Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Aug 7;69(Pt 9):o1398. doi: 10.1107/S1600536813021624

4-Meth­oxy-N-(1-methyl-1H-indazol-5-yl)benzene­sulfonamide

Hakima Chicha a,*, El Mostapha Rakib a, Detlef Geffken b, Mohamed Saadi c, Lahcen El Ammari c
PMCID: PMC3884501  PMID: 24427037

Abstract

The indazole ring system [maximum deviation = 0.013 (2) Å] of the title compound, C15H15N3O3S, makes a dihedral angle of 50.11 (7)° with the benzene ring. In the crystal, cohesion is provided by C—H⋯O and N—H⋯N hydrogen bonds, which link the molecules into chains propagating along the b-axis direction.

Related literature  

For the pharmacological activity of sulfonamide derivatives, see: Bouissane et al. (2006); El-Sayed et al. (2011); Mustafa et al. (2012). For similar compounds, see: Abbassi et al. (2012, 2013); Chicha et al. (2013).graphic file with name e-69-o1398-scheme1.jpg

Experimental  

Crystal data  

  • C15H15N3O3S

  • M r = 317.36

  • Monoclinic, Inline graphic

  • a = 10.1069 (3) Å

  • b = 13.6178 (3) Å

  • c = 10.8530 (2) Å

  • β = 90.777 (2)°

  • V = 1493.60 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.39 × 0.33 × 0.23 mm

Data collection  

  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.651, T max = 0.747

  • 19007 measured reflections

  • 4178 independent reflections

  • 3232 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.125

  • S = 1.02

  • 4178 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813021624/bt6924sup1.cif

e-69-o1398-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813021624/bt6924Isup2.hkl

e-69-o1398-Isup2.hkl (200.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813021624/bt6924Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.89 2.25 3.1335 (19) 176
C8—H8A⋯O1ii 0.96 2.49 3.391 (2) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

1. Comment

Sulfonamide derivatives are well known pharmaceutical agents since this group has been the main functional part of the most of the drug structures due to stability and tolerance in human beings. These compounds exhibit a wide range of biological activities such as anticancer, anti-inflammatory, and antiviral functions (Abbassi et al., 2012; Bouissane et al., 2006; El-Sayed et al., 2011; Mustafa et al., 2012). The present work is a continuation of the investigation of the sulfonamide derivatives published recently by our team (Abbassi et al., 2013; Chicha et al., 2013).

The molecule of 4-Methoxy-N-(1-methyl-1H-indazol-5-yl)-benzenesulfonamide is built up from the fused five- and six-membered rings (N2 N3 C1—C7) linked to the benzenesulfonamide group as shown in Fig. 1. The fused rings system is planar, with the maximum deviation of -0.013 (2) Å for N2 atom. Moreover, the dihedral angle between the indazole system and the plan through the atoms forming the benzene ring (C9—C14) is of 50.11 (7)°.

In the crystal, the molecules are interconnected by C8–H8A···O1 and N1–H1···N2 hydrogen bonds forming a one-dimensional chain running along the b axis as shown in Fig.2 and Table 2.

2. Experimental

A mixture of 1-methyl-5-nitroindazole (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 ml of absolute ethanol was heated at 333 K for 6 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methoxybenzenesulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with Ethyl acetate: Hexane 1:9). The title compound was recrystallized from acetone.

3. Refinement

H atoms were located in a difference map and treated as riding with C–H = 0.96 Å, C–H = 0.93 Å, and N–H = 0.89 Å for methyl, aromatic CH and NH respectively. All hydrogen with Uiso(H) = 1.2 Ueq (aromatic, NH) and Uiso(H) = 1.5 Ueq for methyl.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Fig. 2.

Fig. 2.

Partial crystal packing for the title compound showing C8–H8A···O1 and N1–H1···N2 hydrogen bonds as dashed lines.

Crystal data

C15H15N3O3S F(000) = 664
Mr = 317.36 Dx = 1.411 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4178 reflections
a = 10.1069 (3) Å θ = 2.4–29.6°
b = 13.6178 (3) Å µ = 0.23 mm1
c = 10.8530 (2) Å T = 296 K
β = 90.777 (2)° Block, colourless
V = 1493.60 (6) Å3 0.39 × 0.33 × 0.23 mm
Z = 4

Data collection

Bruker X8 APEXII diffractometer 4178 independent reflections
Radiation source: fine-focus sealed tube 3232 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
φ and ω scans θmax = 29.6°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −14→13
Tmin = 0.651, Tmax = 0.747 k = −18→18
19007 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.2788P] where P = (Fo2 + 2Fc2)/3
4178 reflections (Δ/σ)max < 0.001
199 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.35240 (14) 0.12964 (10) 0.31509 (12) 0.0369 (3)
C2 0.32504 (16) 0.16841 (11) 0.19599 (14) 0.0411 (3)
H2 0.3091 0.2353 0.1875 0.049*
C3 0.32149 (15) 0.11009 (11) 0.09337 (13) 0.0395 (3)
H3 0.3025 0.1356 0.0156 0.047*
C4 0.34782 (13) 0.01018 (10) 0.11104 (12) 0.0341 (3)
C5 0.37682 (14) −0.02927 (10) 0.22857 (13) 0.0364 (3)
C6 0.37813 (15) 0.03159 (10) 0.33265 (13) 0.0379 (3)
H6 0.3958 0.0065 0.4108 0.045*
C7 0.39589 (17) −0.13088 (11) 0.20596 (14) 0.0452 (4)
H7 0.4174 −0.1766 0.2666 0.054*
C8 0.32417 (16) −0.06444 (13) −0.10173 (13) 0.0479 (4)
H8A 0.2402 −0.0949 −0.1185 0.072*
H8B 0.3925 −0.0996 −0.1437 0.072*
H8C 0.3221 0.0023 −0.1301 0.072*
C9 0.53540 (14) 0.33142 (10) 0.36119 (13) 0.0379 (3)
C10 0.46991 (15) 0.42076 (11) 0.35614 (15) 0.0437 (3)
H10 0.4051 0.4347 0.4136 0.052*
C11 0.49956 (17) 0.48930 (11) 0.26688 (15) 0.0472 (4)
H11 0.4541 0.5486 0.2632 0.057*
C12 0.59753 (18) 0.46877 (13) 0.18314 (15) 0.0494 (4)
C13 0.6648 (2) 0.37995 (15) 0.18895 (16) 0.0586 (5)
H13 0.7313 0.3667 0.1329 0.070*
C14 0.63377 (17) 0.31130 (12) 0.27713 (15) 0.0498 (4)
H14 0.6786 0.2517 0.2803 0.060*
C15 0.5734 (3) 0.62492 (16) 0.0850 (2) 0.0806 (7)
H15A 0.6100 0.6615 0.0179 0.121*
H15B 0.5874 0.6603 0.1605 0.121*
H15C 0.4802 0.6159 0.0709 0.121*
N1 0.35058 (13) 0.19331 (9) 0.42115 (11) 0.0409 (3)
H1 0.2838 0.2355 0.4224 0.049*
N2 0.37938 (15) −0.15242 (9) 0.08822 (12) 0.0469 (3)
N3 0.35107 (12) −0.06604 (9) 0.03012 (11) 0.0395 (3)
O1 0.45149 (14) 0.29493 (9) 0.58123 (10) 0.0567 (3)
O2 0.58740 (13) 0.16972 (9) 0.47644 (12) 0.0579 (3)
O3 0.63640 (17) 0.53163 (11) 0.09322 (13) 0.0755 (4)
S1 0.48793 (4) 0.24415 (3) 0.47110 (3) 0.04197 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0415 (7) 0.0326 (7) 0.0365 (7) −0.0015 (5) −0.0014 (5) 0.0031 (5)
C2 0.0483 (8) 0.0321 (7) 0.0429 (7) 0.0028 (6) −0.0013 (6) 0.0080 (6)
C3 0.0421 (8) 0.0392 (7) 0.0370 (7) 0.0019 (6) −0.0040 (6) 0.0099 (6)
C4 0.0306 (6) 0.0362 (7) 0.0356 (6) −0.0032 (5) −0.0025 (5) 0.0033 (5)
C5 0.0394 (7) 0.0314 (6) 0.0382 (7) −0.0036 (5) −0.0061 (5) 0.0062 (5)
C6 0.0459 (8) 0.0325 (7) 0.0352 (6) −0.0043 (6) −0.0044 (5) 0.0061 (5)
C7 0.0576 (10) 0.0321 (7) 0.0455 (8) −0.0008 (6) −0.0100 (7) 0.0048 (6)
C8 0.0482 (9) 0.0578 (10) 0.0375 (7) −0.0042 (7) −0.0038 (6) −0.0005 (7)
C9 0.0381 (7) 0.0349 (7) 0.0404 (7) 0.0012 (6) −0.0068 (5) −0.0049 (5)
C10 0.0387 (8) 0.0394 (8) 0.0530 (8) 0.0038 (6) 0.0047 (6) 0.0003 (6)
C11 0.0449 (8) 0.0376 (8) 0.0589 (9) −0.0007 (6) −0.0006 (7) 0.0026 (7)
C12 0.0552 (10) 0.0494 (9) 0.0438 (8) −0.0136 (8) 0.0020 (7) −0.0036 (6)
C13 0.0637 (11) 0.0624 (11) 0.0502 (9) −0.0011 (9) 0.0174 (8) −0.0140 (8)
C14 0.0531 (9) 0.0452 (9) 0.0511 (9) 0.0092 (7) 0.0017 (7) −0.0142 (7)
C15 0.114 (2) 0.0596 (12) 0.0682 (13) −0.0229 (13) −0.0051 (12) 0.0189 (10)
N1 0.0482 (7) 0.0341 (6) 0.0403 (6) 0.0021 (5) 0.0011 (5) −0.0004 (5)
N2 0.0566 (8) 0.0359 (6) 0.0480 (7) −0.0003 (6) −0.0074 (6) −0.0004 (5)
N3 0.0433 (7) 0.0386 (6) 0.0366 (6) −0.0015 (5) −0.0047 (5) 0.0004 (5)
O1 0.0813 (9) 0.0532 (7) 0.0355 (5) 0.0041 (6) −0.0057 (5) −0.0049 (5)
O2 0.0621 (8) 0.0473 (7) 0.0638 (7) 0.0159 (6) −0.0164 (6) 0.0051 (6)
O3 0.0955 (11) 0.0686 (9) 0.0631 (8) −0.0169 (8) 0.0209 (8) 0.0082 (7)
S1 0.0531 (2) 0.0361 (2) 0.03648 (19) 0.00611 (15) −0.00831 (15) −0.00026 (13)

Geometric parameters (Å, º)

C1—C6 1.3731 (19) C9—S1 1.7553 (15)
C1—C2 1.4199 (19) C10—C11 1.381 (2)
C1—N1 1.4415 (18) C10—H10 0.9300
C2—C3 1.368 (2) C11—C12 1.382 (2)
C2—H2 0.9300 C11—H11 0.9300
C3—C4 1.3990 (19) C12—O3 1.360 (2)
C3—H3 0.9300 C12—C13 1.388 (3)
C4—N3 1.3603 (18) C13—C14 1.377 (3)
C4—C5 1.4111 (18) C13—H13 0.9300
C5—C6 1.401 (2) C14—H14 0.9300
C5—C7 1.419 (2) C15—O3 1.423 (3)
C6—H6 0.9300 C15—H15A 0.9600
C7—N2 1.320 (2) C15—H15B 0.9600
C7—H7 0.9300 C15—H15C 0.9600
C8—N3 1.4530 (19) N1—S1 1.6370 (14)
C8—H8A 0.9600 N1—H1 0.8867
C8—H8B 0.9600 N2—N3 1.3633 (18)
C8—H8C 0.9600 O1—S1 1.4332 (12)
C9—C10 1.386 (2) O2—S1 1.4283 (12)
C9—C14 1.386 (2)
C6—C1—C2 121.47 (13) C10—C11—C12 119.26 (15)
C6—C1—N1 118.59 (12) C10—C11—H11 120.4
C2—C1—N1 119.92 (12) C12—C11—H11 120.4
C3—C2—C1 121.86 (13) O3—C12—C11 124.13 (17)
C3—C2—H2 119.1 O3—C12—C13 115.78 (16)
C1—C2—H2 119.1 C11—C12—C13 120.08 (15)
C2—C3—C4 116.75 (12) C14—C13—C12 120.46 (15)
C2—C3—H3 121.6 C14—C13—H13 119.8
C4—C3—H3 121.6 C12—C13—H13 119.8
N3—C4—C3 131.28 (13) C13—C14—C9 119.70 (15)
N3—C4—C5 106.65 (12) C13—C14—H14 120.2
C3—C4—C5 122.07 (13) C9—C14—H14 120.2
C6—C5—C4 120.21 (13) O3—C15—H15A 109.5
C6—C5—C7 135.76 (13) O3—C15—H15B 109.5
C4—C5—C7 104.01 (12) H15A—C15—H15B 109.5
C1—C6—C5 117.62 (12) O3—C15—H15C 109.5
C1—C6—H6 121.2 H15A—C15—H15C 109.5
C5—C6—H6 121.2 H15B—C15—H15C 109.5
N2—C7—C5 111.63 (13) C1—N1—S1 119.93 (10)
N2—C7—H7 124.2 C1—N1—H1 114.8
C5—C7—H7 124.2 S1—N1—H1 111.3
N3—C8—H8A 109.5 C7—N2—N3 106.21 (12)
N3—C8—H8B 109.5 C4—N3—N2 111.50 (11)
H8A—C8—H8B 109.5 C4—N3—C8 128.21 (13)
N3—C8—H8C 109.5 N2—N3—C8 120.24 (13)
H8A—C8—H8C 109.5 C12—O3—C15 118.25 (16)
H8B—C8—H8C 109.5 O2—S1—O1 119.82 (7)
C10—C9—C14 119.61 (15) O2—S1—N1 107.85 (7)
C10—C9—S1 119.11 (12) O1—S1—N1 104.71 (8)
C14—C9—S1 121.24 (12) O2—S1—C9 108.02 (8)
C11—C10—C9 120.87 (14) O1—S1—C9 108.41 (7)
C11—C10—H10 119.6 N1—S1—C9 107.44 (6)
C9—C10—H10 119.6

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···N2i 0.89 2.25 3.1335 (19) 176
C8—H8A···O1ii 0.96 2.49 3.391 (2) 157

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6924).

References

  1. Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249. [DOI] [PubMed]
  2. Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191. [DOI] [PMC free article] [PubMed]
  3. Bouissane, L., El Kazzouli, S., Leonce, S., Pfeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088. [DOI] [PubMed]
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chicha, H., Kouakou, A., Rakib, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1353. [DOI] [PMC free article] [PubMed]
  6. El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714–3720. [DOI] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Mustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535–2539. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813021624/bt6924sup1.cif

e-69-o1398-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813021624/bt6924Isup2.hkl

e-69-o1398-Isup2.hkl (200.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813021624/bt6924Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES