Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 14;69(Pt 9):o1425–o1426. doi: 10.1107/S1600536813022204

3-Amino-1H-pyrazol-2-ium tri­fluoro­acetate

T S Yamuna a, Jerry P Jasinski b,*, Derek R Scadova b, H S Yathirajan a, Manpreet Kaur a
PMCID: PMC3884487  PMID: 24427058

Abstract

The asymmetric unit of the title salt, C3H6N3 +·C2F3O2 , contains two independent 3-amino­pyrazolium cations and two independent tri­fluoro­acetate anions. The F atoms of both anions were refined as disordered over two sets of sites, with common occupancy ratios of 0.639 (12):0.361 (12). In the crystal, the cations and anions are linked via N—H⋯O hydrogen bonds, forming chains along [100] and [010].

Related literature  

For biological properties of pyrazole derivatives, see: Hall et al. (2008); Isloor et al. (2009); Patel et al. (2010); Samshuddin et al. (2010). For the chemistry of amino­pyrazoles, see: Giuseppe et al. (1991). For the medicinal activity of pyrazoles, see: Vinogradov et al. (1994). For related structures, see: Dobson & Gerkin (1998); Foces-Foces et al. (1996); Hemamalini & Fun (2010); Thanigaimani et al. (2012). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-69-o1425-scheme1.jpg

Experimental  

Crystal data  

  • C3H6N3 +·C2F3O2

  • M r = 197.13

  • Monoclinic, Inline graphic

  • a = 10.9292 (8) Å

  • b = 10.9332 (6) Å

  • c = 13.7002 (13) Å

  • β = 107.939 (9)°

  • V = 1557.5 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.58 mm−1

  • T = 173 K

  • 0.16 × 0.14 × 0.06 mm

Data collection  

  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) T min = 0.662, T max = 1.000

  • 9227 measured reflections

  • 3031 independent reflections

  • 2343 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.136

  • S = 1.05

  • 3031 reflections

  • 338 parameters

  • All H-atom parameters refined

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813022204/lh5637sup1.cif

e-69-o1425-sup1.cif (27.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813022204/lh5637Isup2.hkl

e-69-o1425-Isup2.hkl (166.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813022204/lh5637Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O1A i 0.85 (3) 2.28 (3) 2.936 (3) 134 (2)
N1A—H1AB⋯O2A ii 0.91 (3) 1.99 (3) 2.884 (3) 169 (3)
N2A—H2AA⋯O1A ii 0.94 (3) 1.85 (3) 2.778 (2) 171 (3)
N3A—H3AA⋯O2A 0.93 (3) 1.78 (3) 2.705 (2) 172 (3)
N1B—H1BA⋯O2B iii 0.84 (3) 2.18 (3) 2.962 (2) 153 (2)
N1B—H1BB⋯O2B iv 0.90 (3) 2.03 (3) 2.929 (3) 173 (2)
N2B—H2BA⋯O1B iv 0.95 (3) 1.81 (3) 2.756 (2) 174 (2)
N3B—H3BA⋯O1B v 0.91 (3) 1.82 (3) 2.728 (2) 171 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani’s Science College for Women, Mysore, for giving permission to do research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

1. Comment

Pyrazoles are an important class of heterocyclic compounds and many pyrazole derivatives are reported to have a broad spectrum of biological properties, e.g. antibacterial and anti-inflammatory activities (Patel et al., 2010), anticancer (Hall et al., 2008), antimicrobial (Samshuddin et al., 2010), anti-inflammatory, antidepressant, anticonvulsant and anti-HIV properties (Isloor et al., 2009). The chemistry of aminopyrazoles has been extensively investigated in the past (Giuseppe et al., 1991). The considerable biological and medicinal activities of pyrazoles (Vinogradov et al., 1994) for which aminopyrazoles are preferred precursors, have stimulated our investigations.

The crystal structures of some related compounds, viz., 3-aminopyrazole-4-carboxylic acid (Dobson & Gerkin, 1998), 4-(3,5-dimethylpyrazol-1-yl)benzoic acid trifluoroacetate (Foces-Foces et al., 1996), 2-amino-5-methylpyridinium trifluoroacetate (Thanigaimani et al., 2012) and 2-amino-5-chloropyridinium trifluoroacetate (Hemamalini & Fun, 2010) have been reported. In view of the importance of the title compound this paper reports its crystal structure.

The asymmetric unit of the title compound consists of two crystallographically independent 3-aminopyrazolium cations (A and B) and two trifluoroacetate anions (A and B) (Fig. 1). Each 3-aminopyrazolium cation is planar, with a maximum deviation of 0.0006 (2) Å for atom N2A in cation A and 0.0005 (2) Å for atom N2B in cation B. In the cations, atoms N3A and N3B are protonated. The F atoms of both anions are disordered over two sets of positions, with occupancy ratios of 0.639 (12):0.361 (12). Bond lengths and are normal (Allen et al., 1987).

In the crystal packing (Fig. 2), the A/B type 3-aminopyrazolium cations interact with the carboxylate groups of the A/B type trifluoroacetate anions through N—H···O hydrogen bonds, forming R22(8), R24(8), R24(10), R44(16) and R44(18) (Bernstein et al., 1995) ring motifs.

2. Experimental

A mixture of commercially available 3-aminopyrazole and trifluoroacetic acid (1:3 v/v) were stirred for 15 minutes at room temperature. X-ray quality crystals were formed on slow evaporation. (m.p.: 463-468 K).

3. Refinement

All H atoms were located in a difference Fourier map and refined independently with isotropic displacement parameters [N—H = 0.84 (3)–0.95 (3) Å and C—H = 0.89 (3)–0.96 (3)Å].

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. All disorder components are shown.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing the hydrogen bonds (dashed lines) forming chains along [100] and [010]. H atoms not involved in hydrogen bonding and the minor component of disorder have been removed for clarity.

Crystal data

C3H6N3+·C2F3O2 F(000) = 800
Mr = 197.13 Dx = 1.681 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.5418 Å
a = 10.9292 (8) Å Cell parameters from 2544 reflections
b = 10.9332 (6) Å θ = 3.4–72.4°
c = 13.7002 (13) Å µ = 1.58 mm1
β = 107.939 (9)° T = 173 K
V = 1557.5 (2) Å3 Irregular, colourless
Z = 8 0.16 × 0.14 × 0.06 mm

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer 3031 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2343 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
Detector resolution: 16.0416 pixels mm-1 θmax = 72.5°, θmin = 4.6°
ω scans h = −13→13
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) k = −13→9
Tmin = 0.662, Tmax = 1.000 l = −15→16
9227 measured reflections

Refinement

Refinement on F2 Primary atom site location: inferred from neighbouring sites
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 All H-atom parameters refined
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0697P)2 + 0.4559P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
3031 reflections Δρmax = 0.24 e Å3
338 parameters Δρmin = −0.23 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1A 0.56299 (19) 0.93721 (18) 0.25897 (17) 0.0384 (5)
C2A 0.4240 (2) 0.7896 (2) 0.25222 (19) 0.0453 (5)
H2A 0.351 (2) 0.741 (2) 0.2498 (18) 0.050 (7)*
C3A 0.4396 (2) 0.9121 (2) 0.26406 (18) 0.0428 (5)
H3A 0.379 (2) 0.968 (2) 0.2737 (18) 0.050 (7)*
N1A 0.6272 (2) 1.04305 (18) 0.2644 (2) 0.0588 (6)
H1AA 0.593 (3) 1.108 (3) 0.278 (2) 0.057 (8)*
H1AB 0.713 (3) 1.041 (3) 0.272 (2) 0.064 (8)*
N2A 0.61502 (17) 0.83064 (15) 0.24439 (15) 0.0396 (4)
H2AA 0.697 (3) 0.815 (3) 0.240 (2) 0.062 (8)*
N3A 0.52875 (17) 0.73971 (17) 0.23916 (16) 0.0440 (5)
H3AA 0.549 (3) 0.657 (3) 0.236 (2) 0.067 (8)*
C1B 0.28710 (18) 0.17323 (18) 0.48905 (16) 0.0351 (4)
C2B 0.1618 (2) 0.3114 (2) 0.5268 (2) 0.0451 (5)
H2B 0.122 (2) 0.382 (2) 0.5441 (19) 0.050 (7)*
C3B 0.2771 (2) 0.2975 (2) 0.50783 (18) 0.0410 (5)
H3B 0.336 (3) 0.354 (3) 0.508 (2) 0.061 (8)*
N1B 0.37852 (18) 0.11030 (18) 0.46300 (18) 0.0472 (5)
H1BA 0.450 (3) 0.147 (2) 0.476 (2) 0.053 (7)*
H1BB 0.375 (3) 0.029 (3) 0.472 (2) 0.060 (8)*
N2B 0.18060 (15) 0.11865 (16) 0.49623 (14) 0.0372 (4)
H2BA 0.164 (2) 0.034 (3) 0.4985 (19) 0.058 (8)*
N3B 0.10420 (17) 0.20371 (16) 0.52047 (16) 0.0431 (4)
H3BA 0.024 (3) 0.184 (2) 0.5222 (19) 0.051 (7)*
C4A 0.58112 (19) 0.40965 (18) 0.26078 (18) 0.0409 (5)
C5A 0.4574 (2) 0.4142 (2) 0.29303 (18) 0.0422 (5)
F1A1 0.4274 (7) 0.3086 (7) 0.3249 (5) 0.0619 (13) 0.639 (12)
F1A2 0.3945 (12) 0.3073 (14) 0.2818 (12) 0.075 (3) 0.361 (12)
F2A1 0.3589 (8) 0.4515 (8) 0.2173 (6) 0.0681 (17) 0.639 (12)
F2A2 0.3687 (14) 0.4932 (10) 0.2363 (13) 0.067 (3) 0.361 (12)
F3A1 0.4720 (7) 0.4955 (5) 0.3687 (6) 0.0651 (13) 0.639 (12)
F3A2 0.4800 (14) 0.4446 (15) 0.3885 (10) 0.089 (4) 0.361 (12)
O1A 0.63921 (15) 0.31128 (13) 0.27322 (15) 0.0526 (5)
O2A 0.60816 (16) 0.50747 (14) 0.22685 (17) 0.0622 (5)
C4B 0.23375 (19) 0.8115 (2) 0.48329 (18) 0.0413 (5)
C5B 0.2075 (2) 0.6750 (2) 0.45833 (19) 0.0447 (5)
F1B1 0.1329 (4) 0.6255 (3) 0.5045 (6) 0.077 (2) 0.639 (12)
F1B2 0.2028 (16) 0.6103 (8) 0.5367 (6) 0.101 (4) 0.361 (12)
F2B1 0.3162 (3) 0.6097 (3) 0.4866 (5) 0.0669 (13) 0.639 (12)
F2B2 0.2821 (9) 0.6190 (6) 0.4167 (12) 0.089 (4) 0.361 (12)
F3B1 0.1581 (7) 0.6629 (3) 0.3597 (3) 0.090 (2) 0.639 (12)
F3B2 0.0855 (7) 0.6537 (6) 0.3935 (8) 0.079 (3) 0.361 (12)
O1B 0.13834 (14) 0.86991 (13) 0.49109 (15) 0.0530 (5)
O2B 0.34134 (14) 0.84860 (15) 0.48973 (15) 0.0538 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0374 (10) 0.0299 (10) 0.0508 (12) 0.0050 (8) 0.0177 (9) 0.0021 (8)
C2A 0.0330 (11) 0.0431 (13) 0.0629 (15) −0.0022 (9) 0.0194 (10) 0.0043 (10)
C3A 0.0351 (10) 0.0382 (12) 0.0595 (14) 0.0072 (9) 0.0208 (10) 0.0022 (10)
N1A 0.0434 (11) 0.0275 (10) 0.113 (2) 0.0008 (8) 0.0358 (12) −0.0044 (10)
N2A 0.0340 (9) 0.0284 (9) 0.0624 (12) 0.0006 (7) 0.0238 (8) 0.0023 (8)
N3A 0.0385 (9) 0.0281 (9) 0.0701 (13) −0.0011 (7) 0.0239 (9) 0.0017 (8)
C1B 0.0265 (9) 0.0353 (11) 0.0453 (11) −0.0029 (7) 0.0138 (8) 0.0041 (8)
C2B 0.0464 (12) 0.0299 (11) 0.0663 (15) −0.0029 (9) 0.0280 (11) −0.0050 (10)
C3B 0.0344 (10) 0.0341 (11) 0.0570 (13) −0.0096 (8) 0.0178 (9) −0.0010 (9)
N1B 0.0302 (9) 0.0350 (10) 0.0823 (15) −0.0018 (8) 0.0259 (9) 0.0024 (9)
N2B 0.0288 (8) 0.0279 (9) 0.0588 (11) −0.0013 (6) 0.0192 (7) −0.0009 (7)
N3B 0.0345 (9) 0.0330 (9) 0.0709 (13) −0.0024 (7) 0.0298 (9) −0.0039 (8)
C4A 0.0354 (10) 0.0301 (11) 0.0639 (14) −0.0021 (8) 0.0252 (10) −0.0036 (9)
C5A 0.0363 (11) 0.0397 (12) 0.0549 (13) −0.0014 (9) 0.0201 (10) 0.0010 (9)
F1A1 0.053 (3) 0.0486 (17) 0.099 (4) −0.004 (2) 0.045 (3) 0.015 (3)
F1A2 0.046 (5) 0.054 (3) 0.135 (10) −0.010 (4) 0.044 (5) 0.013 (7)
F2A1 0.0376 (17) 0.094 (5) 0.071 (2) 0.011 (3) 0.0149 (16) 0.019 (3)
F2A2 0.038 (4) 0.058 (5) 0.113 (8) 0.009 (4) 0.035 (5) 0.018 (4)
F3A1 0.061 (2) 0.067 (3) 0.079 (4) −0.001 (2) 0.039 (2) −0.027 (2)
F3A2 0.070 (4) 0.137 (11) 0.069 (5) −0.006 (7) 0.034 (3) −0.015 (7)
O1A 0.0452 (9) 0.0277 (8) 0.0968 (13) 0.0022 (6) 0.0394 (9) 0.0030 (7)
O2A 0.0526 (10) 0.0302 (8) 0.1222 (16) 0.0029 (7) 0.0538 (11) 0.0110 (9)
C4B 0.0309 (10) 0.0341 (11) 0.0634 (14) 0.0007 (8) 0.0211 (10) 0.0020 (9)
C5B 0.0379 (11) 0.0350 (12) 0.0636 (15) 0.0034 (9) 0.0193 (10) −0.0015 (10)
F1B1 0.071 (2) 0.0309 (14) 0.151 (6) −0.0066 (15) 0.068 (3) 0.005 (2)
F1B2 0.174 (11) 0.053 (4) 0.069 (4) −0.026 (6) 0.025 (6) 0.011 (3)
F2B1 0.0527 (15) 0.0417 (14) 0.107 (3) 0.0162 (11) 0.0249 (19) −0.0071 (17)
F2B2 0.072 (6) 0.059 (3) 0.163 (11) −0.002 (3) 0.076 (7) −0.038 (5)
F3B1 0.113 (5) 0.0658 (19) 0.069 (2) −0.017 (2) −0.003 (2) −0.0142 (14)
F3B2 0.050 (3) 0.060 (3) 0.108 (6) 0.002 (2) −0.003 (3) −0.033 (3)
O1B 0.0343 (8) 0.0290 (8) 0.1059 (14) −0.0020 (6) 0.0366 (8) −0.0059 (8)
O2B 0.0310 (8) 0.0434 (9) 0.0937 (13) −0.0013 (6) 0.0290 (8) 0.0035 (8)

Geometric parameters (Å, º)

C1A—C3A 1.399 (3) N2B—H2BA 0.95 (3)
C1A—N1A 1.344 (3) N2B—N3B 1.358 (2)
C1A—N2A 1.338 (3) N3B—H3BA 0.91 (3)
C2A—H2A 0.96 (3) C4A—C5A 1.547 (3)
C2A—C3A 1.354 (3) C4A—O1A 1.234 (2)
C2A—N3A 1.329 (3) C4A—O2A 1.238 (3)
C3A—H3A 0.94 (3) C5A—F1A1 1.312 (8)
N1A—H1AA 0.85 (3) C5A—F1A2 1.341 (14)
N1A—H1AB 0.91 (3) C5A—F2A1 1.309 (8)
N2A—H2AA 0.94 (3) C5A—F2A2 1.351 (15)
N2A—N3A 1.357 (2) C5A—F3A1 1.337 (7)
N3A—H3AA 0.93 (3) C5A—F3A2 1.298 (14)
C1B—C3B 1.393 (3) C4B—C5B 1.538 (3)
C1B—N1B 1.349 (3) C4B—O1B 1.255 (2)
C1B—N2B 1.338 (2) C4B—O2B 1.221 (2)
C2B—H2B 0.95 (3) C5B—F1B1 1.295 (5)
C2B—C3B 1.372 (3) C5B—F1B2 1.299 (8)
C2B—N3B 1.325 (3) C5B—F2B1 1.337 (4)
C3B—H3B 0.89 (3) C5B—F2B2 1.284 (6)
N1B—H1BA 0.84 (3) C5B—F3B1 1.298 (4)
N1B—H1BB 0.90 (3) C5B—F3B2 1.375 (6)
N1A—C1A—C3A 131.41 (19) C2B—N3B—N2B 108.01 (17)
N2A—C1A—C3A 107.28 (18) C2B—N3B—H3BA 130.5 (16)
N2A—C1A—N1A 121.30 (19) N2B—N3B—H3BA 121.1 (16)
C3A—C2A—H2A 129.0 (15) O1A—C4A—C5A 116.52 (18)
N3A—C2A—H2A 121.0 (15) O1A—C4A—O2A 129.27 (19)
N3A—C2A—C3A 109.9 (2) O2A—C4A—C5A 114.21 (17)
C1A—C3A—H3A 127.7 (15) F1A1—C5A—C4A 113.4 (4)
C2A—C3A—C1A 106.02 (19) F1A1—C5A—F3A1 108.0 (4)
C2A—C3A—H3A 126.3 (15) F1A2—C5A—C4A 113.7 (7)
C1A—N1A—H1AA 118.4 (19) F1A2—C5A—F2A2 103.9 (7)
C1A—N1A—H1AB 119.1 (18) F2A1—C5A—C4A 111.2 (4)
H1AA—N1A—H1AB 120 (3) F2A1—C5A—F1A1 108.0 (4)
C1A—N2A—H2AA 128.8 (18) F2A1—C5A—F3A1 106.2 (4)
C1A—N2A—N3A 109.00 (17) F2A2—C5A—C4A 113.1 (7)
N3A—N2A—H2AA 122.2 (18) F3A1—C5A—C4A 109.7 (3)
C2A—N3A—N2A 107.79 (18) F3A2—C5A—C4A 112.6 (6)
C2A—N3A—H3AA 129.0 (18) F3A2—C5A—F1A2 105.7 (7)
N2A—N3A—H3AA 122.6 (18) F3A2—C5A—F2A2 107.3 (8)
N1B—C1B—C3B 130.75 (19) O1B—C4B—C5B 114.19 (18)
N2B—C1B—C3B 107.58 (17) O2B—C4B—C5B 116.60 (19)
N2B—C1B—N1B 121.60 (19) O2B—C4B—O1B 129.2 (2)
C3B—C2B—H2B 131.0 (15) F1B1—C5B—C4B 113.5 (3)
N3B—C2B—H2B 119.5 (15) F1B1—C5B—F2B1 105.8 (3)
N3B—C2B—C3B 109.57 (19) F1B1—C5B—F3B1 110.1 (3)
C1B—C3B—H3B 125.5 (18) F1B2—C5B—C4B 113.3 (4)
C2B—C3B—C1B 105.75 (18) F1B2—C5B—F3B2 99.4 (5)
C2B—C3B—H3B 128.7 (18) F2B1—C5B—C4B 111.4 (2)
C1B—N1B—H1BA 114.8 (18) F2B2—C5B—C4B 117.5 (3)
C1B—N1B—H1BB 113.5 (17) F2B2—C5B—F1B2 107.4 (6)
H1BA—N1B—H1BB 121 (2) F2B2—C5B—F3B2 104.7 (5)
C1B—N2B—H2BA 128.4 (16) F3B1—C5B—C4B 108.6 (2)
C1B—N2B—N3B 109.08 (17) F3B1—C5B—F2B1 107.2 (3)
N3B—N2B—H2BA 121.5 (16) F3B2—C5B—C4B 112.7 (3)
C1A—N2A—N3A—C2A −1.0 (3) O1A—C4A—C5A—F3A2 88.7 (8)
C3A—C1A—N2A—N3A 0.6 (3) O2A—C4A—C5A—F1A1 177.4 (4)
C3A—C2A—N3A—N2A 1.1 (3) O2A—C4A—C5A—F1A2 149.4 (7)
N1A—C1A—C3A—C2A 178.8 (3) O2A—C4A—C5A—F2A1 55.5 (5)
N1A—C1A—N2A—N3A −178.3 (2) O2A—C4A—C5A—F2A2 31.3 (7)
N2A—C1A—C3A—C2A 0.1 (3) O2A—C4A—C5A—F3A1 −61.7 (4)
N3A—C2A—C3A—C1A −0.7 (3) O2A—C4A—C5A—F3A2 −90.5 (8)
C1B—N2B—N3B—C2B 1.0 (3) O1B—C4B—C5B—F1B1 −38.2 (4)
C3B—C1B—N2B—N3B −0.9 (2) O1B—C4B—C5B—F1B2 −76.1 (9)
C3B—C2B—N3B—N2B −0.6 (3) O1B—C4B—C5B—F2B1 −157.5 (3)
N1B—C1B—C3B—C2B 177.5 (2) O1B—C4B—C5B—F2B2 157.7 (8)
N1B—C1B—N2B—N3B −178.2 (2) O1B—C4B—C5B—F3B1 84.6 (5)
N2B—C1B—C3B—C2B 0.5 (3) O1B—C4B—C5B—F3B2 35.9 (7)
N3B—C2B—C3B—C1B 0.1 (3) O2B—C4B—C5B—F1B1 143.9 (4)
O1A—C4A—C5A—F1A1 −3.4 (4) O2B—C4B—C5B—F1B2 106.0 (9)
O1A—C4A—C5A—F1A2 −31.4 (7) O2B—C4B—C5B—F2B1 24.5 (4)
O1A—C4A—C5A—F2A1 −125.3 (4) O2B—C4B—C5B—F2B2 −20.3 (9)
O1A—C4A—C5A—F2A2 −149.5 (6) O2B—C4B—C5B—F3B1 −93.3 (5)
O1A—C4A—C5A—F3A1 117.5 (4) O2B—C4B—C5B—F3B2 −142.1 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1AA···O1Ai 0.85 (3) 2.28 (3) 2.936 (3) 134 (2)
N1A—H1AB···O2Aii 0.91 (3) 1.99 (3) 2.884 (3) 169 (3)
N2A—H2AA···O1Aii 0.94 (3) 1.85 (3) 2.778 (2) 171 (3)
N3A—H3AA···O2A 0.93 (3) 1.78 (3) 2.705 (2) 172 (3)
N1B—H1BA···O2Biii 0.84 (3) 2.18 (3) 2.962 (2) 153 (2)
N1B—H1BB···O2Biv 0.90 (3) 2.03 (3) 2.929 (3) 173 (2)
N2B—H2BA···O1Biv 0.95 (3) 1.81 (3) 2.756 (2) 174 (2)
N3B—H3BA···O1Bv 0.91 (3) 1.82 (3) 2.728 (2) 171 (2)

Symmetry codes: (i) x, y+1, z; (ii) −x+3/2, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5637).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Dobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 253–256. [DOI] [PubMed]
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Foces-Foces, C., Cativiela, C., Zurbano, M. M., Sobrados, I., Jagerovic, N. & Elguero, J. (1996). J. Chem. Crystallogr. 26, 579–584.
  7. Giuseppe, D., Salvatore, P. & Demetrio, R. (1991). Trends Heterocycl. Chem. 2, 97.
  8. Hall, A., Billinton, A., Brown, S. H., Clayton, N. M., Chowdhury, A., Gerald, M. P., Goldsmith, G. P., Hayhow, T. G., Hurst, D. N., Kilford, I. R., Naylor, A. & Passingham, B. (2008). Bioorg. Med. Chem. Lett. 18, 3392–3399. [DOI] [PubMed]
  9. Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o783–o784. [DOI] [PMC free article] [PubMed]
  10. Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787. [DOI] [PubMed]
  11. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  12. Patel, C. K., Rami, C. S., Panigrahi, B. & Patel, C. N. (2010). J. Chem. Pharm. Res. 2, 73–78.
  13. Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Thanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3319–o3320. [DOI] [PMC free article] [PubMed]
  16. Vinogradov, V. M., Dalinger, I. L. & Shevelev, S. A. (1994). Khim. Farm. Zh. 28, 37–46.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813022204/lh5637sup1.cif

e-69-o1425-sup1.cif (27.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813022204/lh5637Isup2.hkl

e-69-o1425-Isup2.hkl (166.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813022204/lh5637Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES