Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 3;69(Pt 9):o1372. doi: 10.1107/S160053681301979X

Methyl 2-[(tert-but­oxy­carbon­yl)amino]-3-(4-hy­droxy­phen­yl)propano­ate

Xiaokun Li a,*
PMCID: PMC3884495  PMID: 24427017

Abstract

In the title mol­ecule, C15H21NO5, the dihedral angle between the mean plane of the –N—C(=O)—O– group [maximum deviation = 0.002 (1) Å for the C atom] and the benzene ring is 82.2 (2)°. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds connect the mol­ecules, forming a two-dimensional network parallel to (001).

Related literature  

For the biological activity of related compounds, see: Sykes et al. (1999).graphic file with name e-69-o1372-scheme1.jpg

Experimental  

Crystal data  

  • C15H21NO5

  • M r = 295.33

  • Orthorhombic, Inline graphic

  • a = 8.7879 (8) Å

  • b = 9.4844 (9) Å

  • c = 18.9207 (18) Å

  • V = 1577.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.55 × 0.49 × 0.45 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.962, T max = 0.989

  • 9339 measured reflections

  • 3636 independent reflections

  • 3469 reflections with I > 2σ(I)

  • R int = 0.072

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.102

  • S = 1.03

  • 3636 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007)’; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681301979X/lh5632sup1.cif

e-69-o1372-sup1.cif (16.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681301979X/lh5632Isup2.hkl

e-69-o1372-Isup2.hkl (178.3KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681301979X/lh5632Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O3i 0.86 2.27 3.0583 (16) 153
O1—H1C⋯O5ii 0.82 1.92 2.7356 (15) 180

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The author thanks Henan University of Traditional Chinese Medicine for supporting this study.

supplementary crystallographic information

1. Comment

Amide, ester and hydroxyl groups widely exist in many biologically active compounds or can be utilized in prodrugs (Sykes et al., 1999). Herein we report the crystal structure of the title compound. The dihedral angle between the mean-plane of the amide group (N1/C9/O5/O4) [a maximum deviation of 0.002 (1)° for C9) and the benzene ring (C1–C6) is 82.2 (2)°. In the crystal, O—H···O and N—H···O hydrogen bonds connect molecules forming a two-dimensional network parallel to (001) (Fig. 2).

2. Experimental

The title compound (0.3 mmol, 88.5 mg) was dissolved in 10 ml of methanol solution. Colorless block-shaped crystals separated after 5 d.

3. Refinement

H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.98 Å for CH(aromatic), CH3 and CH(methine) H atoms, respectively, or N—H = 0.86 Å and O—H = 0.82 Å with Uiso(H)= kUeq(parent C-atom, N), where k = 1.5 for CH3 and hydroxyl H atoms and k = 1.2 for all other H atoms. The absolute congiuration could not be determined from the X-ray data. In the absence of anamolous dispersion effects Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The molecular strcuture of the title compound with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure with hydrogen bonds shown as dashed lines. H atoms bonded to C atoms are not shown.

Crystal data

C15H21NO5 F(000) = 632
Mr = 295.33 Dx = 1.244 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 9371 reflections
a = 8.7879 (8) Å θ = 1.0–27.6°
b = 9.4844 (9) Å µ = 0.09 mm1
c = 18.9207 (18) Å T = 100 K
V = 1577.0 (3) Å3 Block, colourless
Z = 4 0.55 × 0.49 × 0.45 mm

Data collection

Bruker APEXII CCD diffractometer 3636 independent reflections
Radiation source: fine-focus sealed tube 3469 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.072
φ and ω scans θmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→9
Tmin = 0.962, Tmax = 0.989 k = −12→8
9339 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.1712P] where P = (Fo2 + 2Fc2)/3
3636 reflections (Δ/σ)max = 0.008
190 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.04196 (17) 1.13511 (15) 0.18071 (7) 0.0216 (3)
H1A −0.1123 1.1434 0.2172 0.026*
C2 −0.03335 (16) 1.01206 (15) 0.14197 (7) 0.0205 (3)
H2A −0.0978 0.9376 0.1531 0.025*
C3 0.07017 (15) 0.99675 (14) 0.08627 (7) 0.0172 (3)
C4 0.16908 (15) 1.10800 (15) 0.07254 (7) 0.0192 (3)
H4A 0.2409 1.0991 0.0367 0.023*
C5 0.16250 (16) 1.23229 (15) 0.11142 (7) 0.0200 (3)
H5A 0.2297 1.3055 0.1016 0.024*
C6 0.05528 (16) 1.24689 (14) 0.16488 (7) 0.0184 (3)
C7 0.06700 (17) 0.86702 (15) 0.04022 (7) 0.0188 (3)
H7A 0.1336 0.8823 0.0001 0.023*
H7B −0.0354 0.8547 0.0221 0.023*
C8 0.11575 (14) 0.73007 (14) 0.07772 (7) 0.0166 (3)
H8A 0.0573 0.7217 0.1216 0.020*
C9 0.33960 (15) 0.64306 (14) 0.13963 (7) 0.0159 (3)
C10 0.59030 (15) 0.56854 (15) 0.18449 (7) 0.0199 (3)
C11 0.5429 (2) 0.5555 (2) 0.26171 (8) 0.0302 (3)
H11A 0.5434 0.6471 0.2833 0.045*
H11B 0.6131 0.4950 0.2861 0.045*
H11C 0.4424 0.5161 0.2644 0.045*
C12 0.59178 (18) 0.42703 (17) 0.14678 (8) 0.0280 (3)
H12A 0.6225 0.4403 0.0985 0.042*
H12B 0.4917 0.3866 0.1480 0.042*
H12C 0.6621 0.3649 0.1699 0.042*
C13 0.74355 (17) 0.64103 (19) 0.17817 (9) 0.0305 (3)
H13A 0.7714 0.6480 0.1292 0.046*
H13B 0.8190 0.5872 0.2030 0.046*
H13C 0.7373 0.7338 0.1982 0.046*
C14 0.1469 (2) 0.42237 (17) −0.04498 (8) 0.0292 (3)
H14A 0.2370 0.3749 −0.0609 0.044*
H14B 0.0943 0.4618 −0.0848 0.044*
H14C 0.0816 0.3563 −0.0213 0.044*
C15 0.07176 (16) 0.60783 (14) 0.02939 (7) 0.0180 (3)
N1 0.27499 (13) 0.73700 (12) 0.09567 (6) 0.0170 (2)
H1B 0.3301 0.8029 0.0778 0.020*
O1 0.04029 (13) 1.36708 (11) 0.20398 (5) 0.0247 (2)
H1C 0.1090 1.4220 0.1939 0.037*
O2 0.18880 (11) 0.53485 (11) 0.00379 (5) 0.0221 (2)
O3 −0.05943 (13) 0.58394 (11) 0.01458 (6) 0.0254 (2)
O4 0.48955 (11) 0.66726 (10) 0.14566 (5) 0.0186 (2)
O5 0.27010 (12) 0.54940 (10) 0.16994 (5) 0.0204 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0215 (7) 0.0263 (7) 0.0171 (6) −0.0023 (6) 0.0044 (5) 0.0007 (5)
C2 0.0205 (6) 0.0205 (6) 0.0206 (6) −0.0054 (5) 0.0015 (5) 0.0015 (5)
C3 0.0161 (6) 0.0182 (6) 0.0172 (6) 0.0019 (5) −0.0039 (5) 0.0011 (5)
C4 0.0145 (6) 0.0235 (7) 0.0195 (6) 0.0009 (5) 0.0020 (5) 0.0009 (5)
C5 0.0176 (6) 0.0208 (6) 0.0217 (6) −0.0034 (5) 0.0006 (5) 0.0018 (5)
C6 0.0200 (6) 0.0185 (6) 0.0167 (5) −0.0002 (5) −0.0023 (5) 0.0006 (5)
C7 0.0179 (6) 0.0208 (6) 0.0178 (6) 0.0018 (5) −0.0025 (5) −0.0009 (5)
C8 0.0116 (6) 0.0203 (6) 0.0178 (6) −0.0004 (5) −0.0014 (5) −0.0005 (5)
C9 0.0152 (6) 0.0171 (6) 0.0155 (5) −0.0002 (5) 0.0007 (5) −0.0038 (5)
C10 0.0145 (6) 0.0248 (7) 0.0206 (6) 0.0027 (5) −0.0050 (5) 0.0017 (5)
C11 0.0281 (8) 0.0429 (9) 0.0196 (6) 0.0005 (7) −0.0040 (6) 0.0012 (6)
C12 0.0281 (8) 0.0264 (7) 0.0296 (7) 0.0064 (6) −0.0033 (6) 0.0000 (6)
C13 0.0146 (7) 0.0421 (9) 0.0348 (8) −0.0032 (6) −0.0069 (6) 0.0052 (7)
C14 0.0364 (9) 0.0281 (7) 0.0232 (7) −0.0031 (7) 0.0026 (6) −0.0084 (6)
C15 0.0164 (6) 0.0189 (6) 0.0188 (6) −0.0003 (5) −0.0011 (5) 0.0037 (5)
N1 0.0129 (5) 0.0185 (5) 0.0196 (5) −0.0023 (4) −0.0008 (4) 0.0012 (4)
O1 0.0269 (5) 0.0215 (5) 0.0256 (5) −0.0057 (4) 0.0063 (4) −0.0059 (4)
O2 0.0191 (5) 0.0249 (5) 0.0224 (5) −0.0012 (4) 0.0020 (4) −0.0060 (4)
O3 0.0179 (5) 0.0250 (5) 0.0333 (5) −0.0016 (4) −0.0080 (4) −0.0020 (4)
O4 0.0123 (4) 0.0210 (5) 0.0223 (4) −0.0010 (3) −0.0038 (4) 0.0031 (4)
O5 0.0175 (5) 0.0214 (5) 0.0221 (4) −0.0027 (4) 0.0013 (4) 0.0028 (4)

Geometric parameters (Å, º)

C1—C2 1.380 (2) C10—O4 1.4834 (16)
C1—C6 1.3942 (19) C10—C13 1.517 (2)
C1—H1A 0.9300 C10—C12 1.520 (2)
C2—C3 1.3997 (19) C10—C11 1.524 (2)
C2—H2A 0.9300 C11—H11A 0.9600
C3—C4 1.3915 (19) C11—H11B 0.9600
C3—C7 1.5079 (18) C11—H11C 0.9600
C4—C5 1.391 (2) C12—H12A 0.9600
C4—H4A 0.9300 C12—H12B 0.9600
C5—C6 1.3893 (19) C12—H12C 0.9600
C5—H5A 0.9300 C13—H13A 0.9600
C6—O1 1.3653 (16) C13—H13B 0.9600
C7—C8 1.5408 (19) C13—H13C 0.9600
C7—H7A 0.9700 C14—O2 1.4578 (17)
C7—H7B 0.9700 C14—H14A 0.9600
C8—N1 1.4415 (16) C14—H14B 0.9600
C8—C15 1.5265 (18) C14—H14C 0.9600
C8—H8A 0.9800 C15—O3 1.2079 (18)
C9—O5 1.2210 (17) C15—O2 1.3309 (17)
C9—O4 1.3424 (16) N1—H1B 0.8600
C9—N1 1.3447 (17) O1—H1C 0.8200
C2—C1—C6 119.69 (13) O4—C10—C11 111.29 (12)
C2—C1—H1A 120.2 C13—C10—C11 110.79 (12)
C6—C1—H1A 120.2 C12—C10—C11 112.37 (13)
C1—C2—C3 121.55 (13) C10—C11—H11A 109.5
C1—C2—H2A 119.2 C10—C11—H11B 109.5
C3—C2—H2A 119.2 H11A—C11—H11B 109.5
C4—C3—C2 117.90 (12) C10—C11—H11C 109.5
C4—C3—C7 121.49 (12) H11A—C11—H11C 109.5
C2—C3—C7 120.51 (12) H11B—C11—H11C 109.5
C5—C4—C3 121.20 (12) C10—C12—H12A 109.5
C5—C4—H4A 119.4 C10—C12—H12B 109.5
C3—C4—H4A 119.4 H12A—C12—H12B 109.5
C6—C5—C4 119.85 (12) C10—C12—H12C 109.5
C6—C5—H5A 120.1 H12A—C12—H12C 109.5
C4—C5—H5A 120.1 H12B—C12—H12C 109.5
O1—C6—C5 122.90 (12) C10—C13—H13A 109.5
O1—C6—C1 117.34 (12) C10—C13—H13B 109.5
C5—C6—C1 119.75 (12) H13A—C13—H13B 109.5
C3—C7—C8 114.62 (10) C10—C13—H13C 109.5
C3—C7—H7A 108.6 H13A—C13—H13C 109.5
C8—C7—H7A 108.6 H13B—C13—H13C 109.5
C3—C7—H7B 108.6 O2—C14—H14A 109.5
C8—C7—H7B 108.6 O2—C14—H14B 109.5
H7A—C7—H7B 107.6 H14A—C14—H14B 109.5
N1—C8—C15 114.93 (11) O2—C14—H14C 109.5
N1—C8—C7 109.87 (11) H14A—C14—H14C 109.5
C15—C8—C7 107.10 (10) H14B—C14—H14C 109.5
N1—C8—H8A 108.2 O3—C15—O2 123.75 (13)
C15—C8—H8A 108.2 O3—C15—C8 121.54 (12)
C7—C8—H8A 108.2 O2—C15—C8 114.67 (11)
O5—C9—O4 125.14 (13) C9—N1—C8 121.70 (11)
O5—C9—N1 124.15 (13) C9—N1—H1B 119.2
O4—C9—N1 110.71 (12) C8—N1—H1B 119.2
O4—C10—C13 101.82 (11) C6—O1—H1C 109.5
O4—C10—C12 109.26 (11) C15—O2—C14 114.55 (12)
C13—C10—C12 110.83 (13) C9—O4—C10 121.33 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1B···O3i 0.86 2.27 3.0583 (16) 153
O1—H1C···O5ii 0.82 1.92 2.7356 (15) 180

Symmetry codes: (i) x+1/2, −y+3/2, −z; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5632).

References

  1. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  5. Sykes, B. M., Atwell, G. J., Hogg, A., Wilson, W. R., O’Connor, C. J. & Denny, W. A. (1999). J. Med. Chem. 42, 346-355. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681301979X/lh5632sup1.cif

e-69-o1372-sup1.cif (16.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681301979X/lh5632Isup2.hkl

e-69-o1372-Isup2.hkl (178.3KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681301979X/lh5632Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES