Abstract
DNA repair synthesis was examined in mouse satellite and mainband DNA derived from confluent Balb/c 3T3 cells damaged with ultraviolet radiation or N-acetoxy-2-acetylaminofluorene. Two different approaches were used: (i) Contact-inhibited cells were treated with hydroxyurea to reduce replicative synthesis to low levels; and (ii) bromodeoxyuridine was used to label newly replicated DNA in cells that had escaped contact inhibition. DNA was separated into mainband and satellite fractions in Ag+-Cs2SO4 gradients. After treatment with either ultraviolet radiation or N-acetoxy-2-acetylaminofluorene, repair synthesis occurred to the same extent in mainband and satellite DNA. Repair synthesis increased over an ultraviolet radiation dose range of 30-200 erg/mm2, and the extent of repair in the two DNA species was similar at each dose level. An analysis of the separated strands of satellite DNA from ultraviolet-irradiated cells indicated that the extent of repair is closely correlated with the availability of pyrimidines for cyclobutyl dimer formation and provided evidence that repair synthesis occurs at the site of damage. Within the precision of our experiments the results suggest that at least one group of highly repetitive, nontranslated DNA sequences is repaired to about the same extent as the rest of the genome.
Keywords: N-acetoxy-2-acetylaminofluorene, Ag+-Cs2SO4 gradients, carcinogenesis, mutagenesis, ultraviolet radiation
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brandt W. N., Flamm W. G., Bernheim N. J. The value of hydroxyurea in assessing repair synthesis of DNA in HeLa cells. Chem Biol Interact. 1972 Oct;5(5):327–339. doi: 10.1016/0009-2797(72)90072-5. [DOI] [PubMed] [Google Scholar]
- Brunk C. F. Distribution of dimers in ultraviolet-irradiated DNA. Nat New Biol. 1973 Jan 17;241(107):74–76. doi: 10.1038/newbio241074a0. [DOI] [PubMed] [Google Scholar]
- Cleaver J. E. DNA repair in Chinese hamster cells of different sensitivities to ultra-violet light. Int J Radiat Biol Relat Stud Phys Chem Med. 1969;16(3):277–285. doi: 10.1080/09553006914551281. [DOI] [PubMed] [Google Scholar]
- Cleaver J. E. DNA repair with purines and pyrimidines in radiation- and carcinogen-damaged normal and xeroderma pigmentosum human cells. Cancer Res. 1973 Feb;33(2):362–369. [PubMed] [Google Scholar]
- Cleaver J. E. Defective repair replication of DNA in xeroderma pigmentosum. Nature. 1968 May 18;218(5142):652–656. doi: 10.1038/218652a0. [DOI] [PubMed] [Google Scholar]
- Corneo G., Ginelli E., Soave C., Bernardi G. Isolation and characterization of mouse and guinea pig satellite deoxyribonucleic acids. Biochemistry. 1968 Dec;7(12):4373–4379. doi: 10.1021/bi00852a033. [DOI] [PubMed] [Google Scholar]
- Damjanov I., Cox R., Sarma D. S., Farber E. Patterns of damage and repair of liver DNA induced by carcinogenic methylating agents in vivo. Cancer Res. 1973 Sep;33(9):2122–2128. [PubMed] [Google Scholar]
- De Weerd-Kastelein E. A., Keijzer W., Bootsma D. Genetic heterogeneity of xeroderma pigmentosum demonstrated by somatic cell hybridization. Nat New Biol. 1972 Jul 19;238(81):80–83. doi: 10.1038/newbio238080a0. [DOI] [PubMed] [Google Scholar]
- ERIKSON R. L., SZYBALSKI W. MOLECULAR RADIOBIOLOGY OF HUMAN CELL LINES. V. COMPARATIVE RADIOSENSITIZING PROPERTIES OF 5-HALODEOXYCYTIDINES AND 5-HALODEOXYURIDINES. Radiat Res. 1963 Oct;20:252–262. [PubMed] [Google Scholar]
- Edenberg H. J., Hanawalt P. C. The timecourse of DNA repair replication in ultraviolet-irradiated HeLa cells. Biochim Biophys Acta. 1973 Oct 12;324(2):206–217. doi: 10.1016/0005-2787(73)90138-x. [DOI] [PubMed] [Google Scholar]
- Epstein J. H., Fukuyama K., Epstein W. L. UVL induced stimulation of DNA synthesis in hairless mouse epidermis. J Invest Dermatol. 1968 Dec;51(6):445–453. doi: 10.1038/jid.1968.154. [DOI] [PubMed] [Google Scholar]
- Farber E. Carcinogenesis--cellular evolution as a unifying thread: Presidential address. Cancer Res. 1973 Nov;33(11):2537–2550. [PubMed] [Google Scholar]
- Flamm W. G., Bernheim N. J., Spalding J. Selective inhibition of the semiconservative replication of mouse satellite DNA. Biochim Biophys Acta. 1969 Nov 19;195(1):273–275. doi: 10.1016/0005-2787(69)90631-5. [DOI] [PubMed] [Google Scholar]
- Flamm W. G. Highly repetitive sequences of DNA in chromosomes. Int Rev Cytol. 1972;32:1–51. doi: 10.1016/s0074-7696(08)60337-x. [DOI] [PubMed] [Google Scholar]
- Flamm W. G., McCallum M., Walker P. M. The isolation of complementary strands from a mouse DNA fraction. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1729–1734. doi: 10.1073/pnas.57.6.1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujiwara Y., Kondo T. Caffeine-sensitive repair of ultraviolet light-damaged DNA of mouse L cells. Biochem Biophys Res Commun. 1972 May 12;47(3):557–564. doi: 10.1016/0006-291x(72)90915-1. [DOI] [PubMed] [Google Scholar]
- King J. L., Jukes T. H. Non-Darwinian evolution. Science. 1969 May 16;164(3881):788–798. doi: 10.1126/science.164.3881.788. [DOI] [PubMed] [Google Scholar]
- Klímek M. Thymine dimerization in L-strain mammalian cells after irradiation with ultraviolet light and the search for repair mechanisms. Photochem Photobiol. 1966 Aug;5(8):603–607. doi: 10.1111/j.1751-1097.1966.tb05806.x. [DOI] [PubMed] [Google Scholar]
- Lehmann A. R. Post-replication repair of DNA in ultraviolet-irradiated mammalian cells. No gaps in DNA synthesized late after ultraviolet irradiation. Eur J Biochem. 1972 Dec 18;31(3):438–445. doi: 10.1111/j.1432-1033.1972.tb02550.x. [DOI] [PubMed] [Google Scholar]
- Lieberman M. W., Baney R. N., Lee R. E., Sell S., Farber E. Studies on DNA repair in human lymphocytes treated with proximate carcinogens and alkylating agents. Cancer Res. 1971 Sep;31(9):1297–1306. [PubMed] [Google Scholar]
- Lieberman M. W., Forbes P. D. Demonstration of DNA repair in normal and neoplastic tissues after treatment with proximate chemical carcinogens and ultraviolet radiation. Nat New Biol. 1973 Feb 14;241(111):199–201. doi: 10.1038/newbio241199a0. [DOI] [PubMed] [Google Scholar]
- Lieberman M. W. Fractionation of mouse DNA in preparative Ag+ -Cs2SO4 gradients. Biochim Biophys Acta. 1973 Oct 26;324(3):309–319. doi: 10.1016/0005-2787(73)90277-3. [DOI] [PubMed] [Google Scholar]
- Lieberman M. W., Poirier M. C. Deoxyribonucleoside incorporation during DNA repair of carcinogen-induced damage in human diploid fibroblasts. Cancer Res. 1973 Sep;33(9):2097–2103. [PubMed] [Google Scholar]
- Meltz M. L., Painter R. B. Distribution of repair replication in the HeLa cell genome. Int J Radiat Biol Relat Stud Phys Chem Med. 1973 Jun;23(6):637–640. doi: 10.1080/09553007314550741. [DOI] [PubMed] [Google Scholar]
- Miller J. A. Carcinogenesis by chemicals: an overview--G. H. A. Clowes memorial lecture. Cancer Res. 1970 Mar;30(3):559–576. [PubMed] [Google Scholar]
- Painter R. B., Cleaver J. E. Repair replication, unscheduled DNA synthesis, and the repair of mammalian DNA. Radiat Res. 1969 Mar;37(3):451–466. [PubMed] [Google Scholar]
- Pardue M. L., Gall J. G. Chromosomal localization of mouse satellite DNA. Science. 1970 Jun 12;168(3937):1356–1358. doi: 10.1126/science.168.3937.1356. [DOI] [PubMed] [Google Scholar]
- Roberts J. J., Pascoe J. M., Smith B. A., Crathorn A. R. Quantitative aspects of the repair of alkylated DNA in cultured mammalian cells. II. Non-semiconservative DNA synthesis ('repair synthesis') in HeLa and Chinese hamster cells following treatment with alkylating agents. Chem Biol Interact. 1971 Feb;3(1):49–68. doi: 10.1016/0009-2797(71)90025-1. [DOI] [PubMed] [Google Scholar]
- Setlow R. B., Carrier W. L. Pyrimidine dimers in ultraviolet-irradiated DNA's. J Mol Biol. 1966 May;17(1):237–254. doi: 10.1016/s0022-2836(66)80105-5. [DOI] [PubMed] [Google Scholar]
- Setlow R. B., Regan J. D. Defective repair of N-acetoxy-2-acetylaminofluorene-induced lesions in the DNA of xeroderma pigmentosum cells. Biochem Biophys Res Commun. 1972 Jan 31;46(2):1019–1024. doi: 10.1016/s0006-291x(72)80243-2. [DOI] [PubMed] [Google Scholar]
- Setlow R. B., Regan J. D., German J., Carrier W. L. Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1035–1041. doi: 10.1073/pnas.64.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stich H. F., San R. H., Kawazoe Y. Increased sensitivity of xeroderma pigmentosum cells to some chemical carcinogens and mutagens. Mutat Res. 1973 Jan;17(1):127–137. doi: 10.1016/0027-5107(73)90261-3. [DOI] [PubMed] [Google Scholar]
- Weinberg E. S., Birnstiel M. L., Purdom I. F., Williamson R. Genes coding for polysomal 9S RNA of sea urchins: conservation and divergence. Nature. 1972 Nov 24;240(5378):225–228. doi: 10.1038/240225a0. [DOI] [PubMed] [Google Scholar]
- Yasmineh W. G., Yunis J. J. Localization of mouse satellite DNA in constitutive heterochromatin. Exp Cell Res. 1970 Jan;59(1):69–75. doi: 10.1016/0014-4827(70)90624-5. [DOI] [PubMed] [Google Scholar]
- Zeiger R. S., Salomon R., Kinoshita N., Peacock A. C. The binding of 9,10-dimethyl-1,2-benzanthracene to mouse epidermal satellite DNA in vivo. Cancer Res. 1972 Mar;32(3):643–647. [PubMed] [Google Scholar]
