Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Nov 6;69(Pt 12):m628. doi: 10.1107/S1600536813029395

Poly[μ-aqua-μ5-[2-(2,3,6-tri­chloro­phenyl)acetato]-caesium]

Graham Smith a,*
PMCID: PMC3884976  PMID: 24454151

Abstract

In the structure of the title complex, [Cs(C8H4Cl3O2)(H2O)]n, the caesium salt of the commercial herbicide fenac [(2,3,6-tri­chloro­phen­yl)acetic acid], the irregular eight-coordination about Cs+ comprises a bidentate O:Cl-chelate inter­action involving a carboxyl­ate-O atom and an ortho-related ring-substituted Cl atom, which is also bridging, a triple-bridging carboxyl­ate-O atom and a bridging water mol­ecule. A two-dimensional polymer is generated, lying parallel to (100), within which there are water–carboxyl­ate O—H⋯O hy­dro­gen-bonding inter­actions.

Related literature  

For background information on the herbicide fenac, see: O’Neil (2001). For the structure of fenac, see: White et al. (1979). For examples of caesium complexes involving coord­inating carbon-bound Cl, see: Levitskaia et al. (2000); Smith (2013).graphic file with name e-69-0m628-scheme1.jpg

Experimental  

Crystal data  

  • [Cs(C8H4Cl3O2)(H2O)]

  • M r = 389.39

  • Monoclinic, Inline graphic

  • a = 17.0606 (12) Å

  • b = 4.9834 (3) Å

  • c = 13.9283 (10) Å

  • β = 98.127 (6)°

  • V = 1172.29 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.82 mm−1

  • T = 200 K

  • 0.20 × 0.15 × 0.07 mm

Data collection  

  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.582, T max = 0.980

  • 7585 measured reflections

  • 2284 independent reflections

  • 1873 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.111

  • S = 1.09

  • 2284 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 2.18 e Å−3

  • Δρmin = −1.86 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813029395/wm2781sup1.cif

e-69-0m628-sup1.cif (23.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813029395/wm2781Isup2.hkl

e-69-0m628-Isup2.hkl (112.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813029395/wm2781Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cs1—Cl6 3.711 (2)
Cs1—O1W 3.131 (6)
Cs1—O13 3.246 (7)
Cs1—Cl6i 3.646 (2)
Cs1—O1W i 3.148 (6)
Cs1—O12ii 3.213 (5)
Cs1—O12iii 3.103 (6)
Cs1—O12iv 3.242 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O13ii 0.97 1.70 2.638 (8) 161
O1W—H12W⋯O12v 0.84 2.40 3.191 (8) 158

Symmetry codes: (ii) Inline graphic; (v) Inline graphic.

Acknowledgments

The author acknowledges financial support from the Science and Engineering Faculty and the University Library, Queensland University of Technology.

supplementary crystallographic information

1. Comment

(2,3,6-Trichlorophenyl)acetic acid (fenac) is a commercial herbicide (O'Neil, 2001) and its crystal structure (White et al., 1979) represents the only entry for this compound in the crystallographic literature. My interest in aromatic carboxylic acid herbicides and in polymeric coordination structures of the alkali metal complexes led to the preparation of the title compound, [Cs(C8H4Cl3O2)(H2O)]n, from the reaction of fenac with caesium hydroxide in aqueous ethanol, and the structure is reported herein.

In this structure (Fig. 1), the irregular eight-coordinate CsClO7 polyhedron comprises a bidentate O:Cl-chelate interaction involving a carboxylate O-atom (O13) and an ortho-related ring substituted Cl-atom (Cl6) which is also bridging, a triple-bridging carboxylate O-atom (O12) and a bridging water molecule O1W (Table 1). A partial expansion of the asymmetric unit in the polymer structure is shown in Fig. 2, forming 4-, 7- and 8-membered cyclic associations linking Cs+ ions (a triple bridge involving Cl6, O1W and O12iii, extending down b). The minimum Cs···Csvi bridging distance in the structure is 4.4336 (9) Å [for symmetry code (i), see Table 1. For code (vi): -x + 2, y + 1/2, -z + 3/2]. In the Cl bridge, the Cs—Cl bond lengths [3.646 (2) and 3.711 (2) Å] are long compared to those commonly present in the few known examples of caesium complexes having coordinating carbon-bound Cl atoms, e.g. 3.46–3.56 Å for a complex in which 1,2-dichloroethane acts as a bidentate chelate ligand (Levitskaia et al., 2000). However, I have previously reported values similar to those in the title complex in the analogous polymeric structure of caesium 4-amino-3,5,6-trichloropyridine-2-carboxylate monohydrate [3.6052 (11)– 3.7151 (11) Å], in which all three ring-substituted Cl-atoms are coordinated (Smith, 2013).

In the crystal structure of the title complex, a polymer with a sheet structure is generated which lies parallel to (100) (Fig. 3), and within which there are waterO—H···Ocarboxylate hydrogen-bonding interactions (Table 2).

2. Experimental

The title compound was synthesized by heating together under reflux for 10 minutes, 0.5 mmol of (2,3,6-trichlorophenyl)acetic acid and 0.5 mmol of CsOH in 15 ml of 10% ethanol–water. Partial room temperature evaporation of the solution gave thin colourless crystal plates of the title complex from which a specimen was cleaved for the X-ray analysis.

3. Refinement

Carbon-bound hydrogen atoms were placed in calculated positions [aromatic C—H = 0.93 Å and methylene C—H = 0.97 Å] and allowed to ride in the refinement, with Uiso(H) = 1.2Ueq(C). Hydrogen atoms of the coordinating water molecule were located in a difference-Fourier synthesis but were subsequently allowed to ride, with Uiso(H) = 1.5Ueq(O). A large maximum residual electron density peak was present (2.176 e- Å-3) located at 0.82 Å from Cs1. A short O1W···O1Wii non-bonding contact [2.804 (8) Å] across an inversion centre was also found.

Figures

Fig. 1.

Fig. 1.

The molecular configuration and atom-numbering scheme for the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids. [For symmetry codes, see Table 1.]

Fig. 2.

Fig. 2.

A partial expansion of the Cs+ coordination in the polymer generated by cyclic links through carboxylate, chlorine and water bridges. Ligand H-atoms are omitted. [For symmetry code (vi): -x + 2, y + 1/2, -z + 3/2. For other codes, see Fig. 1 and Table 1.]

Fig. 3.

Fig. 3.

The packing of the sheet structure in the unit cell viewed down b.

Crystal data

[Cs(C8H4Cl3O2)(H2O)] F(000) = 736
Mr = 389.39 Dx = 2.206 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2248 reflections
a = 17.0606 (12) Å θ = 3.3–28.0°
b = 4.9834 (3) Å µ = 3.82 mm1
c = 13.9283 (10) Å T = 200 K
β = 98.127 (6)° Plate, colourless
V = 1172.29 (14) Å3 0.20 × 0.15 × 0.07 mm
Z = 4

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer 2284 independent reflections
Radiation source: Enhance (Mo) X-ray source 1873 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
Detector resolution: 16.077 pixels mm-1 θmax = 26.0°, θmin = 3.4°
ω scans h = −20→21
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −6→6
Tmin = 0.582, Tmax = 0.980 l = −17→12
7585 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0285P)2 + 9.056P] where P = (Fo2 + 2Fc2)/3
2284 reflections (Δ/σ)max = 0.001
136 parameters Δρmax = 2.18 e Å3
0 restraints Δρmin = −1.86 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cs1 0.91683 (3) 1.08611 (9) 0.65098 (4) 0.0524 (2)
Cl2 0.66412 (12) 1.1809 (4) 0.23490 (12) 0.0501 (6)
Cl3 0.53476 (12) 1.4225 (4) 0.34892 (17) 0.0616 (8)
Cl6 0.76993 (11) 0.5765 (4) 0.54801 (14) 0.0508 (6)
O1W 1.0140 (3) 0.5882 (12) 0.5977 (4) 0.065 (2)
O12 0.8947 (3) 0.8961 (12) 0.2855 (4) 0.0529 (19)
O13 0.8658 (3) 1.0892 (13) 0.4175 (5) 0.072 (2)
C1 0.7124 (3) 0.8850 (12) 0.3931 (4) 0.0274 (17)
C2 0.6586 (4) 1.0773 (13) 0.3521 (4) 0.0326 (19)
C3 0.6013 (4) 1.1852 (14) 0.4022 (5) 0.0367 (19)
C4 0.5961 (4) 1.1051 (15) 0.4948 (5) 0.040 (2)
C5 0.6479 (4) 0.9137 (15) 0.5385 (5) 0.039 (2)
C6 0.7052 (4) 0.8101 (13) 0.4877 (5) 0.0322 (19)
C11 0.7748 (4) 0.7685 (14) 0.3401 (5) 0.036 (2)
C12 0.8505 (4) 0.9352 (12) 0.3479 (4) 0.0307 (19)
H4 0.55790 1.17900 0.52840 0.0480*
H5 0.64430 0.85520 0.60120 0.0470*
H11A 0.75320 0.75000 0.27210 0.0430*
H11B 0.78800 0.59030 0.36530 0.0430*
H11W 1.06400 0.68180 0.60200 0.0970*
H12W 1.02500 0.45100 0.63200 0.0970*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cs1 0.0581 (3) 0.0302 (3) 0.0667 (4) −0.0028 (2) 0.0012 (2) 0.0010 (2)
Cl2 0.0655 (12) 0.0500 (11) 0.0322 (9) −0.0108 (9) −0.0020 (8) 0.0071 (8)
Cl3 0.0487 (12) 0.0503 (12) 0.0787 (15) 0.0179 (9) −0.0157 (10) −0.0073 (11)
Cl6 0.0477 (11) 0.0492 (11) 0.0530 (11) 0.0041 (9) −0.0016 (8) 0.0152 (9)
O1W 0.067 (4) 0.073 (4) 0.061 (3) −0.041 (3) 0.031 (3) −0.027 (3)
O12 0.039 (3) 0.075 (4) 0.049 (3) −0.016 (3) 0.021 (2) −0.026 (3)
O13 0.061 (4) 0.081 (4) 0.083 (4) −0.042 (3) 0.041 (3) −0.050 (4)
C1 0.025 (3) 0.026 (3) 0.031 (3) −0.006 (3) 0.003 (2) −0.004 (3)
C2 0.035 (4) 0.032 (3) 0.029 (3) −0.011 (3) −0.002 (3) −0.004 (3)
C3 0.022 (3) 0.034 (3) 0.051 (4) 0.003 (3) −0.006 (3) −0.011 (3)
C4 0.032 (4) 0.051 (4) 0.039 (4) −0.001 (3) 0.011 (3) −0.017 (3)
C5 0.042 (4) 0.047 (4) 0.030 (3) −0.009 (3) 0.013 (3) −0.005 (3)
C6 0.025 (3) 0.030 (3) 0.039 (4) −0.002 (3) −0.004 (3) −0.003 (3)
C11 0.035 (4) 0.035 (4) 0.038 (4) −0.003 (3) 0.010 (3) −0.010 (3)
C12 0.038 (4) 0.026 (3) 0.029 (3) 0.001 (3) 0.008 (3) −0.005 (3)

Geometric parameters (Å, º)

Cs1—Cl6 3.711 (2) O1W—H12W 0.8400
Cs1—O1W 3.131 (6) C1—C2 1.392 (9)
Cs1—O13 3.246 (7) C1—C11 1.496 (9)
Cs1—Cl6i 3.646 (2) C1—C6 1.392 (9)
Cs1—O1Wi 3.148 (6) C2—C3 1.387 (9)
Cs1—O12ii 3.213 (5) C3—C4 1.365 (10)
Cs1—O12iii 3.103 (6) C4—C5 1.382 (10)
Cs1—O12iv 3.242 (6) C5—C6 1.385 (10)
Cl2—C2 1.727 (6) C11—C12 1.527 (10)
Cl3—C3 1.732 (7) C4—H4 0.9300
Cl6—C6 1.737 (7) C5—H5 0.9300
O12—C12 1.244 (8) C11—H11A 0.9700
O13—C12 1.235 (9) C11—H11B 0.9700
O1W—H11W 0.9700
Cl6—Cs1—O1W 73.58 (10) Cs1ii—O12—Cs1vi 89.15 (14)
Cl6—Cs1—O13 62.95 (11) Cs1ii—O12—Cs1vii 86.76 (13)
Cl6—Cs1—Cl6i 85.27 (4) Cs1vi—O12—Cs1vii 103.50 (16)
Cl6—Cs1—O1Wi 143.35 (11) Cs1—O13—C12 141.3 (5)
Cl6—Cs1—O12ii 136.07 (11) Cs1—O1W—H12W 126.00
Cl6—Cs1—O12iii 64.54 (11) H11W—O1W—H12W 103.00
Cl6—Cs1—O12iv 129.83 (10) Cs1—O1W—H11W 95.00
O1W—Cs1—O13 80.93 (15) Cs1v—O1W—H11W 149.00
Cl6i—Cs1—O1W 142.70 (11) C2—C1—C11 122.6 (5)
O1W—Cs1—O1Wi 105.07 (14) C6—C1—C11 121.8 (5)
O1W—Cs1—O12ii 62.90 (14) C2—C1—C6 115.6 (5)
O1W—Cs1—O12iii 69.09 (14) Cl2—C2—C1 118.2 (5)
O1W—Cs1—O12iv 151.22 (14) Cl2—C2—C3 119.7 (5)
Cl6i—Cs1—O13 62.00 (11) C1—C2—C3 122.1 (5)
O1Wi—Cs1—O13 80.54 (15) C2—C3—C4 120.4 (6)
O12ii—Cs1—O13 113.08 (14) Cl3—C3—C4 118.6 (5)
O12iii—Cs1—O13 124.78 (15) Cl3—C3—C2 121.0 (5)
O12iv—Cs1—O13 122.59 (15) C3—C4—C5 119.7 (6)
Cl6i—Cs1—O1Wi 74.34 (10) C4—C5—C6 119.1 (6)
Cl6i—Cs1—O12ii 134.05 (11) Cl6—C6—C5 116.7 (5)
Cl6i—Cs1—O12iii 128.39 (10) C1—C6—C5 123.2 (6)
Cl6i—Cs1—O12iv 64.16 (10) Cl6—C6—C1 120.2 (5)
O1Wi—Cs1—O12ii 60.21 (14) C1—C11—C12 114.1 (5)
O1Wi—Cs1—O12iii 150.59 (14) O12—C12—C11 117.1 (6)
O1Wi—Cs1—O12iv 67.16 (14) O13—C12—C11 118.5 (6)
O12ii—Cs1—O12iii 93.30 (14) O12—C12—O13 124.3 (7)
O12ii—Cs1—O12iv 90.73 (14) C3—C4—H4 120.00
O12iii—Cs1—O12iv 103.50 (15) C5—C4—H4 120.00
Cs1—Cl6—C6 94.4 (2) C4—C5—H5 120.00
Cs1—Cl6—Cs1v 85.27 (4) C6—C5—H5 120.00
Cs1v—Cl6—C6 173.7 (2) C1—C11—H11A 109.00
Cs1—O1W—Cs1v 105.07 (15) C1—C11—H11B 109.00
Cs1ii—O12—C12 119.0 (4) C12—C11—H11A 109.00
Cs1vi—O12—C12 132.9 (4) C12—C11—H11B 109.00
Cs1vii—O12—C12 114.3 (4) H11A—C11—H11B 108.00
O1W—Cs1—Cl6—C6 −142.6 (3) O1W—Cs1—O12iii—C12iii −172.3 (6)
O1W—Cs1—Cl6—Cs1v 31.08 (11) O13—Cs1—O12iii—Cs1v 32.8 (2)
O13—Cs1—Cl6—C6 −54.6 (3) O13—Cs1—O12iii—C12iii −110.4 (6)
O13—Cs1—Cl6—Cs1v 119.12 (12) Cl6—Cs1—O12iv—Cs1i −112.05 (13)
Cl6i—Cs1—Cl6—C6 6.3 (2) Cl6—Cs1—O12iv—Cs1viii 159.60 (5)
Cl6i—Cs1—Cl6—Cs1v 180.00 (5) Cl6—Cs1—O12iv—C12iv 39.1 (5)
O1Wi—Cs1—Cl6—C6 −49.3 (3) O1W—Cs1—O12iv—Cs1i 109.0 (3)
O1Wi—Cs1—Cl6—Cs1v 124.40 (17) O1W—Cs1—O12iv—Cs1viii 20.7 (3)
O12ii—Cs1—Cl6—C6 −150.5 (3) O1W—Cs1—O12iv—C12iv −99.8 (5)
O12ii—Cs1—Cl6—Cs1v 23.13 (16) O13—Cs1—O12iv—Cs1i −31.8 (2)
O12iii—Cs1—Cl6—C6 143.2 (3) O13—Cs1—O12iv—Cs1viii −120.17 (14)
O12iii—Cs1—Cl6—Cs1v −43.15 (11) O13—Cs1—O12iv—C12iv 119.3 (4)
O12iv—Cs1—Cl6—C6 56.6 (3) Cs1—Cl6—C6—C1 89.9 (5)
O12iv—Cs1—Cl6—Cs1v −129.68 (13) Cs1—Cl6—C6—C5 −90.0 (5)
Cl6—Cs1—O1W—Cs1v −38.11 (11) Cs1vi—O12—C12—O13 153.4 (5)
O13—Cs1—O1W—Cs1v −102.44 (17) Cs1vii—O12—C12—O13 −66.4 (8)
Cl6i—Cs1—O1W—Cs1v −96.19 (19) Cs1ii—O12—C12—C11 −142.5 (5)
O1Wi—Cs1—O1W—Cs1v 180.00 (15) Cs1vi—O12—C12—C11 −23.0 (9)
O12ii—Cs1—O1W—Cs1v 135.7 (2) Cs1vii—O12—C12—C11 117.2 (5)
O12iii—Cs1—O1W—Cs1v 30.36 (15) Cs1ii—O12—C12—O13 33.9 (9)
O12iv—Cs1—O1W—Cs1v 110.2 (3) Cs1—O13—C12—O12 −107.6 (8)
Cl6—Cs1—O13—C12 −39.5 (7) Cs1—O13—C12—C11 68.8 (9)
O1W—Cs1—O13—C12 36.7 (7) C6—C1—C2—C3 −0.5 (9)
Cl6i—Cs1—O13—C12 −139.1 (7) C11—C1—C2—Cl2 0.7 (8)
O1Wi—Cs1—O13—C12 143.7 (7) C6—C1—C2—Cl2 179.8 (5)
O12ii—Cs1—O13—C12 92.0 (7) C2—C1—C6—Cl6 −178.8 (5)
O12iii—Cs1—O13—C12 −19.9 (8) C2—C1—C6—C5 1.1 (9)
O12iv—Cs1—O13—C12 −161.3 (7) C11—C1—C2—C3 −179.6 (6)
Cl6—Cs1—Cl6i—Cs1i 180.00 (4) C11—C1—C6—Cl6 0.3 (9)
O1W—Cs1—Cl6i—Cs1i −125.21 (17) C11—C1—C6—C5 −179.8 (6)
O13—Cs1—Cl6i—Cs1i −118.22 (12) C2—C1—C11—C12 85.3 (7)
Cl6—Cs1—O1Wi—Cs1i 97.39 (19) C6—C1—C11—C12 −93.7 (7)
O1W—Cs1—O1Wi—Cs1i 179.98 (16) Cl2—C2—C3—Cl3 0.2 (8)
O13—Cs1—O1Wi—Cs1i 102.15 (17) Cl2—C2—C3—C4 179.9 (6)
Cl6—Cs1—O12ii—Cs1viii −157.48 (7) C1—C2—C3—Cl3 −179.6 (5)
Cl6—Cs1—O12ii—C12ii 62.1 (5) C1—C2—C3—C4 0.2 (10)
O1W—Cs1—O12ii—Cs1viii −166.04 (19) C2—C3—C4—C5 −0.5 (11)
O1W—Cs1—O12ii—C12ii 53.6 (5) Cl3—C3—C4—C5 179.2 (6)
O13—Cs1—O12ii—Cs1viii 128.20 (15) C3—C4—C5—C6 1.1 (11)
O13—Cs1—O12ii—C12ii −12.2 (5) C4—C5—C6—Cl6 178.4 (6)
Cl6—Cs1—O12iii—Cs1v 52.02 (11) C4—C5—C6—C1 −1.5 (11)
Cl6—Cs1—O12iii—C12iii −91.1 (6) C1—C11—C12—O12 −160.0 (6)
O1W—Cs1—O12iii—Cs1v −29.16 (14) C1—C11—C12—O13 23.4 (9)

Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+2, −z+1; (iii) x, −y+3/2, z+1/2; (iv) x, −y+5/2, z+1/2; (v) x, y−1, z; (vi) x, −y+3/2, z−1/2; (vii) x, −y+5/2, z−1/2; (viii) −x+2, y+1/2, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H11W···O13ii 0.97 1.70 2.638 (8) 161
O1W—H12W···O12ix 0.84 2.40 3.191 (8) 158
C11—H11A···Cl2 0.97 2.64 3.026 (7) 104
C11—H11B···Cl6 0.97 2.61 3.062 (7) 109

Symmetry codes: (ii) −x+2, −y+2, −z+1; (ix) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2781).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies Ltd., Yarnton, England.
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Levitskaia, T. G., Bryan, J. C., Sachleben, R. A., Lamb, J. D. & Moyer, B. A. (2000). J. Am. Chem. Soc. 122, 554–562.
  5. O’Neil, M. J. (2001). Editor. The Merck Index, 13th ed., p. 360. Whitehouse Station, NJ, USA: Merck & Co. Inc.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Smith, G. (2013). Acta Cryst. E69, m22–m23. [DOI] [PMC free article] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. White, A. H., Raston, C. L., Kennard, C. H. L. & Smith, G. (1979). Cryst. Struct. Commun. 8, 63–67.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813029395/wm2781sup1.cif

e-69-0m628-sup1.cif (23.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813029395/wm2781Isup2.hkl

e-69-0m628-Isup2.hkl (112.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813029395/wm2781Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES