Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Jun;71(6):2357–2361. doi: 10.1073/pnas.71.6.2357

Rapid Inactivation of Ovalbumin Messenger Ribonucleic Acid after Acute Withdrawal of Estrogen

Richard D Palmiter 1,*, Norman H Carey 1
PMCID: PMC388454  PMID: 4526211

Abstract

Synthesis of ovalbumin mRNA is induced and maintained in the avian oviduct by estrogen. When estrogen is rapidly removed from circulation, there is a general involution of the oviduct and an unusually rapid decay of ovalbumin mRNA activity. The kinetics of ovalbumin mRNA decay were not first order; instead, the rate of degradation increased about 10-fold over a 20-hr period after removal of estrogen. These results are in contrast with first-order decay kinetics observed for ovalbumin mRNA in estrogen-stimulated chicks (t1/2 = about 24 hr) and in cell-free extracts. The degradative response triggered by hormonal withdrawal becomes more rapid between 1 and 4 days of estrogen-stimulated growth. We conclude that in the process of inducing egg-white protein synthesis, estrogen produces a cellular environment in which the egg-white protein mRNAs are relatively stable; removal of estrogen initiates cellular catabolism in a manner that is not understood.

Keywords: oviduct, cell death, ribonuclease

Full text

PDF
2357

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badenoch-Jones P., Baum H. Progesterone-induced permeability changes in rat liver lysosomes. Nat New Biol. 1973 Mar 28;242(117):123–124. doi: 10.1038/newbio242123a0. [DOI] [PubMed] [Google Scholar]
  2. Bern H. A., Nicoll C. S. The comparative endocrinology of prolactin. Recent Prog Horm Res. 1968;24:681–720. doi: 10.1016/b978-1-4831-9827-9.50019-8. [DOI] [PubMed] [Google Scholar]
  3. Chan L., Means A. R., O'Malley B. W. Rates of induction of specific translatable messenger RNAs for ovalbumin and avidin by steroid hormones. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1870–1874. doi: 10.1073/pnas.70.6.1870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cho-Chung Y. S., Gullino P. M. Mammary tumor regression. V. Role of acid ribonuclease and cathepsin. J Biol Chem. 1973 Jul 10;248(13):4743–4749. [PubMed] [Google Scholar]
  5. Gander E. S., Stewart A. G., Morel C. M., Scherrer K. Isolation and characterization of ribosome-free cytoplasmic messenger-ribonucleoprotein complexes from avian erythroblasts. Eur J Biochem. 1973 Oct 18;38(3):443–452. doi: 10.1111/j.1432-1033.1973.tb03078.x. [DOI] [PubMed] [Google Scholar]
  6. Greenbaum A. L. Lysosomal enzyme changes in enforced mammary-gland involution. Biochem J. 1965 Nov;97(2):518–522. doi: 10.1042/bj0970518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gullino P. M., Grantham F. H., Losonczy I., Berghoffer B. Mammary tumor regression. I. Physiopathologic characteristics of hormone-dependent tissue. J Natl Cancer Inst. 1972 Nov;49(5):1333–1348. [PubMed] [Google Scholar]
  8. Kwan S. W., Brawerman G. A particle associated with the polyadenylate segment in mammalian messenger RNA. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3247–3250. doi: 10.1073/pnas.69.11.3247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lockshin R. A., Williams C. M. Programmed cell death. V. Cytolytic enzymes in relation to the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol. 1965 Jul;11(7):831–844. doi: 10.1016/0022-1910(65)90186-1. [DOI] [PubMed] [Google Scholar]
  10. O'Malley B. W., Means A. R. Female steroid hormones and target cell nuclei. Science. 1974 Feb 15;183(4125):610–620. doi: 10.1126/science.183.4125.610. [DOI] [PubMed] [Google Scholar]
  11. Palmiter R. D., Catlin G. H., Cox R. F. Chromatin-associated receptors for estrogen, progesterone, and dihydrotestosterone and the induction of egg white protein synthesis in chick magnum. Cell Differ. 1973 Jul;2(3):163–170. doi: 10.1016/0045-6039(73)90017-1. [DOI] [PubMed] [Google Scholar]
  12. Palmiter R. D., Haines M. E. Regulation of protein synthesis in chick oviduct. IV, Role of testosterone. J Biol Chem. 1973 Mar 25;248(6):2107–2116. [PubMed] [Google Scholar]
  13. Palmiter R. D., Oka T., Schimke R. T. Modulation of ovalbumin synthesis by estradiol-17 beta and actinomycin D as studied in explants of chick oviduct in culture. J Biol Chem. 1971 Feb 10;246(3):724–737. [PubMed] [Google Scholar]
  14. Palmiter R. D. Rate of ovalbumin messenger ribonucleic acid synthesis in the oviduct of estrogen-primed chicks. J Biol Chem. 1973 Dec 10;248(23):8260–8270. [PubMed] [Google Scholar]
  15. Palmiter R. D. Regulation of protein synthesis in chick oviduct. I. Independent regulation of ovalbumin, conalbumin, ovomucoid, and lysozyme induction. J Biol Chem. 1972 Oct 25;247(20):6450–6461. [PubMed] [Google Scholar]
  16. Rutter W. J., Pictet R. L., Morris P. W. Toward molecular mechanisms of developmental processes. Annu Rev Biochem. 1973;42:601–646. doi: 10.1146/annurev.bi.42.070173.003125. [DOI] [PubMed] [Google Scholar]
  17. Saunders J. W., Jr Death in embryonic systems. Science. 1966 Nov 4;154(3749):604–612. doi: 10.1126/science.154.3749.604. [DOI] [PubMed] [Google Scholar]
  18. WEISSMANN G., THOMAS L. THE EFFECTS OF CORTICOSTEROIDS UPON CONNECTIVE TISSUE AND LYSOSOMES. Recent Prog Horm Res. 1964;20:215–245. [PubMed] [Google Scholar]
  19. Yu J. Y., Marquardt R. R. Development, cellular growth, and function of the avian oviduct. Studies on the magnum during a reproductive cycle of the domestic fowl (Gallus domesticus). Biol Reprod. 1973 Apr;8(3):283–298. doi: 10.1093/biolreprod/8.3.283. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES