Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Jun;71(6):2337–2341. doi: 10.1073/pnas.71.6.2337

Rapid Enhancement of Chick Intestinal DNA-Dependent RNA Polymerase II Activity by 1α,25-Dihydroxyvitamin D3, In Vivo

Joseph E Zerwekh 1, Mark R Haussler 1, Thomas J Lindell *
PMCID: PMC388449  PMID: 4526209

Abstract

1α,25-dihydroxyvitamin D3 was examined for its ability to affect the DNA-dependent RNA polymerases (nucleosidetriphosphate:RNA nucleotidyltransferase, EC 2.7.7.6) of rachitic chick intestinal cell nuclei in vivo. Nucleoplasmic (form II) RNA polymerase activity was stimulated 2-fold (P < 0.05) within 2-3 hr after an oral dose of 0.27 μg (0.65 nmol) of 1α,25-dihydroxyvitamin D3 to rachitic chicks. The form II polymerase activity returned to control values by 5-9 hr after dosing with the sterol. In contrast, the nucleolar (form I) RNA polymerase was not increased within this period. Solubilization of nuclear protein and resolution of the two RNA polymerases on DEAE-Sephadex also revealed that there was an increase in polymerase II activity when assayed on exogenous DNA template. This evidence suggests that 1α,25-dihydroxyvitamin D3 acts at the level of the enzymology of intestinal cell transcription and that increased mRNA synthesis after administration of this hormone cannot be due solely to a change in chromatin template activity.

Keywords: RNA polymerase I, mucosa cell nuclei, mRNA, chromatin, calcium transport

Full text

PDF
2337

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brumbaugh P. F., Haussler M. R. 1 Alpha,25-dihydroxycholecalciferol receptors in intestine. I. Association of 1 alpha,25-dihydroxycholecalciferol with intestinal mucosa chromatin. J Biol Chem. 1974 Feb 25;249(4):1251–1257. [PubMed] [Google Scholar]
  3. Brumbaugh P. F., Haussler M. R. 1 Alpha,25-dihydroxycholecalciferol receptors in intestine. II. Temperature-dependent transfer of the hormone to chromatin via a specific cytosol receptor. J Biol Chem. 1974 Feb 25;249(4):1258–1262. [PubMed] [Google Scholar]
  4. Brumbaugh P. F., Haussler M. R. Nuclear and cytoplasmic receptors for 1,25-dihydroxycholecalciferol in intestinal mucosa. Biochem Biophys Res Commun. 1973 Mar 5;51(1):74–80. doi: 10.1016/0006-291x(73)90509-3. [DOI] [PubMed] [Google Scholar]
  5. Chu L. L., Edelman I. S. Cordycepin and alpha-amanitin: inhibitors of transcription as probes of aldosterone action. J Membr Biol. 1972 Dec 29;10(3):291–310. doi: 10.1007/BF01867862. [DOI] [PubMed] [Google Scholar]
  6. Corradino R. A. 1,25-Dihydroxycholecalciferol: inhibition of action in organ-cultured intestine by actinomycin D and alpha-amanitin. Nature. 1973 May 4;243(5401):41–43. doi: 10.1038/243041a0. [DOI] [PubMed] [Google Scholar]
  7. Davies P., Griffiths K. Stimulation in vitro of prostatic ribonucleic acid polymerase by 5 -dihydrotestosterone-receptor complexes. Biochem Biophys Res Commun. 1973 Jul 17;53(2):373–382. doi: 10.1016/0006-291x(73)90672-4. [DOI] [PubMed] [Google Scholar]
  8. Emtage J. S., Lawson D. E., Kodicek E. Vitamin D-induced synthesis of mRNA for calcium-binding protein. Nature. 1973 Nov 9;246(5428):100–101. doi: 10.1038/246100a0. [DOI] [PubMed] [Google Scholar]
  9. Fraser D. R., Kodicek E. Unique biosynthesis by kidney of a biological active vitamin D metabolite. Nature. 1970 Nov 21;228(5273):764–766. doi: 10.1038/228764a0. [DOI] [PubMed] [Google Scholar]
  10. Glasser S. R., Chytil F., Spelsberg T. C. Early effects of oestradiol-17 on the chromatin and activity of the deoxyribonucleic acid-dependent ribonucleic acid polymerases (I and II) of the rat uterus. Biochem J. 1972 Dec;130(4):947–957. doi: 10.1042/bj1300947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Glasser S. R., Spelsberg T. C. Mammalian RNA polymerases I and II: independent diurnal variations in activity. Biochem Biophys Res Commun. 1972 May 26;47(4):951–958. doi: 10.1016/0006-291x(72)90585-2. [DOI] [PubMed] [Google Scholar]
  12. Hallick R. B., DeLuca H. F. Vitamin D3-stimulated template activity of chromatin from rat intestine. Proc Natl Acad Sci U S A. 1969 Jun;63(2):528–531. doi: 10.1073/pnas.63.2.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haussler M. R., Boyce D. W., Littledike E. T., Rasmussen H. A rapidly acting metabolite of vitamin D3. Proc Natl Acad Sci U S A. 1971 Jan;68(1):177–181. doi: 10.1073/pnas.68.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haussler M. R. Characterization of the metabolites of vitamin D 3 in the chick. Steroids. 1972 Nov;20(5):639–650. doi: 10.1016/0039-128x(72)90021-9. [DOI] [PubMed] [Google Scholar]
  15. Haussler M. R., Myrtle J. F., Norman A. W. The association of a metabolite of vitamin D3 with intestinal mucosa chromatin in vivo. J Biol Chem. 1968 Aug 10;243(15):4055–4064. [PubMed] [Google Scholar]
  16. Haussler M. R., Norman A. W. Chromosomal receptor for a vitamin D metabolite. Proc Natl Acad Sci U S A. 1969 Jan;62(1):155–162. doi: 10.1073/pnas.62.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Haussler M. R., Zerwekh J. E., Hesse R. H., Rizzardo E., Pechet M. M. Biological activity of 1alpha-hydroxycholecalciferol, a synthetic analog of the hormonal form of vitamin D3. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2248–2252. doi: 10.1073/pnas.70.8.2248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holick M. F., Garabedian M., DeLuca H. F. 1,25-dihydroxycholecalciferol: metabolite of vitamin D3 active on bone in anephric rats. Science. 1972 Jun 9;176(4039):1146–1147. doi: 10.1126/science.176.4039.1146. [DOI] [PubMed] [Google Scholar]
  19. Incefy G. S., Kappas A. Inhibitory effect of a-amanitin on the induction of delta-aminolevulinate synthetase in chick embryo liver. FEBS Lett. 1971 Jun 10;15(2):153–155. doi: 10.1016/0014-5793(71)80045-5. [DOI] [PubMed] [Google Scholar]
  20. Jacob S. T., Muecke W., Sajdel E. M., Munro H. N. Evidence for extranucleolar control of RNA synthesis in the nucleolus. Biochem Biophys Res Commun. 1970 Jul 27;40(2):334–342. doi: 10.1016/0006-291x(70)91014-4. [DOI] [PubMed] [Google Scholar]
  21. Jensen E. V., Mohla S., Gorell T., Tanaka S., DeSombre E. R. Estrophile to nucleophile in two easy steps. J Steroid Biochem. 1972 Apr;3(3):445–458. doi: 10.1016/0022-4731(72)90091-x. [DOI] [PubMed] [Google Scholar]
  22. Jolicoeur Paul, Labrie Fernand. Induction of rat liver tyrosine aminotransferase by dibutyryl cyclic AMP and its inhibition by actinomycin D and alpha-Amanitin. FEBS Lett. 1971 Sep 15;17(1):141–144. doi: 10.1016/0014-5793(71)80583-5. [DOI] [PubMed] [Google Scholar]
  23. Kedinger C., Gniazdowski M., Mandel J. L., Jr, Gissinger F., Chambon P. Alpha-amanitin: a specific inhibitor of one of two DNA-pendent RNA polymerase activities from calf thymus. Biochem Biophys Res Commun. 1970 Jan 6;38(1):165–171. doi: 10.1016/0006-291x(70)91099-5. [DOI] [PubMed] [Google Scholar]
  24. Lindell T. J., Weinberg F., Morris P. W., Roeder R. G., Rutter W. J. Specific inhibition of nuclear RNA polymerase II by alpha-amanitin. Science. 1970 Oct 23;170(3956):447–449. doi: 10.1126/science.170.3956.447. [DOI] [PubMed] [Google Scholar]
  25. McNutt K. W., Haussler M. R. Nutritional effectiveness of 1,25-dihydroxycholecalciferol in preventing rickets in chicks. J Nutr. 1973 May;103(5):681–689. doi: 10.1093/jn/103.5.681. [DOI] [PubMed] [Google Scholar]
  26. Means A. R., O'Malley B. W. Mechanism of estrogen action: early transcriptional and translational events. Metabolism. 1972 Apr;21(4):357–370. doi: 10.1016/0026-0495(72)90081-9. [DOI] [PubMed] [Google Scholar]
  27. Ponchon G., DeLuca H. F. The role of the liver in the metabolism of vitamin D. J Clin Invest. 1969 Jul;48(7):1273–1279. doi: 10.1172/JCI106093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Raynaud-Jammet C., Catelli M. G., Baulieu E. E. Inhibition by alpha-amanitin of the oestradiol-induced increase in alpha-amanitin insensitive RNA polymerase in immature rat uterus. FEBS Lett. 1972 Apr 15;22(1):93–96. doi: 10.1016/0014-5793(72)80228-x. [DOI] [PubMed] [Google Scholar]
  29. Roeder R. G., Rutter W. J. Multiple ribonucleic acid polymerases and ribonucleic acid synthesis during sea urchin development. Biochemistry. 1970 Jun 9;9(12):2543–2553. doi: 10.1021/bi00814a023. [DOI] [PubMed] [Google Scholar]
  30. Salaman D. F., Betteridge S., Korner A. Early effects of growth hormone on nucleolar and nucleoplasmic RNA synthesis and RNA polymerase activity in normal rat liver. Biochim Biophys Acta. 1972 Jul 20;272(3):382–395. doi: 10.1016/0005-2787(72)90391-7. [DOI] [PubMed] [Google Scholar]
  31. Schmid W., Sekeris C. E. Possible involvement of nuclear DNA-like RNA in the control of ribosomal RNA synthesis. Biochim Biophys Acta. 1973 Jul 13;312(3):549–554. doi: 10.1016/0005-2787(73)90453-x. [DOI] [PubMed] [Google Scholar]
  32. Schmid W., Sekeris C. E. Sequential stimulation of extranucleolar and nucleolar RNA synthesis in rat liver by cortisol. FEBS Lett. 1972 Oct 1;26(1):109–112. doi: 10.1016/0014-5793(72)80553-2. [DOI] [PubMed] [Google Scholar]
  33. Shaaya E., Sekeris C. E. Inhibitory effects of alpha-amanitin on RNA synthesis and induction of DOPA-decarboxylase by beta-ecdysone. FEBS Lett. 1971 Sep 1;16(4):333–336. doi: 10.1016/0014-5793(71)80383-6. [DOI] [PubMed] [Google Scholar]
  34. Sullivan D., Palacios R., Stavnezer J., Taylor J. M., Faras A. J., Kiely M. L., Summers N. M., Bishop J. M., Schimke R. T. Synthesis of a deoxyribonucleic acid sequence complementary to ovalbumin messenger ribonucleic acid and quantification of ovalbumin genes. J Biol Chem. 1973 Nov 10;248(21):7530–7539. [PubMed] [Google Scholar]
  35. Tsai H. C., Midgett R. J., Norman A. W. Studies on calciferol metabolism. VII. The effects of actinomycin D and cycloheximide on the metabolism, tissue and subcellular localization, and action of vitamin D3. Arch Biochem Biophys. 1973 Aug;157(2):339–347. doi: 10.1016/0003-9861(73)90648-6. [DOI] [PubMed] [Google Scholar]
  36. Tsai H. C., Norman A. W. Studies on calciferol metabolism. 8. Evidence for a cytoplasmic receptor for 1,25-dihydroxy-vitamin D3 in the intestinal mucosa. J Biol Chem. 1973 Sep 10;248(17):5967–5975. [PubMed] [Google Scholar]
  37. Tsai H. C., Norman A. W. Studies on the mode of action of calciferol. VI. Effect of 1,25-dihydroxy-vitamin D3 on RNA synthesis in the intestinal mucosa. Biochem Biophys Res Commun. 1973 Sep 18;54(2):622–627. doi: 10.1016/0006-291x(73)91468-x. [DOI] [PubMed] [Google Scholar]
  38. Tucker G., 3rd, Gagnon R. E., Haussler M. R. Vitamin D 3 -25-hydroxylase: tissue occurrence and apparent lack of regulation. Arch Biochem Biophys. 1973 Mar;155(1):47–57. doi: 10.1016/s0003-9861(73)80008-6. [DOI] [PubMed] [Google Scholar]
  39. Wasserman R. H., Taylor A. N. Vitamin D-dependent calcium-binding protein. Response to some physiological and nutritional variables. J Biol Chem. 1968 Jul 25;243(14):3987–3993. [PubMed] [Google Scholar]
  40. Weber J. C., Pons V., Kodicek E. The localization of 1,25-dihydroxycholecalciferol in bone cell nuclei of rachitic chicks. Biochem J. 1971 Nov;125(1):147–153. doi: 10.1042/bj1250147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wong R. G., Myrtle J. F., Tsai H. C., Norman A. W. Studies on calciferol metabolism. V. The occurrence and biological activity of 1,25-dihydroxy-vitamin D 3 in bone. J Biol Chem. 1972 Sep 25;247(18):5728–5735. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES