Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Nov 27;69(Pt 12):m684–m685. doi: 10.1107/S1600536813031760

Bis(2,9-dimethyl-1,10-phenanthroline)copper(I) penta­cyanido­nitro­soferrate(II)

Julia A Rusanova a, Olesia V Kozachuk a,*, Valentyna V Semenaka a, Viktoriya V Dyakonenko b
PMCID: PMC3885010  PMID: 24454185

Abstract

The asymmetric unit of the title complex [Cu(C14H12N2)2]2[Fe(CN)5(NO)], consists of a [Cu(dmp)2]+ cation (dmp is 2,9-dimethyl-1,10-phenanthroline) and half an [Fe(CN)5(NO)]2− anion. The anion is disordered across an inversion center with the FeII ion slightly offset (ca 0.205Å) from the inversion center in the direction of the disordered trans-coordinating CN/NO ligands. The anion has a distorted octa­hedral coordination geometry. The CuI ion is coordinated by two phenanthroline ligands in a distorted tetra­hedral geometry. The dihedral angle between the phenanthroline ligands is 77.16 (4) Å. In the crystal, the cations are connected to the anions by weak C—H⋯N hydrogen bonds. In addition, weak π–π stacking inter­actions are observed, with centroid–centroid distances in the range 3.512 (3)–3.859 (3) Å.

Related literature  

For background to the direct synthesis of coordination compounds, see: Kokozay & Vassilyeva (2002); Nesterova et al. (2008). For the direct synthesis of heterometallic Cu-containing complexes, see: Buvaylo et al. (2005); Nesterova et al. (2004, 2005); Pryma et al. (2003). For the application of anionic complexes in the preparation of heterometallic compounds, see: Nikitina et al. (2008, 2009). For the structures of related complexes, see: Blake et al. (1998); Chen et al. (2002); Morpurgo et al. (1984); Cuttell et al. (2002); King et al. (2005); Soria et al. (2002); Shevyakova et al. (2002); Peresyp­kina & Vostrikova (2012).graphic file with name e-69-0m684-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C14H12N2)2]2[Fe(CN)5(NO)]

  • M r = 1176.06

  • Triclinic, Inline graphic

  • a = 7.371 (3) Å

  • b = 13.741 (3) Å

  • c = 15.065 (4) Å

  • α = 115.269 (4)°

  • β = 95.327 (3)°

  • γ = 101.323 (4)°

  • V = 1325.9 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 293 K

  • 0.50 × 0.40 × 0.20 mm

Data collection  

  • Oxford Diffraction Xcalibur3 diffractometer

  • Absorption correction: numerical (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.604, T max = 0.807

  • 8613 measured reflections

  • 5112 independent reflections

  • 3100 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.109

  • S = 0.93

  • 5112 reflections

  • 377 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813031760/lh5667sup1.cif

e-69-0m684-sup1.cif (31.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813031760/lh5667Isup2.hkl

e-69-0m684-Isup2.hkl (250.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯N6i 0.93 2.55 3.393 (6) 151

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was partly supported by the State Fund for Fundamental Researches of Ukraine (project 54.3/005).

supplementary crystallographic information

1. Comment

The title compound was obtained as part of our research in the field of direct synthesis of coordination compounds (Buvaylo et al., 2005; Kokozay et al., 2002; Nikitina et al., 2008, 2009; Nesterova et al., 2004, 2005, 2008; Pryma et al.,2003). Complexes of copper chelated with phenanthroline (in particular 2,9-dimethyl-1,10-phenanthroline) have attracted attention due to their longlived excited states and potential use in solar energy conversion (Blake et al., 1998; Chen et al., 2002; Morpurgo et al., 1984; Cuttell et al., 2002; King et al., 2005).

In this paper we present a novel Cu/Fe heterometallic ionic complex [Cu(dmp)2]2[Fe(CN)5NO] which consists of discrete [Cu(dmp)2]+ and [Fe(CN)5NO]2- ions (Fig. 1). The CuI ion adopts a distorted tetrahedral environment by coordinating with four nitrogen atoms from two dmp ligands. The dihedral angle between the two dmp ligands (77.16 (4) Å) as well as the range of Cu—N bond distances of 2.034 (3) - 2.079 (3) Å is in good agreement with the previously reported values for analagous complexes (King et al., 2005 and references therein). The nitroprusside anion lies on an inversion centre and disordered over two positions so that iron atom occupies two very close positions (Fe···Fe distance is 0.410 (15) Å) corresponding to the coordination of two disordered CN and NO groups in the axial sites with very close positions. However, geometric parameters (average Fe—CN and Fe—NO bond distances of 1.96 Å and 1.63 Å respectively) are in a good agreement with literature values (Soria et al. (2002); Shevyakova et al. (2002); Peresypkina et al. (2012).

In the crystal, cations are connected to the anions by weak C—H···N hydrogen bonds. In addition weak π–π stacking interactions with centroid–centroid distances in the range 3.512 (3)–3.859 (3)° are observed (Fig. 2).

2. Experimental

Copper powder (0.04 g, 0.63 mmol), NH4Br (0.123 g, 1.25 mmol), Na2[Fe(CN)5(NO)].2H2O (0.188 g, 0.63 mmol) and dmp (0.262 g, 1.26 mmol) in DMF (30 ml) were heated to 333–343 K and stirred magnetically until total dissolution of copper was observed (2.5 h). Red needle-shaped crystals suitable for X-ray crystallography was isolated from the resulting dark-red solution with addition of 2-propanol and diethyl ether in a few days. The crystals (0.1 g, yield 30%) were filtered off, washed with dry methanol, and finally dried in vacuo at room temperature.

3. Refinement

All non-hydrogen atoms were refined isotropically. All hydrogen atoms were placed at calculated position and refined in a riding-model approximation. The symmetry realted Fe atoms are offset from an inversion centre by 0.214 Å and were refined with multiplicity 0.5. Atoms of disordered CN and NO groups occupy close positions and also were refined with multiplicity 0.5.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Symmetry code (A); 2 -x,1-y,-z. The disorder is not shown.

Fig. 2.

Fig. 2.

Part of the crystal structure with weak hydrogen bonds shown as dashed lines.

Crystal data

[Cu(C14H12N2)2]2[Fe(CN)5(NO)] Z = 1
Mr = 1176.06 F(000) = 604
Triclinic, P1 Dx = 1.473 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.371 (3) Å Cell parameters from 4215 reflections
b = 13.741 (3) Å θ = 2.7–24.8°
c = 15.065 (4) Å µ = 1.12 mm1
α = 115.269 (4)° T = 293 K
β = 95.327 (3)° Needle-shaped, red
γ = 101.323 (4)° 0.50 × 0.40 × 0.20 mm
V = 1325.9 (7) Å3

Data collection

Oxford Diffraction Xcalibur3 diffractometer 5112 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3100 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
Detector resolution: 16.1827 pixels mm-1 θmax = 26.0°, θmin = 2.9°
ω–scans h = −8→9
Absorption correction: numerical (CrysAlis PRO; Oxford Diffraction, 2010) k = −16→16
Tmin = 0.604, Tmax = 0.807 l = −18→15
8613 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0468P)2] where P = (Fo2 + 2Fc2)/3
5112 reflections (Δ/σ)max = 0.001
377 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.24477 (7) 0.18237 (4) 0.30785 (3) 0.04709 (18)
Fe1 0.9747 (13) 0.5030 (13) 0.0033 (11) 0.0423 (14) 0.50
N1 0.3564 (4) 0.2540 (2) 0.2232 (2) 0.0377 (7)
N2 0.1731 (4) 0.0423 (2) 0.1741 (2) 0.0369 (7)
N3 0.3933 (4) 0.1682 (2) 0.4241 (2) 0.0379 (7)
N4 0.1040 (4) 0.2617 (2) 0.4159 (2) 0.0377 (7)
C1 0.4355 (5) 0.3608 (3) 0.2474 (3) 0.0464 (10)
C2 0.5081 (5) 0.3909 (3) 0.1771 (3) 0.0551 (11)
H2 0.5610 0.4656 0.1954 0.066*
C3 0.5025 (5) 0.3129 (4) 0.0833 (3) 0.0542 (11)
H3 0.5561 0.3335 0.0383 0.065*
C4 0.4148 (5) 0.2001 (3) 0.0542 (3) 0.0407 (9)
C5 0.3423 (4) 0.1751 (3) 0.1269 (3) 0.0345 (8)
C6 0.2450 (4) 0.0621 (3) 0.1008 (3) 0.0336 (8)
C7 0.2248 (5) −0.0217 (3) 0.0027 (3) 0.0381 (9)
C8 0.3039 (5) 0.0072 (4) −0.0683 (3) 0.0481 (10)
H8 0.2923 −0.0483 −0.1331 0.058*
C9 0.3950 (5) 0.1129 (4) −0.0439 (3) 0.0492 (10)
H9 0.4457 0.1292 −0.0918 0.059*
C10 0.1271 (5) −0.1296 (3) −0.0187 (3) 0.0458 (10)
H10 0.1092 −0.1876 −0.0829 0.055*
C11 0.0583 (5) −0.1498 (3) 0.0538 (3) 0.0460 (10)
H11 −0.0052 −0.2220 0.0394 0.055*
C12 0.0824 (5) −0.0622 (3) 0.1510 (3) 0.0383 (9)
C13 0.4435 (6) 0.4460 (3) 0.3521 (3) 0.0654 (12)
H13A 0.5696 0.4934 0.3804 0.098*
H13B 0.4081 0.4091 0.3919 0.098*
H13C 0.3580 0.4902 0.3512 0.098*
C14 0.0096 (6) −0.0831 (3) 0.2332 (3) 0.0559 (11)
H14A 0.0870 −0.1209 0.2545 0.084*
H14B −0.1182 −0.1286 0.2086 0.084*
H14C 0.0137 −0.0133 0.2888 0.084*
C15 0.5321 (5) 0.1207 (3) 0.4270 (3) 0.0454 (10)
C16 0.6193 (6) 0.1264 (3) 0.5157 (3) 0.0547 (11)
H16 0.7197 0.0947 0.5157 0.066*
C17 0.5581 (6) 0.1786 (3) 0.6032 (3) 0.0549 (11)
H17 0.6176 0.1830 0.6625 0.066*
C18 0.4051 (5) 0.2251 (3) 0.6023 (3) 0.0451 (10)
C19 0.3273 (5) 0.2190 (3) 0.5108 (3) 0.0394 (9)
C20 0.1730 (5) 0.2687 (3) 0.5074 (3) 0.0358 (9)
C21 0.1046 (5) 0.3217 (3) 0.5935 (3) 0.0420 (9)
C22 0.1808 (6) 0.3230 (3) 0.6840 (3) 0.0528 (11)
H22 0.1298 0.3551 0.7405 0.063*
C23 0.3275 (6) 0.2779 (3) 0.6893 (3) 0.0548 (11)
H23 0.3780 0.2813 0.7498 0.066*
C24 −0.0412 (6) 0.3721 (3) 0.5857 (3) 0.0516 (11)
H24 −0.0922 0.4082 0.6412 0.062*
C25 −0.1066 (6) 0.3674 (3) 0.4963 (3) 0.0516 (10)
H25 −0.2005 0.4022 0.4912 0.062*
C26 −0.0338 (5) 0.3106 (3) 0.4117 (3) 0.0417 (9)
C27 0.5909 (6) 0.0609 (4) 0.3308 (3) 0.0619 (12)
H27A 0.5252 −0.0168 0.3005 0.093*
H27B 0.7245 0.0690 0.3432 0.093*
H27C 0.5611 0.0917 0.2866 0.093*
C28 −0.1065 (6) 0.3050 (4) 0.3126 (3) 0.0544 (11)
H28A −0.0458 0.2601 0.2627 0.082*
H28B −0.0798 0.3788 0.3182 0.082*
H28C −0.2404 0.2723 0.2937 0.082*
C29 1.0149 (5) 0.4533 (3) 0.1060 (3) 0.0446 (9)
N5 1.0271 (5) 0.4286 (3) 0.1677 (3) 0.0631 (10)
C30 1.1809 (6) 0.6397 (3) 0.0926 (3) 0.0440 (9)
N6 1.2879 (5) 0.7213 (3) 0.1470 (3) 0.0626 (10)
C31 0.812 (5) 0.559 (2) 0.036 (2) 0.070 (5) 0.50
N7 0.681 (4) 0.603 (2) 0.0546 (17) 0.070 (5) 0.50
N8 0.805 (3) 0.5579 (11) 0.0446 (12) 0.026 (3) 0.50
O1 0.688 (3) 0.5921 (16) 0.0752 (11) 0.055 (3) 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0659 (3) 0.0491 (3) 0.0278 (3) 0.0167 (2) 0.0157 (2) 0.0169 (2)
Fe1 0.057 (4) 0.0453 (14) 0.0274 (15) 0.012 (3) 0.009 (3) 0.0199 (12)
N1 0.0449 (17) 0.0362 (18) 0.0314 (17) 0.0069 (14) 0.0073 (14) 0.0166 (14)
N2 0.0400 (16) 0.0401 (18) 0.0323 (17) 0.0114 (14) 0.0067 (14) 0.0176 (14)
N3 0.0423 (16) 0.0398 (18) 0.0323 (17) 0.0120 (15) 0.0089 (15) 0.0162 (14)
N4 0.0433 (17) 0.0362 (17) 0.0302 (17) 0.0064 (14) 0.0041 (15) 0.0143 (14)
C1 0.047 (2) 0.045 (2) 0.045 (2) 0.0067 (19) 0.006 (2) 0.0210 (19)
C2 0.059 (2) 0.046 (3) 0.064 (3) 0.005 (2) 0.015 (2) 0.032 (2)
C3 0.056 (2) 0.065 (3) 0.053 (3) 0.009 (2) 0.019 (2) 0.038 (2)
C4 0.0384 (19) 0.057 (3) 0.034 (2) 0.0162 (19) 0.0086 (18) 0.0255 (19)
C5 0.0341 (18) 0.043 (2) 0.0300 (19) 0.0145 (17) 0.0068 (16) 0.0184 (17)
C6 0.0358 (18) 0.040 (2) 0.0295 (19) 0.0158 (17) 0.0084 (17) 0.0175 (16)
C7 0.0377 (19) 0.048 (2) 0.030 (2) 0.0209 (18) 0.0048 (17) 0.0153 (17)
C8 0.050 (2) 0.063 (3) 0.027 (2) 0.017 (2) 0.0100 (19) 0.0155 (19)
C9 0.046 (2) 0.080 (3) 0.031 (2) 0.022 (2) 0.0159 (19) 0.030 (2)
C10 0.047 (2) 0.048 (3) 0.036 (2) 0.020 (2) 0.0036 (19) 0.0117 (19)
C11 0.045 (2) 0.037 (2) 0.053 (3) 0.0118 (18) 0.004 (2) 0.017 (2)
C12 0.042 (2) 0.039 (2) 0.039 (2) 0.0130 (18) 0.0068 (18) 0.0210 (18)
C13 0.081 (3) 0.043 (3) 0.058 (3) 0.010 (2) 0.013 (3) 0.013 (2)
C14 0.067 (3) 0.048 (3) 0.061 (3) 0.015 (2) 0.022 (2) 0.031 (2)
C15 0.049 (2) 0.045 (2) 0.042 (2) 0.005 (2) 0.001 (2) 0.024 (2)
C16 0.054 (2) 0.055 (3) 0.058 (3) 0.017 (2) 0.003 (2) 0.029 (2)
C17 0.067 (3) 0.055 (3) 0.041 (3) 0.008 (2) −0.005 (2) 0.027 (2)
C18 0.058 (2) 0.041 (2) 0.033 (2) 0.006 (2) 0.004 (2) 0.0179 (18)
C19 0.052 (2) 0.034 (2) 0.029 (2) 0.0044 (18) 0.0058 (18) 0.0152 (16)
C20 0.047 (2) 0.033 (2) 0.0260 (19) 0.0058 (17) 0.0075 (18) 0.0142 (16)
C21 0.053 (2) 0.039 (2) 0.031 (2) 0.0065 (19) 0.0102 (19) 0.0147 (17)
C22 0.072 (3) 0.054 (3) 0.026 (2) 0.009 (2) 0.014 (2) 0.0142 (19)
C23 0.080 (3) 0.053 (3) 0.026 (2) 0.009 (2) 0.006 (2) 0.0180 (19)
C24 0.064 (3) 0.050 (3) 0.035 (2) 0.013 (2) 0.022 (2) 0.0115 (19)
C25 0.058 (2) 0.050 (3) 0.050 (3) 0.023 (2) 0.017 (2) 0.020 (2)
C26 0.046 (2) 0.040 (2) 0.039 (2) 0.0096 (19) 0.0086 (19) 0.0193 (18)
C27 0.067 (3) 0.070 (3) 0.060 (3) 0.031 (2) 0.027 (2) 0.032 (2)
C28 0.062 (2) 0.065 (3) 0.041 (2) 0.024 (2) 0.009 (2) 0.026 (2)
C29 0.055 (2) 0.045 (2) 0.037 (2) 0.0171 (19) 0.015 (2) 0.0185 (19)
N5 0.093 (3) 0.067 (3) 0.044 (2) 0.028 (2) 0.020 (2) 0.0347 (19)
C30 0.058 (2) 0.048 (3) 0.033 (2) 0.021 (2) 0.009 (2) 0.0222 (19)
N6 0.069 (2) 0.062 (3) 0.052 (2) 0.016 (2) −0.003 (2) 0.025 (2)
C31 0.087 (9) 0.109 (9) 0.050 (8) 0.044 (7) 0.017 (7) 0.061 (7)
N7 0.087 (9) 0.109 (9) 0.050 (8) 0.044 (7) 0.017 (7) 0.061 (7)
N8 0.039 (5) 0.022 (4) 0.011 (5) 0.012 (4) 0.009 (4) −0.001 (4)
O1 0.082 (6) 0.087 (7) 0.027 (5) 0.057 (5) 0.026 (5) 0.036 (5)

Geometric parameters (Å, º)

Cu1—N2 2.034 (3) C13—H13A 0.9600
Cu1—N4 2.039 (3) C13—H13B 0.9600
Cu1—N1 2.053 (3) C13—H13C 0.9600
Cu1—N3 2.079 (3) C14—H14A 0.9600
Fe1—Fe1i 0.410 (15) C14—H14B 0.9600
Fe1—C31 1.56 (4) C14—H14C 0.9600
Fe1—N8 1.625 (19) C15—C16 1.392 (5)
Fe1—C30i 1.908 (15) C15—C27 1.484 (5)
Fe1—C31i 1.96 (4) C16—C17 1.373 (6)
Fe1—C29 1.961 (16) C16—H16 0.9300
Fe1—C29i 1.981 (16) C17—C18 1.403 (5)
Fe1—C30 1.998 (15) C17—H17 0.9300
Fe1—N8i 2.03 (2) C18—C19 1.404 (5)
N1—C1 1.341 (4) C18—C23 1.435 (5)
N1—C5 1.370 (4) C19—C20 1.446 (5)
N2—C12 1.334 (4) C20—C21 1.388 (5)
N2—C6 1.372 (4) C21—C24 1.410 (5)
N3—C15 1.324 (5) C21—C22 1.416 (5)
N3—C19 1.379 (4) C22—C23 1.360 (6)
N4—C26 1.334 (4) C22—H22 0.9300
N4—C20 1.380 (4) C23—H23 0.9300
C1—C2 1.404 (5) C24—C25 1.358 (5)
C1—C13 1.497 (5) C24—H24 0.9300
C2—C3 1.351 (5) C25—C26 1.401 (5)
C2—H2 0.9300 C25—H25 0.9300
C3—C4 1.409 (5) C26—C28 1.502 (5)
C3—H3 0.9300 C27—H27A 0.9600
C4—C5 1.399 (5) C27—H27B 0.9600
C4—C9 1.421 (5) C27—H27C 0.9600
C5—C6 1.439 (5) C28—H28A 0.9600
C6—C7 1.403 (5) C28—H28B 0.9600
C7—C10 1.397 (5) C28—H28C 0.9600
C7—C8 1.425 (5) C29—N5 1.120 (4)
C8—C9 1.346 (5) C29—Fe1i 1.981 (16)
C8—H8 0.9300 C30—N6 1.140 (5)
C9—H9 0.9300 C30—Fe1i 1.908 (15)
C10—C11 1.354 (5) C31—N7 1.23 (5)
C10—H10 0.9300 C31—Fe1i 1.96 (4)
C11—C12 1.410 (5) N8—O1 1.11 (3)
C11—H11 0.9300 N8—Fe1i 2.03 (2)
C12—C14 1.507 (5)
N2—Cu1—N4 135.31 (11) C8—C9—H9 119.6
N2—Cu1—N1 82.52 (12) C4—C9—H9 119.6
N4—Cu1—N1 121.22 (12) C11—C10—C7 120.1 (4)
N2—Cu1—N3 114.85 (12) C11—C10—H10 120.0
N4—Cu1—N3 82.49 (12) C7—C10—H10 120.0
N1—Cu1—N3 126.67 (11) C10—C11—C12 120.4 (4)
Fe1i—Fe1—C31 165 (5) C10—C11—H11 119.8
Fe1i—Fe1—N8 166 (5) C12—C11—H11 119.8
C31—Fe1—N8 4.6 (19) N2—C12—C11 121.3 (3)
Fe1i—Fe1—C30i 97 (4) N2—C12—C14 117.4 (3)
C31—Fe1—C30i 96.8 (11) C11—C12—C14 121.3 (3)
N8—Fe1—C30i 96.8 (7) C1—C13—H13A 109.5
Fe1i—Fe1—C31i 12 (4) C1—C13—H13B 109.5
C31—Fe1—C31i 176.8 (10) H13A—C13—H13B 109.5
N8—Fe1—C31i 175.8 (18) C1—C13—H13C 109.5
C30i—Fe1—C31i 86.0 (10) H13A—C13—H13C 109.5
Fe1i—Fe1—C29 87 (4) H13B—C13—H13C 109.5
C31—Fe1—C29 99.8 (13) C12—C14—H14A 109.5
N8—Fe1—C29 95.2 (10) C12—C14—H14B 109.5
C30i—Fe1—C29 93.0 (7) H14A—C14—H14B 109.5
C31i—Fe1—C29 81.6 (11) C12—C14—H14C 109.5
Fe1i—Fe1—C29i 81 (4) H14A—C14—H14C 109.5
C31—Fe1—C29i 91.8 (14) H14B—C14—H14C 109.5
N8—Fe1—C29i 96.4 (10) N3—C15—C16 121.8 (4)
C30i—Fe1—C29i 88.4 (6) N3—C15—C27 116.8 (3)
C31i—Fe1—C29i 86.7 (11) C16—C15—C27 121.3 (4)
C29—Fe1—C29i 168.1 (5) C17—C16—C15 120.5 (4)
Fe1i—Fe1—C30 72 (4) C17—C16—H16 119.8
C31—Fe1—C30 94.9 (12) C15—C16—H16 119.8
N8—Fe1—C30 94.9 (9) C16—C17—C18 119.5 (4)
C30i—Fe1—C30 168.2 (5) C16—C17—H17 120.3
C31i—Fe1—C30 82.3 (9) C18—C17—H17 120.3
C29—Fe1—C30 86.5 (6) C17—C18—C19 117.0 (3)
C29i—Fe1—C30 89.7 (6) C17—C18—C23 123.4 (4)
Fe1i—Fe1—N8i 11 (4) C19—C18—C23 119.6 (4)
C31—Fe1—N8i 174.2 (19) N3—C19—C18 122.7 (3)
N8—Fe1—N8i 177.2 (10) N3—C19—C20 118.5 (3)
C30i—Fe1—N8i 85.9 (6) C18—C19—C20 118.8 (3)
C31i—Fe1—N8i 3.6 (15) N4—C20—C21 123.7 (3)
C29—Fe1—N8i 85.2 (8) N4—C20—C19 116.3 (3)
C29i—Fe1—N8i 83.1 (7) C21—C20—C19 120.1 (3)
C30—Fe1—N8i 82.4 (5) C20—C21—C24 117.1 (4)
C1—N1—C5 118.1 (3) C20—C21—C22 120.0 (4)
C1—N1—Cu1 130.8 (2) C24—C21—C22 122.9 (4)
C5—N1—Cu1 111.1 (2) C23—C22—C21 120.9 (4)
C12—N2—C6 118.1 (3) C23—C22—H22 119.6
C12—N2—Cu1 130.3 (2) C21—C22—H22 119.6
C6—N2—Cu1 111.5 (2) C22—C23—C18 120.6 (4)
C15—N3—C19 118.5 (3) C22—C23—H23 119.7
C15—N3—Cu1 131.4 (3) C18—C23—H23 119.7
C19—N3—Cu1 110.1 (2) C25—C24—C21 119.4 (4)
C26—N4—C20 117.4 (3) C25—C24—H24 120.3
C26—N4—Cu1 130.0 (2) C21—C24—H24 120.3
C20—N4—Cu1 112.6 (2) C24—C25—C26 120.5 (4)
N1—C1—C2 121.0 (4) C24—C25—H25 119.7
N1—C1—C13 117.3 (3) C26—C25—H25 119.7
C2—C1—C13 121.7 (4) N4—C26—C25 121.9 (4)
C3—C2—C1 121.1 (4) N4—C26—C28 117.5 (3)
C3—C2—H2 119.5 C25—C26—C28 120.6 (4)
C1—C2—H2 119.5 C15—C27—H27A 109.5
C2—C3—C4 119.4 (4) C15—C27—H27B 109.5
C2—C3—H3 120.3 H27A—C27—H27B 109.5
C4—C3—H3 120.3 C15—C27—H27C 109.5
C5—C4—C3 117.0 (3) H27A—C27—H27C 109.5
C5—C4—C9 119.5 (4) H27B—C27—H27C 109.5
C3—C4—C9 123.5 (4) C26—C28—H28A 109.5
N1—C5—C4 123.2 (3) C26—C28—H28B 109.5
N1—C5—C6 117.1 (3) H28A—C28—H28B 109.5
C4—C5—C6 119.7 (3) C26—C28—H28C 109.5
N2—C6—C7 123.2 (3) H28A—C28—H28C 109.5
N2—C6—C5 117.4 (3) H28B—C28—H28C 109.5
C7—C6—C5 119.4 (3) N5—C29—Fe1 174.5 (4)
C10—C7—C6 116.9 (3) N5—C29—Fe1i 173.2 (5)
C10—C7—C8 124.0 (3) N6—C30—Fe1i 173.6 (4)
C6—C7—C8 119.0 (3) N6—C30—Fe1 174.6 (4)
C9—C8—C7 121.6 (4) N7—C31—Fe1 175 (3)
C9—C8—H8 119.2 N7—C31—Fe1i 173 (3)
C7—C8—H8 119.2 O1—N8—Fe1 176.5 (19)
C8—C9—C4 120.8 (4) O1—N8—Fe1i 176.7 (16)

Symmetry code: (i) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C17—H17···N6ii 0.93 2.55 3.393 (6) 151

Symmetry code: (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5667).

References

  1. Blake, A. J., Hill, S. J., Hubberstey, P. & Li, W. S. (1998). J. Chem. Soc. Dalton Trans. pp. 909–915.
  2. Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978. [DOI] [PubMed]
  3. Chen, L. X., Jenning, G., Liu, T., Gosztola, D. J., Hessler, J. P., Scaltrito, D. V. & Meyers, G. J. (2002). J. Am. Chem. Soc. 124, 10861–10867. [DOI] [PubMed]
  4. Cuttell, D. G., Kuang, S. M., Fanwick, P. E., McMillin, D. R. & Walton, R. A. (2002). J. Am. Chem. Soc. 124, 6–7. [DOI] [PubMed]
  5. King, G., Gembicky, M. & Coppens, P. (2005). Acta Cryst. C61, m329–m332. [DOI] [PubMed]
  6. Kokozay, V. N. & Vassilyeva, O. Yu. (2002). Transition Met. Chem. 27, 693–699.
  7. Morpurgo, G., Dessy, G. & Fares, V. (1984). J. Chem. Soc. Dalton Trans. pp. 785–791.
  8. Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425–1434.
  9. Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431–1436. [DOI] [PubMed]
  10. Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454.
  11. Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V. & Jezierska, J. (2009). Inorg. Chem. Commun. 12, 101–104.
  12. Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430.
  13. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  14. Peresypkina, E. V. & Vostrikova, K. E. (2012). Dalton Trans. 41, 4100–4106. [DOI] [PubMed]
  15. Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Shevyakova, I. Yu., Buravov, L. I., Kushch, L. A., Yagubskii, E. B., Khasanov, S. S., Zorina, L. V., Shibaeva, R. P., Drichko, N. V. & Olejniczak, I. (2002). Russ. J. Coord. Chem. 28, 520–529.
  18. Soria, D. B., Villalba, M. E. C., Piro, O. E. & Aymonino, P. J. (2002). Polyhedron, 21, 1767–1774.
  19. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813031760/lh5667sup1.cif

e-69-0m684-sup1.cif (31.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813031760/lh5667Isup2.hkl

e-69-0m684-Isup2.hkl (250.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES