Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 10;69(Pt 9):m486. doi: 10.1107/S1600536813021892

2-(3-Chloro­benzo­yl)-3-(3,4-di­chloro­phen­yl)-1-(4-ferrocenylphen­yl)guanidine

Rukhsana Gul a, Azim Khan a, Amin Badshah b, M Nawaz Tahir c,*
PMCID: PMC3884485  PMID: 24426986

Abstract

In the title compound, [Fe(C5H5)(C25H17Cl3N3O)], the isolated cyclo­penta­dienyl (Cp) ring is disordered over two set of sites in a 0.577 (8):0.423 (8) ratio. The dihedral angle between the other Cp ring and its attached benzene ring is 13.6 (3)°, and that between the benzene ring and the guanidine group is 64.8 (2)°. One of the N—H groups forms both an intra- and an inter­molecular N—H⋯O hydrogen bond; the other N—H group does not form any hydrogen bonds. In the crystal, pairs of the inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers.

Related literature  

For a related structure, see: Bequeath et al. (2007). For further synthetic details, see: Gul et al. (2013).graphic file with name e-69-0m486-scheme1.jpg

Experimental  

Crystal data  

  • [Fe(C5H5)(C25H17Cl3N3O)]

  • M r = 602.71

  • Monoclinic, Inline graphic

  • a = 17.674 (3) Å

  • b = 6.1352 (12) Å

  • c = 23.961 (5) Å

  • β = 95.359 (9)°

  • V = 2586.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 296 K

  • 0.32 × 0.15 × 0.14 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.757, T max = 0.882

  • 20020 measured reflections

  • 4828 independent reflections

  • 2612 reflections with I > 2σ(I)

  • R int = 0.088

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.122

  • S = 1.01

  • 4828 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813021892/hb7118sup1.cif

e-69-0m486-sup1.cif (46KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813021892/hb7118Isup2.hkl

e-69-0m486-Isup2.hkl (264.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.97 2.616 (4) 131
N1—H1⋯O1i 0.86 2.55 3.193 (5) 132

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

1. Comment

The crystal structure of p-ferrocenylaniline (Bequeath et al., 2007) has been published. As part of our studies in this area, the title compound (I, Fig. 1) has been prepared.

In (I), the benzene ring A (C11—C16), dichlorophenyl B (C18—C23/CL1/CL2) and 3-chlorobenzoyl C (O1/C24—C30/CL3) are essentailly planar with r.m.s. deviation of 0.0075, 0.0154 and 0.0512 Å, respectively. The guanidine group D (C17/N1/N2/N3) is also close to planar with r.m.s. deviation of 0.0107 Å from the mean square plane. The dihedral angle between A/B, A/C, A/D, B/C, B/D and C/D is 59.1 (9)°, 52.0 (9)°, 64.8 (2)°, 10.2 (1)°, 16.6 (2)° and 14.8 (2)°, respectively. In the crystal, the molecules are dimerized due to intra and intermolecular H-bondings of N—H···O type (Table 1, Fig. 2).

2. Experimental

The synthesis of the compound (I) was achieved in four steps. In the first step; 4- nitrophenylferrocene was made by the coupling of ferrocene with diazonium salts of nitroaniline using phase transfer catalyst (Gul et al., 2013). In the second step; this nitro phenyl ferrocene was reduced into 4-ferrocenylaniline using palladium on charcoal and hydrazine as reducing agent. In the third step, 3-chlorobenzoyl-3,4-dichlorophenyl thiourea was synthesized by the coupling of substituted aniline with thiocynates in acetone. In the fourth step; the thiourea was mixed with the 4-ferrocenyl aniline in dimethylformamide (DMF) in equimolar ratio with two equivalents of triethylamine (Et3N). The temperature was maintained below 278 K using an ice bath and one equivalent of mercuric chloride (HgCl2) was added to the reaction mixture with vigorous stirring. The ice bath was removed after 30 minutes while the stirring continued overnight. The progress of the reaction was monitored by thin layer chromatography (TLC) till the completion of reaction. Chloroform (CHCl3, 20 ml) was added to the reaction mixture and the suspension was filtered through a sintered glass funnel to remove the mercuric sulfide (HgS) residue. The solvents from filtrate were evaporated under reduced pressure and residue was re-dissolved in dichloromethane (CH2Cl2, 20 ml), washed with water (4 × 30 ml) and dried the organic phase over anhydrous magnesium sulfate (MgSO4). The solvent was evaporated and residue was purified by column chromatography to afford orange needles.

3. Refinement

The non-coordinating ferrocine ring is disordered over two set of sites with refined occupancy ratio of 0.577 (8):0.423 (8). The disordered rings were treated as regular pentagones and all disordered C-atoms were treated having equal anisotropic displacement parameters.

The H-atoms were positioned geometrically (C–H = 0.93, N—H = 0.86 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with displacement ellipsoids drawn at the 50% probability level. Only the major part of disordered ferrocene is shown for clarity.

Fig. 2.

Fig. 2.

The partial packing, which shows that molecules form dimers.

Crystal data

[Fe(C5H5)(C25H17Cl3N3O)] F(000) = 1232
Mr = 602.71 Dx = 1.548 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2612 reflections
a = 17.674 (3) Å θ = 1.7–25.5°
b = 6.1352 (12) Å µ = 0.92 mm1
c = 23.961 (5) Å T = 296 K
β = 95.359 (9)° Needle, orange
V = 2586.8 (9) Å3 0.32 × 0.15 × 0.14 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 4828 independent reflections
Radiation source: fine-focus sealed tube 2612 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.088
Detector resolution: 8.00 pixels mm-1 θmax = 25.5°, θmin = 1.7°
ω scans h = −21→21
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −7→4
Tmin = 0.757, Tmax = 0.882 l = −29→29
20020 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0365P)2 + 0.9025P] where P = (Fo2 + 2Fc2)/3
4828 reflections (Δ/σ)max < 0.001
319 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. The disordered cyclopentadienyl was refined in two groups as regular pentagons. All the disordered C-atoms were treated anisotropically having equal thermal parameters because refinement anisotropically with individual atoms or rings affoarded large ellipsoids. The sides of regular pentagons after final refinement have naearly 1.392 and 1.436 Å.Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.41250 (3) 0.69812 (11) 0.12271 (3) 0.0408 (2)
Cl1 −0.23803 (8) 0.6602 (2) 0.23753 (7) 0.0813 (7)
Cl2 −0.16675 (8) 1.1155 (2) 0.27386 (7) 0.0793 (7)
Cl3 −0.37626 (8) 0.2461 (3) 0.13798 (9) 0.1053 (9)
O1 −0.07255 (16) −0.0117 (5) 0.03837 (14) 0.0496 (12)
N1 0.03247 (19) 0.2745 (5) 0.07005 (15) 0.0437 (14)
N2 −0.0035 (2) 0.5331 (6) 0.13072 (16) 0.0462 (16)
N3 −0.09308 (18) 0.2824 (6) 0.09663 (15) 0.0370 (12)
C1A 0.4535 (7) 0.9342 (15) 0.1766 (3) 0.0560 (13) 0.577 (8)
C2A 0.4968 (5) 0.739 (2) 0.1859 (3) 0.0560 (13) 0.577 (8)
C3A 0.4464 (7) 0.5698 (15) 0.1994 (3) 0.0560 (13) 0.577 (8)
C4A 0.3719 (5) 0.6600 (18) 0.1985 (3) 0.0560 (13) 0.577 (8)
C5A 0.3763 (6) 0.8852 (18) 0.1844 (3) 0.0560 (13) 0.577 (8)
C6 0.4013 (3) 0.4461 (8) 0.0682 (2) 0.0492 (19)
C7 0.4639 (3) 0.5772 (10) 0.0581 (2) 0.059 (2)
C8 0.4372 (3) 0.7848 (9) 0.0450 (2) 0.0560 (19)
C9 0.3585 (3) 0.7876 (8) 0.04738 (19) 0.0480 (19)
C10 0.3351 (2) 0.5776 (7) 0.06239 (19) 0.0403 (17)
C11 0.2564 (2) 0.5044 (7) 0.06789 (18) 0.0358 (17)
C12 0.1957 (3) 0.6316 (7) 0.04830 (19) 0.0428 (17)
C13 0.1216 (2) 0.5604 (7) 0.04920 (19) 0.0431 (17)
C14 0.1082 (2) 0.3580 (7) 0.07057 (19) 0.0387 (17)
C15 0.1675 (3) 0.2293 (7) 0.0918 (2) 0.0483 (19)
C16 0.2414 (3) 0.3030 (8) 0.0902 (2) 0.0495 (19)
C17 −0.0234 (3) 0.3598 (7) 0.09743 (19) 0.0396 (17)
C18 −0.0475 (2) 0.6642 (7) 0.16347 (19) 0.0405 (17)
C19 −0.1152 (3) 0.6010 (7) 0.18288 (19) 0.0455 (17)
C20 −0.1515 (3) 0.7403 (8) 0.2162 (2) 0.0483 (19)
C21 −0.1209 (3) 0.9408 (8) 0.2318 (2) 0.0461 (17)
C22 −0.0541 (3) 1.0020 (8) 0.2122 (2) 0.0486 (19)
C23 −0.0169 (3) 0.8671 (7) 0.17853 (19) 0.0434 (17)
C24 −0.1123 (3) 0.0956 (7) 0.06794 (19) 0.0372 (17)
C25 −0.1913 (2) 0.0199 (7) 0.07554 (18) 0.0368 (17)
C26 −0.2414 (3) 0.1522 (7) 0.1006 (2) 0.0462 (19)
C27 −0.3140 (3) 0.0785 (9) 0.1071 (2) 0.056 (2)
C28 −0.3366 (3) −0.1253 (9) 0.0883 (2) 0.059 (2)
C29 −0.2870 (3) −0.2568 (8) 0.0639 (2) 0.058 (2)
C30 −0.2147 (3) −0.1847 (8) 0.05693 (19) 0.0478 (17)
C1B 0.4078 (9) 0.9420 (19) 0.1807 (5) 0.0560 (13) 0.423 (8)
C2B 0.4799 (7) 0.855 (3) 0.1830 (5) 0.0560 (13) 0.423 (8)
C3B 0.4749 (8) 0.636 (2) 0.1957 (5) 0.0560 (13) 0.423 (8)
C4B 0.3998 (9) 0.589 (2) 0.2011 (5) 0.0560 (13) 0.423 (8)
C5B 0.3583 (7) 0.778 (3) 0.1919 (5) 0.0560 (13) 0.423 (8)
H4A 0.32816 0.58511 0.20578 0.0669* 0.577 (8)
H5A 0.33594 0.98300 0.18091 0.0669* 0.577 (8)
H1 0.02185 0.15928 0.05042 0.0521*
H1A 0.47233 1.06954 0.16718 0.0669* 0.577 (8)
H2 0.04367 0.56882 0.13204 0.0550*
H2A 0.54884 0.72513 0.18357 0.0669* 0.577 (8)
H3A 0.45974 0.42573 0.20742 0.0669* 0.577 (8)
H13 0.08132 0.64863 0.03547 0.0515*
H15 0.15824 0.09371 0.10714 0.0580*
H16 0.28166 0.21539 0.10445 0.0592*
H19 −0.13599 0.46521 0.17341 0.0545*
H22 −0.03344 1.13779 0.22190 0.0583*
H23 0.02874 0.91081 0.16568 0.0520*
H26 −0.22644 0.29051 0.11305 0.0557*
H28 −0.38572 −0.17327 0.09215 0.0702*
H29 −0.30206 −0.39563 0.05188 0.0696*
H30 −0.18143 −0.27413 0.03961 0.0571*
H6 0.40302 0.29859 0.07720 0.0589*
H7 0.51433 0.53234 0.05996 0.0712*
H8 0.46676 0.90291 0.03603 0.0669*
H9 0.32692 0.90767 0.04028 0.0571*
H12 0.20465 0.76922 0.03406 0.0514*
H1B 0.39481 1.08645 0.17296 0.0669* 0.423 (8)
H2B 0.52408 0.93006 0.17711 0.0669* 0.423 (8)
H3B 0.51523 0.53839 0.19974 0.0669* 0.423 (8)
H4B 0.38048 0.45272 0.20958 0.0669* 0.423 (8)
H5B 0.30605 0.79144 0.19303 0.0669* 0.423 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0381 (4) 0.0473 (4) 0.0371 (4) −0.0059 (3) 0.0048 (3) −0.0050 (3)
Cl1 0.0681 (10) 0.0776 (11) 0.1053 (14) −0.0083 (8) 0.0463 (9) −0.0134 (9)
Cl2 0.0849 (11) 0.0645 (11) 0.0927 (13) 0.0146 (8) 0.0305 (9) −0.0219 (8)
Cl3 0.0615 (10) 0.0872 (13) 0.176 (2) −0.0093 (8) 0.0578 (11) −0.0286 (12)
O1 0.044 (2) 0.045 (2) 0.062 (2) −0.0092 (16) 0.0161 (18) −0.0213 (17)
N1 0.038 (2) 0.035 (2) 0.059 (3) −0.0106 (17) 0.010 (2) −0.0213 (19)
N2 0.037 (2) 0.048 (3) 0.055 (3) −0.0123 (19) 0.012 (2) −0.018 (2)
N3 0.035 (2) 0.035 (2) 0.042 (2) −0.0088 (18) 0.0083 (17) −0.0039 (19)
C1A 0.057 (2) 0.061 (3) 0.0504 (18) −0.0074 (19) 0.0073 (19) −0.0061 (18)
C2A 0.057 (2) 0.061 (3) 0.0504 (18) −0.0074 (19) 0.0073 (19) −0.0061 (18)
C3A 0.057 (2) 0.061 (3) 0.0504 (18) −0.0074 (19) 0.0073 (19) −0.0061 (18)
C4A 0.057 (2) 0.061 (3) 0.0504 (18) −0.0074 (19) 0.0073 (19) −0.0061 (18)
C5A 0.057 (2) 0.061 (3) 0.0504 (18) −0.0074 (19) 0.0073 (19) −0.0061 (18)
C6 0.041 (3) 0.048 (3) 0.059 (4) −0.003 (3) 0.007 (3) −0.019 (3)
C7 0.039 (3) 0.083 (5) 0.057 (4) −0.002 (3) 0.009 (3) −0.023 (3)
C8 0.046 (3) 0.076 (4) 0.047 (3) −0.017 (3) 0.009 (3) 0.004 (3)
C9 0.044 (3) 0.054 (4) 0.046 (3) −0.006 (2) 0.005 (2) 0.007 (2)
C10 0.038 (3) 0.043 (3) 0.040 (3) −0.002 (2) 0.005 (2) −0.005 (2)
C11 0.036 (3) 0.034 (3) 0.038 (3) −0.003 (2) 0.007 (2) −0.006 (2)
C12 0.046 (3) 0.034 (3) 0.049 (3) −0.004 (2) 0.008 (2) 0.004 (2)
C13 0.035 (3) 0.045 (3) 0.050 (3) 0.001 (2) 0.008 (2) 0.004 (2)
C14 0.037 (3) 0.038 (3) 0.042 (3) −0.012 (2) 0.008 (2) −0.010 (2)
C15 0.047 (3) 0.030 (3) 0.070 (4) −0.003 (2) 0.016 (3) 0.007 (2)
C16 0.041 (3) 0.042 (3) 0.065 (4) −0.001 (2) 0.002 (2) 0.002 (3)
C17 0.044 (3) 0.035 (3) 0.041 (3) −0.004 (2) 0.010 (2) −0.003 (2)
C18 0.040 (3) 0.041 (3) 0.041 (3) 0.004 (2) 0.006 (2) −0.003 (2)
C19 0.054 (3) 0.039 (3) 0.046 (3) −0.010 (2) 0.018 (3) −0.006 (2)
C20 0.047 (3) 0.059 (4) 0.041 (3) 0.002 (3) 0.015 (2) 0.002 (3)
C21 0.059 (3) 0.033 (3) 0.047 (3) 0.009 (2) 0.009 (3) −0.006 (2)
C22 0.063 (4) 0.038 (3) 0.045 (3) −0.006 (3) 0.006 (3) 0.000 (2)
C23 0.046 (3) 0.037 (3) 0.048 (3) −0.005 (2) 0.008 (2) 0.000 (2)
C24 0.047 (3) 0.029 (3) 0.035 (3) −0.007 (2) 0.000 (2) 0.000 (2)
C25 0.036 (3) 0.036 (3) 0.038 (3) −0.008 (2) 0.002 (2) 0.006 (2)
C26 0.042 (3) 0.034 (3) 0.064 (4) −0.006 (2) 0.013 (3) −0.005 (2)
C27 0.045 (3) 0.056 (4) 0.069 (4) −0.002 (3) 0.015 (3) −0.004 (3)
C28 0.047 (3) 0.063 (4) 0.068 (4) −0.015 (3) 0.014 (3) 0.001 (3)
C29 0.059 (3) 0.050 (4) 0.067 (4) −0.025 (3) 0.013 (3) −0.006 (3)
C30 0.053 (3) 0.047 (3) 0.044 (3) −0.013 (3) 0.008 (2) −0.007 (3)
C1B 0.057 (2) 0.061 (3) 0.0504 (18) −0.0074 (19) 0.0073 (19) −0.0061 (18)
C2B 0.057 (2) 0.061 (3) 0.0504 (18) −0.0074 (19) 0.0073 (19) −0.0061 (18)
C3B 0.057 (2) 0.061 (3) 0.0504 (18) −0.0074 (19) 0.0073 (19) −0.0061 (18)
C4B 0.057 (2) 0.061 (3) 0.0504 (18) −0.0074 (19) 0.0073 (19) −0.0061 (18)
C5B 0.057 (2) 0.061 (3) 0.0504 (18) −0.0074 (19) 0.0073 (19) −0.0061 (18)

Geometric parameters (Å, º)

Fe1—C1A 2.029 (9) C11—C16 1.382 (7)
Fe1—C2A 2.038 (8) C12—C13 1.383 (6)
Fe1—C3A 2.037 (8) C13—C14 1.372 (6)
Fe1—C4A 2.028 (8) C14—C15 1.372 (6)
Fe1—C5A 2.022 (9) C15—C16 1.386 (7)
Fe1—C6 2.022 (5) C18—C19 1.379 (6)
Fe1—C7 2.009 (5) C18—C23 1.391 (6)
Fe1—C8 2.023 (5) C19—C20 1.369 (7)
Fe1—C9 2.037 (5) C20—C21 1.381 (7)
Fe1—C10 2.034 (4) C21—C22 1.363 (7)
Fe1—C1B 2.049 (12) C22—C23 1.367 (7)
Fe1—C2B 2.028 (14) C24—C25 1.499 (6)
Fe1—C3B 2.015 (13) C25—C26 1.379 (6)
Fe1—C4B 2.026 (12) C25—C30 1.382 (6)
Fe1—C5B 2.050 (13) C26—C27 1.383 (7)
Cl1—C20 1.729 (5) C27—C28 1.376 (8)
Cl2—C21 1.724 (5) C28—C29 1.363 (7)
Cl3—C27 1.723 (6) C29—C30 1.377 (7)
O1—C24 1.234 (6) C1A—H1A 0.9300
N1—C14 1.432 (5) C1B—H1B 0.9300
N1—C17 1.342 (6) C2A—H2A 0.9300
N2—C17 1.356 (6) C2B—H2B 0.9300
N2—C18 1.408 (6) C3A—H3A 0.9300
N3—C17 1.318 (6) C3B—H3B 0.9300
N3—C24 1.363 (6) C4A—H4A 0.9300
N1—H1 0.8600 C4B—H4B 0.9300
N2—H2 0.8600 C5A—H5A 0.9300
C1A—C2A 1.428 (15) C5B—H5B 0.9300
C1A—C5A 1.426 (16) C6—H6 0.9300
C1B—C5B 1.38 (2) C7—H7 0.9300
C1B—C2B 1.38 (2) C8—H8 0.9300
C2A—C3A 1.425 (15) C9—H9 0.9300
C2B—C3B 1.38 (2) C12—H12 0.9300
C3A—C4A 1.427 (15) C13—H13 0.9300
C3B—C4B 1.38 (2) C15—H15 0.9300
C4A—C5A 1.426 (15) C16—H16 0.9300
C4B—C5B 1.38 (2) C19—H19 0.9300
C6—C7 1.407 (8) C22—H22 0.9300
C6—C10 1.417 (6) C23—H23 0.9300
C7—C8 1.384 (8) C26—H26 0.9300
C8—C9 1.398 (8) C28—H28 0.9300
C9—C10 1.410 (7) C29—H29 0.9300
C10—C11 1.479 (5) C30—H30 0.9300
C11—C12 1.373 (6)
C1A—Fe1—C2A 41.1 (4) Fe1—C6—C10 70.0 (3)
C1A—Fe1—C3A 69.2 (3) Fe1—C7—C8 70.5 (3)
C1A—Fe1—C4A 69.4 (4) Fe1—C7—C6 70.1 (3)
C1A—Fe1—C5A 41.2 (4) C6—C7—C8 108.0 (5)
C1A—Fe1—C6 164.8 (4) Fe1—C8—C9 70.4 (3)
C1A—Fe1—C7 126.4 (4) Fe1—C8—C7 69.4 (3)
C1A—Fe1—C8 107.7 (3) C7—C8—C9 108.8 (5)
C1A—Fe1—C9 118.8 (3) Fe1—C9—C10 69.6 (3)
C1A—Fe1—C10 152.7 (3) C8—C9—C10 108.4 (4)
C2A—Fe1—C3A 40.9 (4) Fe1—C9—C8 69.3 (3)
C2A—Fe1—C4A 69.2 (3) Fe1—C10—C11 128.5 (3)
C2A—Fe1—C5A 69.3 (4) C9—C10—C11 126.9 (4)
C2A—Fe1—C6 126.5 (4) C6—C10—C9 106.6 (4)
C2A—Fe1—C7 105.4 (3) C6—C10—C11 126.4 (4)
C2A—Fe1—C8 116.5 (3) Fe1—C10—C9 69.8 (3)
C2A—Fe1—C9 151.0 (3) Fe1—C10—C6 69.1 (3)
C2A—Fe1—C10 165.7 (4) C10—C11—C12 120.5 (4)
C3A—Fe1—C4A 41.1 (4) C10—C11—C16 121.5 (4)
C3A—Fe1—C5A 69.3 (4) C12—C11—C16 117.9 (4)
C3A—Fe1—C6 106.9 (3) C11—C12—C13 121.7 (4)
C3A—Fe1—C7 115.9 (3) C12—C13—C14 119.2 (4)
C3A—Fe1—C8 149.5 (4) N1—C14—C13 120.9 (3)
C3A—Fe1—C9 167.8 (4) N1—C14—C15 118.6 (4)
C3A—Fe1—C10 128.5 (3) C13—C14—C15 120.5 (4)
C4A—Fe1—C5A 41.2 (4) C14—C15—C16 119.4 (4)
C4A—Fe1—C6 118.0 (3) C11—C16—C15 121.2 (4)
C4A—Fe1—C7 150.6 (4) N1—C17—N3 125.6 (4)
C4A—Fe1—C8 168.4 (3) N1—C17—N2 115.6 (4)
C4A—Fe1—C9 130.5 (3) N2—C17—N3 118.8 (4)
C4A—Fe1—C10 108.9 (3) N2—C18—C19 124.7 (4)
C5A—Fe1—C6 152.6 (3) N2—C18—C23 115.7 (4)
C5A—Fe1—C7 165.9 (3) C19—C18—C23 119.5 (4)
C5A—Fe1—C8 129.3 (3) C18—C19—C20 119.3 (4)
C5A—Fe1—C9 109.9 (3) Cl1—C20—C21 120.5 (4)
C5A—Fe1—C10 119.2 (3) Cl1—C20—C19 118.1 (4)
C6—Fe1—C7 40.9 (2) C19—C20—C21 121.4 (5)
C6—Fe1—C8 67.9 (2) Cl2—C21—C20 121.2 (4)
C6—Fe1—C9 67.9 (2) Cl2—C21—C22 120.0 (4)
C6—Fe1—C10 40.91 (19) C20—C21—C22 118.8 (5)
C1B—Fe1—C6 171.5 (5) C21—C22—C23 121.1 (5)
C2B—Fe1—C6 147.0 (5) C18—C23—C22 119.9 (5)
C3B—Fe1—C6 115.4 (4) N3—C24—C25 113.0 (4)
C4B—Fe1—C6 109.5 (4) O1—C24—C25 119.4 (4)
C5B—Fe1—C6 132.9 (5) O1—C24—N3 127.6 (5)
C7—Fe1—C8 40.2 (2) C24—C25—C30 119.8 (4)
C7—Fe1—C9 68.0 (2) C26—C25—C30 119.3 (4)
C7—Fe1—C10 68.94 (19) C24—C25—C26 120.9 (4)
C1B—Fe1—C7 147.4 (4) C25—C26—C27 119.8 (4)
C2B—Fe1—C7 116.5 (4) Cl3—C27—C26 119.3 (4)
C3B—Fe1—C7 110.4 (4) Cl3—C27—C28 120.4 (4)
C4B—Fe1—C7 133.6 (4) C26—C27—C28 120.3 (5)
C5B—Fe1—C7 172.2 (5) C27—C28—C29 120.0 (5)
C8—Fe1—C9 40.3 (2) C28—C29—C30 120.2 (5)
C8—Fe1—C10 68.30 (19) C25—C30—C29 120.4 (4)
C1B—Fe1—C8 117.3 (4) Fe1—C1A—H1A 127.00
C2B—Fe1—C8 111.6 (4) C2A—C1A—H1A 126.00
C3B—Fe1—C8 134.5 (4) C5A—C1A—H1A 126.00
C4B—Fe1—C8 172.9 (5) Fe1—C1B—H1B 126.00
C5B—Fe1—C8 147.0 (5) C2B—C1B—H1B 126.00
C9—Fe1—C10 40.53 (19) C5B—C1B—H1B 126.00
C1B—Fe1—C9 111.0 (4) C3A—C2A—H2A 126.00
C2B—Fe1—C9 134.3 (5) Fe1—C2A—H2A 127.00
C3B—Fe1—C9 173.4 (4) C1A—C2A—H2A 126.00
C4B—Fe1—C9 145.8 (5) C1B—C2B—H2B 126.00
C5B—Fe1—C9 115.9 (4) Fe1—C2B—H2B 125.00
C1B—Fe1—C10 132.9 (4) C3B—C2B—H2B 126.00
C2B—Fe1—C10 172.0 (5) C4A—C3A—H3A 126.00
C3B—Fe1—C10 145.6 (4) Fe1—C3A—H3A 127.00
C4B—Fe1—C10 114.4 (4) C2A—C3A—H3A 126.00
C5B—Fe1—C10 109.1 (4) C2B—C3B—H3B 126.00
C1B—Fe1—C2B 39.5 (6) Fe1—C3B—H3B 124.00
C1B—Fe1—C3B 66.6 (5) C4B—C3B—H3B 126.00
C1B—Fe1—C4B 66.3 (5) Fe1—C4A—H4A 127.00
C1B—Fe1—C5B 39.2 (6) C5A—C4A—H4A 126.00
C2B—Fe1—C3B 40.0 (6) C3A—C4A—H4A 126.00
C2B—Fe1—C4B 66.7 (6) C3B—C4B—H4B 126.00
C2B—Fe1—C5B 66.3 (5) C5B—C4B—H4B 126.00
C3B—Fe1—C4B 39.8 (6) Fe1—C4B—H4B 125.00
C3B—Fe1—C5B 66.6 (5) Fe1—C5A—H5A 126.00
C4B—Fe1—C5B 39.5 (6) C4A—C5A—H5A 126.00
C14—N1—C17 125.9 (4) C1A—C5A—H5A 126.00
C17—N2—C18 130.5 (4) C1B—C5B—H5B 126.00
C17—N3—C24 119.9 (4) C4B—C5B—H5B 126.00
C14—N1—H1 117.00 Fe1—C5B—H5B 126.00
C17—N1—H1 117.00 Fe1—C6—H6 127.00
C17—N2—H2 115.00 C7—C6—H6 126.00
C18—N2—H2 115.00 C10—C6—H6 126.00
Fe1—C1A—C2A 69.8 (5) C8—C7—H7 126.00
Fe1—C1A—C5A 69.1 (5) Fe1—C7—H7 125.00
C2A—C1A—C5A 108.0 (9) C6—C7—H7 126.00
Fe1—C1B—C5B 70.4 (8) C9—C8—H8 126.00
C2B—C1B—C5B 108.1 (13) Fe1—C8—H8 126.00
Fe1—C1B—C2B 69.4 (8) C7—C8—H8 126.00
Fe1—C2A—C3A 69.5 (5) Fe1—C9—H9 127.00
C1A—C2A—C3A 108.0 (9) C8—C9—H9 126.00
Fe1—C2A—C1A 69.1 (5) C10—C9—H9 126.00
C1B—C2B—C3B 107.9 (12) C11—C12—H12 119.00
Fe1—C2B—C1B 71.1 (7) C13—C12—H12 119.00
Fe1—C2B—C3B 69.5 (8) C14—C13—H13 120.00
Fe1—C3A—C4A 69.1 (5) C12—C13—H13 120.00
C2A—C3A—C4A 108.0 (9) C16—C15—H15 120.00
Fe1—C3A—C2A 69.6 (4) C14—C15—H15 120.00
Fe1—C3B—C4B 70.5 (7) C11—C16—H16 119.00
Fe1—C3B—C2B 70.5 (7) C15—C16—H16 119.00
C2B—C3B—C4B 107.8 (12) C18—C19—H19 120.00
C3A—C4A—C5A 108.0 (8) C20—C19—H19 120.00
Fe1—C4A—C3A 69.8 (4) C21—C22—H22 120.00
Fe1—C4A—C5A 69.2 (5) C23—C22—H22 119.00
Fe1—C4B—C5B 71.2 (7) C18—C23—H23 120.00
Fe1—C4B—C3B 69.7 (7) C22—C23—H23 120.00
C3B—C4B—C5B 108.2 (12) C25—C26—H26 120.00
Fe1—C5A—C1A 69.6 (5) C27—C26—H26 120.00
C1A—C5A—C4A 108.0 (9) C27—C28—H28 120.00
Fe1—C5A—C4A 69.6 (5) C29—C28—H28 120.00
C1B—C5B—C4B 107.9 (12) C28—C29—H29 120.00
Fe1—C5B—C4B 69.3 (8) C30—C29—H29 120.00
Fe1—C5B—C1B 70.3 (7) C25—C30—H30 120.00
Fe1—C6—C7 69.1 (3) C29—C30—H30 120.00
C7—C6—C10 108.2 (4)
C2A—Fe1—C1A—C5A −119.5 (7) C5A—Fe1—C9—C10 −112.0 (4)
C3A—Fe1—C1A—C2A 37.5 (6) C6—Fe1—C9—C8 −81.3 (3)
C3A—Fe1—C1A—C5A −82.0 (6) C6—Fe1—C9—C10 38.7 (3)
C4A—Fe1—C1A—C2A 81.6 (5) C7—Fe1—C9—C8 −37.1 (3)
C4A—Fe1—C1A—C5A −37.9 (5) C7—Fe1—C9—C10 82.9 (3)
C5A—Fe1—C1A—C2A 119.5 (7) C8—Fe1—C9—C10 120.0 (4)
C7—Fe1—C1A—C2A −69.9 (6) C10—Fe1—C9—C8 −120.0 (4)
C7—Fe1—C1A—C5A 170.6 (5) C1A—Fe1—C10—C6 167.4 (6)
C8—Fe1—C1A—C2A −110.3 (5) C1A—Fe1—C10—C9 49.6 (7)
C8—Fe1—C1A—C5A 130.3 (5) C1A—Fe1—C10—C11 −72.2 (8)
C9—Fe1—C1A—C2A −152.7 (4) C3A—Fe1—C10—C6 −69.4 (5)
C9—Fe1—C1A—C5A 87.9 (5) C3A—Fe1—C10—C9 172.8 (5)
C10—Fe1—C1A—C2A 173.0 (5) C3A—Fe1—C10—C11 51.0 (6)
C10—Fe1—C1A—C5A 53.5 (8) C4A—Fe1—C10—C6 −111.2 (4)
C1A—Fe1—C2A—C3A 119.8 (8) C4A—Fe1—C10—C9 131.0 (4)
C3A—Fe1—C2A—C1A −119.8 (8) C4A—Fe1—C10—C11 9.2 (5)
C4A—Fe1—C2A—C1A −82.1 (6) C5A—Fe1—C10—C6 −155.2 (4)
C4A—Fe1—C2A—C3A 37.6 (6) C5A—Fe1—C10—C9 87.0 (4)
C5A—Fe1—C2A—C1A −37.9 (6) C5A—Fe1—C10—C11 −34.8 (5)
C5A—Fe1—C2A—C3A 81.9 (6) C6—Fe1—C10—C9 −117.8 (4)
C6—Fe1—C2A—C1A 167.9 (5) C6—Fe1—C10—C11 120.5 (5)
C6—Fe1—C2A—C3A −72.4 (6) C7—Fe1—C10—C6 37.5 (3)
C7—Fe1—C2A—C1A 128.4 (5) C7—Fe1—C10—C9 −80.3 (3)
C7—Fe1—C2A—C3A −111.9 (6) C7—Fe1—C10—C11 158.0 (4)
C8—Fe1—C2A—C1A 86.8 (6) C8—Fe1—C10—C6 80.8 (3)
C8—Fe1—C2A—C3A −153.4 (5) C8—Fe1—C10—C9 −37.0 (3)
C9—Fe1—C2A—C1A 56.1 (8) C8—Fe1—C10—C11 −158.8 (4)
C9—Fe1—C2A—C3A 175.9 (6) C9—Fe1—C10—C6 117.8 (4)
C1A—Fe1—C3A—C2A −37.6 (6) C9—Fe1—C10—C11 −121.7 (5)
C1A—Fe1—C3A—C4A 82.1 (6) C17—N1—C14—C13 −63.4 (6)
C2A—Fe1—C3A—C4A 119.7 (8) C17—N1—C14—C15 118.1 (5)
C4A—Fe1—C3A—C2A −119.7 (8) C14—N1—C17—N2 −3.9 (6)
C5A—Fe1—C3A—C2A −81.9 (6) C14—N1—C17—N3 179.8 (4)
C5A—Fe1—C3A—C4A 37.9 (6) C18—N2—C17—N1 177.8 (4)
C6—Fe1—C3A—C2A 126.8 (5) C18—N2—C17—N3 −5.7 (7)
C6—Fe1—C3A—C4A −113.5 (5) C17—N2—C18—C19 22.5 (7)
C7—Fe1—C3A—C2A 83.8 (6) C17—N2—C18—C23 −160.5 (4)
C7—Fe1—C3A—C4A −156.5 (5) C24—N3—C17—N1 2.7 (7)
C8—Fe1—C3A—C2A 52.0 (8) C24—N3—C17—N2 −173.5 (4)
C8—Fe1—C3A—C4A 171.7 (6) C17—N3—C24—O1 −4.5 (7)
C10—Fe1—C3A—C2A 166.6 (5) C17—N3—C24—C25 174.9 (4)
C10—Fe1—C3A—C4A −73.6 (6) Fe1—C1A—C2A—C3A −58.8 (5)
C1A—Fe1—C4A—C3A −81.6 (6) C5A—C1A—C2A—Fe1 58.8 (5)
C1A—Fe1—C4A—C5A 37.9 (6) C5A—C1A—C2A—C3A 0.0 (8)
C2A—Fe1—C4A—C3A −37.5 (6) Fe1—C1A—C5A—C4A 59.2 (5)
C2A—Fe1—C4A—C5A 82.0 (6) C2A—C1A—C5A—Fe1 −59.2 (5)
C3A—Fe1—C4A—C5A 119.5 (8) C2A—C1A—C5A—C4A 0.0 (8)
C5A—Fe1—C4A—C3A −119.5 (8) Fe1—C2A—C3A—C4A −58.6 (5)
C6—Fe1—C4A—C3A 83.7 (6) C1A—C2A—C3A—Fe1 58.5 (5)
C6—Fe1—C4A—C5A −156.8 (5) C1A—C2A—C3A—C4A 0.0 (8)
C7—Fe1—C4A—C3A 47.0 (9) Fe1—C3A—C4A—C5A −58.8 (5)
C7—Fe1—C4A—C5A 166.5 (6) C2A—C3A—C4A—Fe1 58.9 (5)
C9—Fe1—C4A—C3A 167.6 (5) C2A—C3A—C4A—C5A 0.0 (8)
C9—Fe1—C4A—C5A −72.9 (6) Fe1—C4A—C5A—C1A −59.2 (5)
C10—Fe1—C4A—C3A 127.5 (5) C3A—C4A—C5A—Fe1 59.2 (5)
C10—Fe1—C4A—C5A −113.1 (5) C3A—C4A—C5A—C1A 0.0 (8)
C1A—Fe1—C5A—C4A −119.3 (7) Fe1—C6—C7—C8 −60.6 (4)
C2A—Fe1—C5A—C1A 37.7 (5) C10—C6—C7—Fe1 59.3 (3)
C2A—Fe1—C5A—C4A −81.6 (6) C10—C6—C7—C8 −1.3 (6)
C3A—Fe1—C5A—C1A 81.6 (6) Fe1—C6—C10—C9 60.1 (3)
C3A—Fe1—C5A—C4A −37.7 (6) Fe1—C6—C10—C11 −123.1 (5)
C4A—Fe1—C5A—C1A 119.3 (7) C7—C6—C10—Fe1 −58.7 (3)
C6—Fe1—C5A—C1A 168.4 (5) C7—C6—C10—C9 1.4 (5)
C6—Fe1—C5A—C4A 49.1 (9) C7—C6—C10—C11 178.2 (4)
C8—Fe1—C5A—C1A −70.1 (6) Fe1—C7—C8—C9 −59.6 (3)
C8—Fe1—C5A—C4A 170.6 (4) C6—C7—C8—Fe1 60.3 (3)
C9—Fe1—C5A—C1A −111.3 (5) C6—C7—C8—C9 0.8 (6)
C9—Fe1—C5A—C4A 129.3 (5) Fe1—C8—C9—C10 −58.8 (3)
C10—Fe1—C5A—C1A −155.0 (4) C7—C8—C9—Fe1 58.9 (3)
C10—Fe1—C5A—C4A 85.7 (5) C7—C8—C9—C10 0.1 (6)
C2A—Fe1—C6—C7 −69.6 (5) Fe1—C9—C10—C6 −59.6 (3)
C2A—Fe1—C6—C10 170.7 (4) Fe1—C9—C10—C11 123.6 (5)
C3A—Fe1—C6—C7 −110.3 (5) C8—C9—C10—Fe1 58.6 (3)
C3A—Fe1—C6—C10 130.0 (4) C8—C9—C10—C6 −0.9 (5)
C4A—Fe1—C6—C7 −153.3 (4) C8—C9—C10—C11 −177.7 (4)
C4A—Fe1—C6—C10 87.0 (4) Fe1—C10—C11—C12 104.8 (5)
C5A—Fe1—C6—C7 172.3 (6) Fe1—C10—C11—C16 −78.4 (5)
C5A—Fe1—C6—C10 52.6 (7) C6—C10—C11—C12 −164.1 (5)
C7—Fe1—C6—C10 −119.7 (4) C6—C10—C11—C16 12.7 (7)
C8—Fe1—C6—C7 37.8 (3) C9—C10—C11—C12 12.1 (7)
C8—Fe1—C6—C10 −82.0 (3) C9—C10—C11—C16 −171.1 (5)
C9—Fe1—C6—C7 81.4 (3) C10—C11—C12—C13 175.2 (4)
C9—Fe1—C6—C10 −38.3 (3) C16—C11—C12—C13 −1.7 (7)
C10—Fe1—C6—C7 119.7 (4) C10—C11—C16—C15 −175.6 (4)
C1A—Fe1—C7—C6 168.4 (4) C12—C11—C16—C15 1.3 (7)
C1A—Fe1—C7—C8 −73.1 (5) C11—C12—C13—C14 0.5 (7)
C2A—Fe1—C7—C6 128.6 (4) C12—C13—C14—N1 −177.3 (4)
C2A—Fe1—C7—C8 −113.0 (4) C12—C13—C14—C15 1.3 (7)
C3A—Fe1—C7—C6 86.1 (4) N1—C14—C15—C16 176.9 (4)
C3A—Fe1—C7—C8 −155.5 (4) C13—C14—C15—C16 −1.7 (7)
C4A—Fe1—C7—C6 53.8 (7) C14—C15—C16—C11 0.4 (7)
C4A—Fe1—C7—C8 172.2 (6) N2—C18—C19—C20 177.6 (4)
C6—Fe1—C7—C8 118.5 (4) C23—C18—C19—C20 0.7 (7)
C8—Fe1—C7—C6 −118.5 (4) N2—C18—C23—C22 −177.4 (4)
C9—Fe1—C7—C6 −81.3 (3) C19—C18—C23—C22 −0.2 (7)
C9—Fe1—C7—C8 37.2 (3) C18—C19—C20—Cl1 177.5 (4)
C10—Fe1—C7—C6 −37.6 (3) C18—C19—C20—C21 −1.5 (7)
C10—Fe1—C7—C8 80.9 (3) Cl1—C20—C21—Cl2 1.1 (6)
C1A—Fe1—C8—C7 126.1 (4) Cl1—C20—C21—C22 −177.3 (4)
C1A—Fe1—C8—C9 −114.0 (4) C19—C20—C21—Cl2 −179.9 (4)
C2A—Fe1—C8—C7 82.6 (5) C19—C20—C21—C22 1.7 (7)
C2A—Fe1—C8—C9 −157.5 (4) Cl2—C21—C22—C23 −179.6 (4)
C3A—Fe1—C8—C7 47.4 (7) C20—C21—C22—C23 −1.2 (7)
C3A—Fe1—C8—C9 167.3 (6) C21—C22—C23—C18 0.4 (7)
C5A—Fe1—C8—C7 166.7 (5) O1—C24—C25—C26 −169.5 (4)
C5A—Fe1—C8—C9 −73.4 (5) O1—C24—C25—C30 10.1 (6)
C6—Fe1—C8—C7 −38.4 (3) N3—C24—C25—C26 11.1 (6)
C6—Fe1—C8—C9 81.5 (3) N3—C24—C25—C30 −169.3 (4)
C7—Fe1—C8—C9 119.9 (4) C24—C25—C26—C27 180.0 (4)
C9—Fe1—C8—C7 −119.9 (4) C30—C25—C26—C27 0.4 (7)
C10—Fe1—C8—C7 −82.7 (3) C24—C25—C30—C29 179.7 (4)
C10—Fe1—C8—C9 37.3 (3) C26—C25—C30—C29 −0.7 (7)
C1A—Fe1—C9—C8 83.5 (5) C25—C26—C27—Cl3 −179.5 (4)
C1A—Fe1—C9—C10 −156.5 (4) C25—C26—C27—C28 −0.5 (7)
C2A—Fe1—C9—C8 45.0 (7) Cl3—C27—C28—C29 180.0 (4)
C2A—Fe1—C9—C10 165.0 (6) C26—C27—C28—C29 1.0 (7)
C4A—Fe1—C9—C8 170.1 (5) C27—C28—C29—C30 −1.3 (7)
C4A—Fe1—C9—C10 −69.9 (5) C28—C29—C30—C25 1.2 (7)
C5A—Fe1—C9—C8 128.0 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.86 1.97 2.616 (4) 131
N1—H1···O1i 0.86 2.55 3.193 (5) 132

Symmetry code: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7118).

References

  1. Bequeath, D. M., Zeller, M., Karnofel, W. J., Hoch, C. L. & Curtin, L. S. (2007). Acta Cryst. E63, m1866–m1867.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gul, R., Khan, A., Badshah, A., Rauf, M. K., Shah, A., Rahman, Z., Bano, A., Naz, R. & Tahir, M. N. (2013). J. Coord. Chem. 66, 1959–1973.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813021892/hb7118sup1.cif

e-69-0m486-sup1.cif (46KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813021892/hb7118Isup2.hkl

e-69-0m486-Isup2.hkl (264.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES