Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 10;69(Pt 9):o1405. doi: 10.1107/S1600536813021946

(E)-3-[5-(Di­phenyl­amino)­thio­phen-2-yl]-1-(pyridin-3-yl)prop-2-en-1-one

Rui Li a, Dan-Dan Li a, Jie-Ying Wu a,*
PMCID: PMC3884491  PMID: 24427043

Abstract

In the title compound, C24H18N2OS, the pyridine and the two phenyl rings are oriented at dihedral angles of 10.1 (5), 71.7 (6) and 68.7 (5)°, respectively, to the central thio­phene ring. In the crystal, pairs of weak C—H⋯O hydrogen bonds link inversion-related mol­ecules, forming dimers. The dimers are linked by further weak C—H⋯O hydrogen bonds, forming chains running along the a-axis direction.

Related literature  

For background to the title compound, see: Wan & Mak (2011). For related compounds, see: Encinas (2002); Feng et al. (2012).graphic file with name e-69-o1405-scheme1.jpg

Experimental  

Crystal data  

  • C24H18N2OS

  • M r = 382.46

  • Monoclinic, Inline graphic

  • a = 10.976 (5) Å

  • b = 18.029 (5) Å

  • c = 9.697 (5) Å

  • β = 90.728 (5)°

  • V = 1918.7 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Bruker SMART 1000 CCD area-detector diffractometer

  • 13536 measured reflections

  • 3388 independent reflections

  • 2517 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.138

  • S = 0.95

  • 3388 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S1600536813021946/xu5725sup1.cif

e-69-o1405-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813021946/xu5725Isup2.hkl

e-69-o1405-Isup2.hkl (166.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813021946/xu5725Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.54 3.410 (3) 155
C12—H12⋯O1ii 0.93 2.43 3.346 (3) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 21071001), the Foundation of the Education Committee of Anhui Province (grant No. KJ2010A030) and the Natural Science Foundation of Anhui Province (grant No. 1208085MB22).

supplementary crystallographic information

1. Comment

Carbonyl group widely exists in organic and biological systems and plays a crucial role in stabilizing both the extended crystal structures of small molecules and biological systems through various weak intermolecular interactions generated via carbonyl group (Wan & Mak, 2011). Besides, the introduction about the highpolarizability of sulfur atoms in thiophene rings leads to a stabilization of the conjugated chain and to excellent charge transport properties, which are one of the most crucial assets for applications in organic and molecular electronics (Encinas, 2002; Feng et al., 2012).

The crystal structure of the title compound, exists in an E configuration with respect to the C17=C18 ethenyl bond (1.332 (3) Å), as indicated by the torsion angle C16—C17—C18—C19 = 177.90 (1) °. The prop-2-en-1-one unit (C17—C19/O1) is nearly planar and the torsion angle O1—C17—C18—C19 is 8.2 (3) °. The Carbonyl bridge is nearly planar to the pyridyl ring and the thiophene ring make the dihedral angles of 7.22 (7)° and 7.07 (8)°, respectively (Fig.1). In the terminal phenyl rings region of the molecule, each phenyl group makes dihedral angles of 71.7 (6)° and 68.7 (5)° with the thiophene ring.

2. Experimental

The title compound was synthesized by mixing 3-acetylpyridine (1.21 g, 10 mmol) with 5-(diphenylamino)thiophene-2-carbaldehyde (2.79 g, 10 mmol) in methanol (25 ml) in the presence of 20% NaOH (aq) (5 ml). The mixture was stirred at room temperature for 12 h. The red solid formed was filtered and washed with distilled water, dried over vacuum. 1H NMR: (400 Hz, DMSO-d6), d(p.p.m.): 9.05 (d, 1H), 8.48 (d, 1H), 8.25 (d, 1H), 8.12 (d, 1H), 7.86 (d, 1H), 7.64 (m, 1H), 7.55 (t, 4H), 7.40 (d, 1H), 7.32 (d, 4H),7.29 (t, 2H), 6.65 (d, 1H)

3. Refinement

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound (I) showing 30% probability displacement ellipsoids.

Crystal data

C24H18N2OS F(000) = 800
Mr = 382.46 Dx = 1.324 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybc Cell parameters from 3272 reflections
a = 10.976 (5) Å θ = 2.2–22.8°
b = 18.029 (5) Å µ = 0.19 mm1
c = 9.697 (5) Å T = 293 K
β = 90.728 (5)° Block, red
V = 1918.7 (14) Å3 0.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 2517 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.031
Graphite monochromator θmax = 25.0°, θmin = 1.9°
phi and ω scans h = −13→13
13536 measured reflections k = −21→21
3388 independent reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138 H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
3388 reflections (Δ/σ)max < 0.001
253 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.39364 (5) 0.13546 (3) 0.84763 (5) 0.0520 (2)
O1 0.80534 (14) 0.06367 (10) 1.13966 (15) 0.0628 (4)
N1 0.23384 (15) 0.12744 (10) 0.63004 (17) 0.0518 (5)
C18 0.61524 (18) 0.11137 (11) 1.0700 (2) 0.0471 (5)
H18 0.5526 0.1439 1.0917 0.057*
C14 0.41913 (19) 0.04995 (12) 0.6381 (2) 0.0483 (5)
H14 0.4065 0.0256 0.5546 0.058*
C7 0.13189 (17) 0.15100 (11) 0.70872 (19) 0.0438 (5)
C20 0.70392 (18) 0.12875 (11) 1.3133 (2) 0.0431 (5)
C13 0.33940 (17) 0.10074 (11) 0.69095 (19) 0.0428 (5)
C15 0.52143 (18) 0.03859 (11) 0.7228 (2) 0.0480 (5)
H15 0.5835 0.0058 0.7003 0.058*
C19 0.71424 (18) 0.09932 (11) 1.1691 (2) 0.0448 (5)
C16 0.52275 (17) 0.07951 (11) 0.8412 (2) 0.0428 (5)
C1 0.22037 (18) 0.12040 (11) 0.4829 (2) 0.0444 (5)
C2 0.3006 (2) 0.15559 (14) 0.3977 (2) 0.0576 (6)
H2 0.3623 0.1851 0.4348 0.069*
C12 0.08974 (19) 0.10913 (13) 0.8175 (2) 0.0511 (5)
H12 0.1278 0.0647 0.8410 0.061*
C17 0.61310 (18) 0.07655 (11) 0.9487 (2) 0.0445 (5)
H17 0.6796 0.0461 0.9316 0.053*
N2 0.60796 (19) 0.20514 (11) 1.4845 (2) 0.0666 (6)
C8 0.0729 (2) 0.21623 (12) 0.6732 (2) 0.0561 (6)
H8 0.1001 0.2440 0.5988 0.067*
C11 −0.0099 (2) 0.13381 (15) 0.8915 (2) 0.0644 (7)
H11 −0.0384 0.1059 0.9650 0.077*
C21 0.7850 (2) 0.10299 (13) 1.4133 (2) 0.0559 (6)
H21 0.8449 0.0689 1.3901 0.067*
C6 0.1268 (2) 0.07803 (13) 0.4276 (3) 0.0601 (6)
H6 0.0709 0.0552 0.4850 0.072*
C24 0.61859 (19) 0.17992 (12) 1.3549 (2) 0.0541 (5)
H24 0.5646 0.1983 1.2885 0.065*
C9 −0.0253 (2) 0.24017 (14) 0.7469 (3) 0.0668 (7)
H9 −0.0641 0.2842 0.7225 0.080*
C22 0.7765 (3) 0.12783 (14) 1.5463 (3) 0.0663 (7)
H22 0.8298 0.1110 1.6147 0.080*
C10 −0.0670 (2) 0.19950 (16) 0.8567 (3) 0.0686 (7)
H10 −0.1331 0.2162 0.9071 0.082*
C5 0.1175 (3) 0.07000 (15) 0.2857 (3) 0.0767 (8)
H5 0.0553 0.0412 0.2476 0.092*
C4 0.1995 (3) 0.10438 (18) 0.2009 (3) 0.0751 (8)
H4 0.1934 0.0985 0.1058 0.090*
C3 0.2895 (2) 0.14712 (17) 0.2569 (2) 0.0729 (8)
H3 0.3443 0.1709 0.1993 0.087*
C23 0.6874 (2) 0.17810 (14) 1.5755 (3) 0.0675 (7)
H23 0.6821 0.1946 1.6660 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0452 (4) 0.0707 (4) 0.0401 (3) 0.0160 (3) −0.0087 (2) −0.0122 (2)
O1 0.0445 (9) 0.0911 (12) 0.0526 (10) 0.0187 (8) −0.0041 (7) −0.0018 (8)
N1 0.0342 (9) 0.0881 (13) 0.0330 (9) 0.0109 (9) −0.0021 (7) −0.0039 (8)
C18 0.0383 (12) 0.0567 (12) 0.0462 (13) 0.0059 (9) −0.0039 (9) 0.0020 (9)
C14 0.0432 (12) 0.0627 (13) 0.0389 (11) 0.0028 (9) −0.0020 (9) −0.0086 (9)
C7 0.0338 (11) 0.0625 (13) 0.0349 (11) 0.0022 (9) −0.0034 (8) −0.0073 (9)
C20 0.0379 (11) 0.0476 (11) 0.0438 (11) −0.0084 (9) −0.0041 (9) 0.0020 (9)
C13 0.0345 (11) 0.0594 (12) 0.0346 (11) 0.0007 (9) −0.0002 (8) 0.0002 (9)
C15 0.0419 (12) 0.0579 (12) 0.0441 (12) 0.0104 (9) 0.0013 (9) −0.0041 (9)
C19 0.0366 (11) 0.0519 (11) 0.0457 (12) −0.0003 (9) −0.0013 (9) 0.0059 (9)
C16 0.0364 (11) 0.0524 (11) 0.0396 (11) 0.0035 (8) −0.0020 (9) 0.0011 (9)
C1 0.0374 (11) 0.0597 (12) 0.0360 (11) 0.0080 (9) −0.0041 (9) −0.0016 (9)
C2 0.0415 (12) 0.0846 (16) 0.0466 (13) −0.0002 (11) −0.0008 (10) 0.0028 (11)
C12 0.0446 (12) 0.0659 (13) 0.0426 (12) 0.0064 (10) −0.0030 (9) −0.0026 (10)
C17 0.0363 (11) 0.0527 (12) 0.0444 (12) 0.0044 (9) −0.0013 (9) 0.0060 (9)
N2 0.0664 (14) 0.0705 (13) 0.0630 (14) −0.0058 (10) 0.0013 (11) −0.0172 (10)
C8 0.0509 (13) 0.0625 (14) 0.0547 (13) 0.0030 (11) −0.0055 (10) −0.0002 (10)
C11 0.0512 (15) 0.1042 (19) 0.0378 (12) −0.0055 (13) 0.0062 (11) −0.0059 (12)
C21 0.0513 (13) 0.0656 (14) 0.0504 (14) 0.0010 (11) −0.0105 (10) −0.0023 (11)
C6 0.0519 (13) 0.0729 (15) 0.0551 (14) −0.0091 (11) −0.0102 (11) 0.0015 (11)
C24 0.0448 (12) 0.0574 (13) 0.0600 (15) −0.0023 (10) −0.0046 (10) −0.0020 (11)
C9 0.0579 (15) 0.0697 (15) 0.0725 (17) 0.0199 (12) −0.0076 (13) −0.0161 (13)
C22 0.0708 (17) 0.0762 (16) 0.0513 (15) −0.0045 (13) −0.0187 (12) −0.0019 (12)
C10 0.0450 (13) 0.104 (2) 0.0563 (15) 0.0204 (13) −0.0027 (11) −0.0312 (14)
C5 0.0746 (18) 0.0893 (19) 0.0654 (17) 0.0030 (15) −0.0307 (15) −0.0209 (14)
C4 0.0682 (18) 0.119 (2) 0.0377 (13) 0.0341 (16) −0.0075 (13) −0.0104 (14)
C3 0.0517 (15) 0.123 (2) 0.0440 (14) 0.0178 (14) 0.0038 (12) 0.0117 (14)
C23 0.0771 (18) 0.0750 (16) 0.0503 (14) −0.0212 (14) 0.0000 (13) −0.0149 (12)

Geometric parameters (Å, º)

S1—C13 1.741 (2) C12—H12 0.9300
S1—C16 1.741 (2) C17—H17 0.9300
O1—C19 1.226 (2) N2—C23 1.325 (3)
N1—C13 1.380 (3) N2—C24 1.343 (3)
N1—C7 1.427 (2) C8—C9 1.371 (3)
N1—C1 1.439 (3) C8—H8 0.9300
C18—C17 1.333 (3) C11—C10 1.380 (4)
C18—C19 1.458 (3) C11—H11 0.9300
C18—H18 0.9300 C21—C22 1.369 (3)
C14—C13 1.371 (3) C21—H21 0.9300
C14—C15 1.398 (3) C6—C5 1.387 (4)
C14—H14 0.9300 C6—H6 0.9300
C7—C12 1.382 (3) C24—H24 0.9300
C7—C8 1.384 (3) C9—C10 1.376 (4)
C20—C24 1.378 (3) C9—H9 0.9300
C20—C21 1.387 (3) C22—C23 1.365 (4)
C20—C19 1.501 (3) C22—H22 0.9300
C15—C16 1.365 (3) C10—H10 0.9300
C15—H15 0.9300 C5—C4 1.374 (4)
C16—C17 1.431 (3) C5—H5 0.9300
C1—C2 1.371 (3) C4—C3 1.361 (4)
C1—C6 1.382 (3) C4—H4 0.9300
C2—C3 1.378 (3) C3—H3 0.9300
C2—H2 0.9300 C23—H23 0.9300
C12—C11 1.389 (3)
C13—S1—C16 91.72 (9) C16—C17—H17 115.5
C13—N1—C7 122.32 (17) C23—N2—C24 115.7 (2)
C13—N1—C1 117.96 (16) C9—C8—C7 120.4 (2)
C7—N1—C1 119.03 (16) C9—C8—H8 119.8
C17—C18—C19 121.08 (19) C7—C8—H8 119.8
C17—C18—H18 119.5 C10—C11—C12 120.4 (2)
C19—C18—H18 119.5 C10—C11—H11 119.8
C13—C14—C15 112.96 (18) C12—C11—H11 119.8
C13—C14—H14 123.5 C22—C21—C20 119.9 (2)
C15—C14—H14 123.5 C22—C21—H21 120.1
C12—C7—C8 119.63 (19) C20—C21—H21 120.1
C12—C7—N1 121.20 (19) C1—C6—C5 119.2 (2)
C8—C7—N1 119.16 (18) C1—C6—H6 120.4
C24—C20—C21 116.9 (2) C5—C6—H6 120.4
C24—C20—C19 124.62 (19) N2—C24—C20 124.6 (2)
C21—C20—C19 118.52 (19) N2—C24—H24 117.7
C14—C13—N1 127.55 (19) C20—C24—H24 117.7
C14—C13—S1 110.71 (15) C8—C9—C10 120.5 (2)
N1—C13—S1 121.59 (15) C8—C9—H9 119.8
C16—C15—C14 114.53 (18) C10—C9—H9 119.8
C16—C15—H15 122.7 C23—C22—C21 118.0 (2)
C14—C15—H15 122.7 C23—C22—H22 121.0
O1—C19—C18 121.86 (19) C21—C22—H22 121.0
O1—C19—C20 118.29 (18) C9—C10—C11 119.5 (2)
C18—C19—C20 119.82 (18) C9—C10—H10 120.2
C15—C16—C17 126.36 (19) C11—C10—H10 120.2
C15—C16—S1 110.08 (15) C4—C5—C6 120.4 (2)
C17—C16—S1 123.53 (15) C4—C5—H5 119.8
C2—C1—C6 120.1 (2) C6—C5—H5 119.8
C2—C1—N1 119.88 (19) C3—C4—C5 119.7 (2)
C6—C1—N1 119.98 (19) C3—C4—H4 120.2
C1—C2—C3 119.8 (2) C5—C4—H4 120.2
C1—C2—H2 120.1 C4—C3—C2 120.8 (2)
C3—C2—H2 120.1 C4—C3—H3 119.6
C7—C12—C11 119.5 (2) C2—C3—H3 119.6
C7—C12—H12 120.2 N2—C23—C22 125.0 (2)
C11—C12—H12 120.2 N2—C23—H23 117.5
C18—C17—C16 129.0 (2) C22—C23—H23 117.5
C18—C17—H17 115.5
C13—N1—C7—C12 −45.5 (3) C6—C1—C2—C3 −1.6 (3)
C1—N1—C7—C12 124.8 (2) N1—C1—C2—C3 178.2 (2)
C13—N1—C7—C8 135.9 (2) C8—C7—C12—C11 −1.2 (3)
C1—N1—C7—C8 −53.9 (3) N1—C7—C12—C11 −179.87 (19)
C15—C14—C13—N1 176.09 (19) C19—C18—C17—C16 177.90 (19)
C15—C14—C13—S1 0.6 (2) C15—C16—C17—C18 −175.2 (2)
C7—N1—C13—C14 150.3 (2) S1—C16—C17—C18 2.6 (3)
C1—N1—C13—C14 −20.1 (3) C12—C7—C8—C9 1.3 (3)
C7—N1—C13—S1 −34.7 (3) N1—C7—C8—C9 179.96 (19)
C1—N1—C13—S1 154.93 (15) C7—C12—C11—C10 0.2 (3)
C16—S1—C13—C14 −0.95 (16) C24—C20—C21—C22 0.9 (3)
C16—S1—C13—N1 −176.74 (17) C19—C20—C21—C22 −178.9 (2)
C13—C14—C15—C16 0.2 (3) C2—C1—C6—C5 1.8 (3)
C17—C18—C19—O1 8.2 (3) N1—C1—C6—C5 −178.0 (2)
C17—C18—C19—C20 −169.57 (19) C23—N2—C24—C20 0.6 (3)
C24—C20—C19—O1 168.2 (2) C21—C20—C24—N2 −1.1 (3)
C21—C20—C19—O1 −12.1 (3) C19—C20—C24—N2 178.65 (19)
C24—C20—C19—C18 −13.9 (3) C7—C8—C9—C10 −0.3 (4)
C21—C20—C19—C18 165.80 (19) C20—C21—C22—C23 −0.3 (4)
C14—C15—C16—C17 177.10 (19) C8—C9—C10—C11 −0.7 (4)
C14—C15—C16—S1 −0.9 (2) C12—C11—C10—C9 0.8 (4)
C13—S1—C16—C15 1.05 (16) C1—C6—C5—C4 −0.7 (4)
C13—S1—C16—C17 −177.03 (18) C6—C5—C4—C3 −0.7 (4)
C13—N1—C1—C2 −62.3 (3) C5—C4—C3—C2 0.9 (4)
C7—N1—C1—C2 127.0 (2) C1—C2—C3—C4 0.2 (4)
C13—N1—C1—C6 117.6 (2) C24—N2—C23—C22 0.0 (4)
C7—N1—C1—C6 −53.1 (3) C21—C22—C23—N2 −0.2 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11···O1i 0.93 2.54 3.410 (3) 155
C12—H12···O1ii 0.93 2.43 3.346 (3) 166

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5725).

References

  1. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Encinas, S. (2002). Chem. Eur. J. 8, 137–150.
  3. Feng, Q.-Y., Lu, X.-F., Zhou, G. & Wang, Z.-S. (2012). Phys. Chem. Chem. Phys. 14, 7993–7999. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wan, C.-Q. & Mak, T. C. W. (2011). Cryst. Growth Des. 11, 832–842.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S1600536813021946/xu5725sup1.cif

e-69-o1405-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813021946/xu5725Isup2.hkl

e-69-o1405-Isup2.hkl (166.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813021946/xu5725Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES