.9300 C11—H11A 0.9700
C2—C3 1.379 (3) C11—H11B 0.9700
C2—H2 0.9300 C12—C13 1.486 (2)
C3—C4 1.371 (3) C12—H12A 0.9700
C3—N3 1.469 (2) C12—H12B 0.9700
C4—C5 1.374 (2) C13—O1 1.3877 (18)
C4—H4 0.9300 C14—N1 1.314 (2)
C5—C6 1.388 (2) C14—O1 1.3569 (18)
C5—H5 0.9300 C14—C15 1.387 (2)
C6—C7 1.528 (2) C15—N2 1.386 (2)
C7—C15 1.501 (2) C16—N1 1.449 (2)
C7—C8 1.505 (2) C16—H16A 0.9600
C7—H7 0.9800 C16—H16B 0.9600
C8—C13 1.327 (2) C16—H16C 0.9600
C8—C9 1.479 (2) N1—H1A 0.906 (10)
C9—O2 1.216 (2) N2—O4 1.2411 (18)
C9—C10 1.504 (2) N2—O3 1.2598 (18)
C10—C11 1.514 (3) N3—O5 1.219 (3)
C10—H10A 0.9700 N3—O6 1.226 (3)
C2—C1—C6 121.08 (15) C10—C11—H11A 109.6
C2—C1—H1 119.5 C12—C11—H11A 109.6
C6—C1—H1 119.5 C10—C11—H11B 109.6
C3—C2—C1 117.90 (16) C12—C11—H11B 109.6
C3—C2—H2 121.1 H11A—C11—H11B 108.1
C1—C2—H2 121.1 C13—C12—C11 109.88 (14)
C4—C3—C2 122.65 (15) C13—C12—H12A 109.7
C4—C3—N3 118.58 (17) C11—C12—H12A 109.7
C2—C3—N3 118.77 (17) C13—C12—H12B 109.7
C3—C4—C5 118.53 (15) C11—C12—H12B 109.7
C3—C4—H4 120.7 H12A—C12—H12B 108.2
C5—C4—H4 120.7 C8—C13—O1 122.42 (13)
C4—C5—C6 120.72 (15) C8—C13—C12 126.12 (14)
C4—C5—H5 119.6 O1—C13—C12 111.46 (13)
C6—C5—H5 119.6 N1—C14—O1 112.44 (13)
C1—C6—C5 119.08 (14) N1—C14—C15 127.25 (14)
C1—C6—C7 121.28 (13) O1—C14—C15 120.30 (13)
C5—C6—C7 119.64 (13) N2—C15—C14 120.33 (13)
C15—C7—C8 109.22 (12) N2—C15—C7 116.49 (13)
C15—C7—C6 111.43 (12) C14—C15—C7 123.14 (13)
C8—C7—C6 110.03 (12) N1—C16—H16A 109.5
C15—C7—H7 108.7 N1—C16—H16B 109.5
C8—C7—H7 108.7 H16A—C16—H16B 109.5
C6—C7—H7 108.7 N1—C16—H16C 109.5
C13—C8—C9 119.05 (14) H16A—C16—H16C 109.5
C13—C8—C7 122.96 (13) H16B—C16—H16C 109.5
C9—C8—C7 117.99 (13) C14—N1—C16 125.65 (15)
O2—C9—C8 120.00 (15) C14—N1—H1A 112.9 (19)
O2—C9—C10 122.51 (14) C16—N1—H1A 121.4 (19)
C8—C9—C10 117.46 (14) O4—N2—O3 120.65 (13)
C9—C10—C11 113.25 (13) O4—N2—C15 118.39 (14)
C9—C10—H10A 108.9 O3—N2—C15 120.96 (14)
C11—C10—H10A 108.9 O5—N3—O6 124.64 (19)
C9—C10—H10B 108.9 O5—N3—C3 117.5 (2)
C11—C10—H10B 108.9 O6—N3—C3 117.88 (19)
H10A—C10—H10B 107.7 C14—O1—C13 119.94 (12)
C10—C11—C12 110.42 (14)
C6—C1—C2—C3 2.2 (2) C7—C8—C13—O1 5.2 (2)
C1—C2—C3—C4 −1.6 (3) C9—C8—C13—C12 5.8 (2)
C1—C2—C3—N3 177.53 (15) C7—C8—C13—C12 −174.55 (15)
C2—C3—C4—C5 −0.2 (2) C11—C12—C13—C8 22.5 (2)
N3—C3—C4—C5 −179.32 (15) C11—C12—C13—O1 −157.33 (14)
C3—C4—C5—C6 1.4 (2) N1—C14—C15—N2 0.4 (2)
C2—C1—C6—C5 −1.0 (2) O1—C14—C15—N2 −179.78 (13)
C2—C1—C6—C7 178.99 (14) N1—C14—C15—C7 178.06 (15)
C4—C5—C6—C1 −0.8 (2) O1—C14—C15—C7 −2.1 (2)
C4—C5—C6—C7 179.15 (14) C8—C7—C15—N2 −169.66 (12)
C1—C6—C7—C15 −118.64 (15) C6—C7—C15—N2 68.58 (17)
C5—C6—C7—C15 61.39 (18) C8—C7—C15—C14 12.6 (2)
C1—C6—C7—C8 120.07 (15) C6—C7—C15—C14 −109.17 (16)
C5—C6—C7—C8 −59.91 (17) O1—C14—N1—C16 −3.4 (3)
C15—C7—C8—C13 −14.1 (2) C15—C14—N1—C16 176.41 (19)
C6—C7—C8—C13 108.47 (16) C14—C15—N2—O4 −177.86 (14)
C15—C7—C8—C9 165.53 (12) C7—C15—N2—O4 4.3 (2)
C6—C7—C8—C9 −71.87 (16) C14—C15—N2—O3 2.3 (2)
C13—C8—C9—O2 174.08 (15) C7—C15—N2—O3 −175.54 (14)
C7—C8—C9—O2 −5.6 (2) C4—C3—N3—O5 −152.56 (18)
C13—C8—C9—C10 −4.3 (2) C2—C3—N3—O5 28.3 (2)
C7—C8—C9—C10 176.08 (13) C4—C3—N3—O6 29.2 (2)
O2—C9—C10—C11 155.85 (16) C2—C3—N3—O6 −150.02 (19)
C8—C9—C10—C11 −25.9 (2) N1—C14—O1—C13 171.08 (13)
C9—C10—C11—C12 53.46 (19) C15—C14—O1—C13 −8.8 (2)
C10—C11—C12—C13 −50.56 (19) C8—C13—O1—C14 7.4 (2)
C9—C8—C13—O1 −174.42 (13) C12—C13—O1—C14 −172.82 (14)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1A···O3 0.90 (3) 1.89 (3) 2.601 (2) 134 (2)
C11—H11A···O6i 0.97 2.54 3.352 (2) 141
C11—H11B···O5ii 0.97 2.54 3.186 (2) 124
C10—H10A···Cg1iii 0.97 2.90 3.515 (2) 135
C16—H16B···Cg1iv 0.96 2.90 3.577 (3) 142

Symmetry codes: (i) −x+1, −y+2, −z; (ii) x−1, y−1, z; (iii) −x, −y+2, −z; (iv) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2627).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Ercole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500–1511.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Geen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469–500. New York: Pergamon.
  7. Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058–4064. [DOI] [PubMed]
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Narayanan, P., Kamalraja, J., Perumal, P. T. & Sethusankar, K. (2013a). Acta Cryst. E69, o931–o932. [DOI] [PMC free article] [PubMed]
  10. Narayanan, P., Kamalraja, J., Perumal, P. T. & Sethusankar, K. (2013b). Acta Cryst. E69, o1053–o1054. [DOI] [PMC free article] [PubMed]
  11. Raj, T., Bhatia, R. K., Kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790–794. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813021181/su2627sup1.cif

e-69-o1380-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813021181/su2627Isup2.hkl

e-69-o1380-Isup2.hkl (151.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813021181/su2627Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES