Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Nov 6;69(Pt 12):o1726–o1727. doi: 10.1107/S1600536813029590

N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)-2-phenyl­acetamide

Manpreet Kaur a, Jerry P Jasinski b,*, Brian J Anderson b, H S Yathirajan a, B Narayana c
PMCID: PMC3885014  PMID: 24454189

Abstract

The title compound, C19H19N3O2, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In mol­ecule A, the pyrazole ring adopts a slightly disordered half-chair conformation while in B it is planar [r.m.s. deviation = 0.0386 (15) Å]. The dihedral angle between the mean planes of the two phenyl rings is 56.2 (8) in A and 38.2 (3)° in B. The N-phenyl substituent on the pyrazole ring is twisted by 46.5 (2) in A and 58.6 (4)° in B while the extended phenyl ring is twisted by 82.2 (8) in A and 87.5 (9)° in B. The mean plane of the amide group forms an angle of 74.8 (3) in A and 67.7 (1)° in B with respect to the phenyl ring. In addition, the amide group is rotated by 51.4 (1) in A and 53.6 (2)° in B from the the mean plane of the pyrazole ring. In the crystal, the two molecules are linked via N—H⋯O hydrogen bonds, supported by weak C—H⋯O inter­actions, forming dimers enclosing an R 2 2(10) ring motif. The dimers are linked via C—H⋯O inter­actions, forming a three-dimensional structure.

Related literature  

For the structural similarity of N-substituted 2-aryl­acetamides to the lateral chain of natural benzyl­penicillin, see: Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008, 2010). For the pharmaceutical, insecticidal and non-linear properties of pyrazoles, see: Chandrakantha et al. (2013); Cheng et al. (2008); Hatton et al. (1993); Liu et al. (2010). For related structures, see: Fun et al. (2011a ,b , 2012); Butcher et al. (2013a ,b ). For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987). graphic file with name e-69-o1726-scheme1.jpg

Experimental  

Crystal data  

  • C19H19N3O2

  • M r = 321.37

  • Triclinic, Inline graphic

  • a = 10.1258 (7) Å

  • b = 10.4671 (8) Å

  • c = 17.8888 (12) Å

  • α = 100.833 (6)°

  • β = 92.527 (5)°

  • γ = 116.812 (7)°

  • V = 1643.9 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 173 K

  • 0.48 × 0.32 × 0.26 mm

Data collection  

  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) T min = 0.876, T max = 1.000

  • 10216 measured reflections

  • 6333 independent reflections

  • 5485 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.130

  • S = 1.04

  • 6333 reflections

  • 438 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813029590/hg5356sup1.cif

e-69-o1726-sup1.cif (40.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813029590/hg5356Isup2.hkl

e-69-o1726-Isup2.hkl (347KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813029590/hg5356Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O2B 0.86 1.97 2.8292 (16) 173
C14A—H14A⋯O1A i 0.93 2.55 3.454 (2) 165
N1B—H1B⋯O2A 0.86 1.98 2.8115 (16) 163
C2B—H2BA⋯O1B ii 0.97 2.55 3.4239 (19) 150
C4B—H4B⋯O1B ii 0.93 2.72 3.487 (2) 141
C8B—H8B⋯O2A 0.93 2.57 3.404 (2) 150
C14B—H14B⋯O1A iii 0.93 2.70 3.398 (2) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

MK is grateful to CPEPA–UGC for the award of a JRF and thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

1. Comment

N-Substituted 2-arylacetamides are biologically active compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). In a variety of biological heterocyclic compounds, N-pyrazole derivatives are of great interest because of their chemical and pharmaceutical properties (Cheng et al., 2008). Some of the N-pyrazole derivatives have been found to exhibit good insecticidal activities (Hatton et al., 1993), antifungal activities (Liu et al., 2010) and non-linear optical properties (Chandrakantha et al., 2013). Crystal structures of some related acetamide and pyrazole derivatives are : N-(4-Bromophenyl)-2-(naphthalen-1-yl) acetamide, N-(3,5-Dichlorophenyl)-2-(naphthalen-1-yl)acetamide, N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2- [4-(methylsulfanyl)phenyl]acetamide, (Fun et al., 2011a,b, 2012), 2-(2,4-Dichlorophenyl)-N-(1,5-dimethyl-3-oxo-2- phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide, 2-(2,6-dichloro phenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol- 4-yl)acetamide (Butcher et al., 2013a,b) have been reported. In view of the importance of amide derivatives of pyrazoles, this paper reports the crystal structure of the title compound (I), C19H19N3O2.

The title compound, (I), crystallizes with two independent molecules in the asymmetric unit (A and B) (Fig. 1). In molecule A, the pyrazole ring adopts a slightly disordered half-chair conformation while in B it is planar. The dihedral angle between the mean planes of the two phenyl rings is 56.2 (8)° (A) and 38.2 (3)° (B). The N-phenyl substituent on the pyrazole ring is twisted by 46.5 (2)° (A) and 58.6 (4)° (B) while the extended phenyl ring is twisted by 82.2 (8)° (A) and 87.5 (9)° (B). The mean plane of the amide group forms an angle of 74.8 (3)° (A)(C2A/C1A/O1A/N1A), 67.7 (1)° (B)(C2B/C1B/O1B/N1B) with respect to that of the phenyl rings. In addition, the amide group is rotated by 51.4 (1)° (A), 53.6 (2)° (B) from the the mean plane of the pyrazole rings. Bond lengths are in normal ranges (Allen et al., 1987). N—H···O intermolecular hydrogen bonds supported by a weak C14A—H14A···O1A intermolecular interaction are observed which link the molecules into dimers forming R22(10) graph set motifs (Fig. 2). Also, additional weak C—H···O intermolecular interactions are also observed which interlink the dimers and influence the crystal packing.

2. Experimental

Phenylacetic acid (0.136 g, 1 mmol) and 4-aminoantipyrine (0.203 g, 1 mmol), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) and were dissolved in dichloromethane (20 mL). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. Organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from methanol and acetone mixture (1:1) and further recrystallised from ethanol by by the slow evaporation method which were used as such for X-ray studies (M.P.: 445-447 K).

3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH); 0.97Å (CH2); 0.96Å (CH3) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH)and 1.5 (CH3) times Ueq of the parent atom. Idealised Me refined as rotating group.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of (I) (C19H19N3O2) showing the labeling scheme of molecules A and B with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Molecular packing for (I) viewed along the a axis. Dashed lines indicate N—H···O intermolecular hydrogen bonds supported by a weak C—H···O intermolecular interactions link the molecules into dimers forming R22(10) graph set motifs. Also, weak C—H···O intermolecular interactions are observed which interlink the dimers and influence the crystal packing. H atoms not involved in hydrogen bonding have been removed for clarity.

Fig. 3.

Fig. 3.

Synthesis scheme of (I).

Crystal data

C19H19N3O2 Z = 4
Mr = 321.37 F(000) = 680
Triclinic, P1 Dx = 1.298 Mg m3
a = 10.1258 (7) Å Cu Kα radiation, λ = 1.54184 Å
b = 10.4671 (8) Å Cell parameters from 4663 reflections
c = 17.8888 (12) Å θ = 4.9–72.3°
α = 100.833 (6)° µ = 0.69 mm1
β = 92.527 (5)° T = 173 K
γ = 116.812 (7)° Irregular, colourless
V = 1643.9 (2) Å3 0.48 × 0.32 × 0.26 mm

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer 6333 independent reflections
Radiation source: Enhance (Cu) X-ray Source 5485 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1 Rint = 0.037
ω scans θmax = 72.4°, θmin = 4.9°
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) h = −12→10
Tmin = 0.876, Tmax = 1.000 k = −12→12
10216 measured reflections l = −17→21

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.280P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.30 e Å3
6333 reflections Δρmin = −0.23 e Å3
438 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0080 (5)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.53484 (12) 0.15316 (13) 0.11113 (6) 0.0325 (3)
O2A 0.18670 (13) 0.29954 (12) 0.18901 (6) 0.0295 (3)
N1A 0.30791 (13) 0.08641 (13) 0.15051 (7) 0.0224 (3)
H1A 0.2487 0.0394 0.1800 0.027*
N2A 0.16758 (14) 0.28576 (14) 0.05759 (7) 0.0241 (3)
N3A 0.21484 (14) 0.22128 (14) −0.00455 (7) 0.0249 (3)
C1A 0.44894 (16) 0.10244 (16) 0.15614 (8) 0.0241 (3)
C2A 0.49459 (18) 0.05345 (18) 0.22348 (10) 0.0309 (3)
H2AA 0.4141 0.0214 0.2542 0.037*
H2AB 0.5138 −0.0287 0.2043 0.037*
C3A 0.63393 (18) 0.18034 (18) 0.27245 (9) 0.0291 (3)
C4A 0.62384 (19) 0.2730 (2) 0.33564 (10) 0.0346 (4)
H4A 0.5308 0.2514 0.3507 0.042*
C5A 0.7501 (2) 0.3977 (2) 0.37709 (10) 0.0399 (4)
H5A 0.7412 0.4589 0.4193 0.048*
C6A 0.8889 (2) 0.4302 (2) 0.35513 (10) 0.0403 (4)
H6A 0.9736 0.5140 0.3822 0.048*
C7A 0.90161 (19) 0.3379 (2) 0.29293 (11) 0.0398 (4)
H7A 0.9951 0.3591 0.2785 0.048*
C8A 0.77540 (19) 0.2139 (2) 0.25202 (10) 0.0348 (4)
H8A 0.7850 0.1522 0.2104 0.042*
C9A 0.25487 (15) 0.14376 (15) 0.09827 (8) 0.0210 (3)
C10A 0.25652 (16) 0.12695 (16) 0.02099 (8) 0.0236 (3)
C11A 0.20064 (15) 0.24720 (15) 0.12389 (8) 0.0210 (3)
C12A 0.17598 (16) 0.42661 (16) 0.05939 (8) 0.0241 (3)
C13A 0.27423 (17) 0.52009 (18) 0.01869 (9) 0.0295 (3)
H13A 0.3338 0.4912 −0.0107 0.035*
C14A 0.2824 (2) 0.65726 (19) 0.02239 (10) 0.0374 (4)
H14A 0.3457 0.7197 −0.0057 0.045*
C15A 0.1962 (2) 0.70113 (19) 0.06787 (11) 0.0408 (4)
H15A 0.2031 0.7937 0.0710 0.049*
C16A 0.0999 (2) 0.6075 (2) 0.10855 (10) 0.0381 (4)
H16A 0.0429 0.6378 0.1394 0.046*
C17A 0.08765 (18) 0.46855 (18) 0.10377 (9) 0.0305 (3)
H17A 0.0209 0.4046 0.1301 0.037*
C18A 0.12208 (19) 0.17807 (18) −0.07928 (8) 0.0312 (3)
H18A 0.0243 0.1003 −0.0784 0.047*
H18B 0.1675 0.1444 −0.1190 0.047*
H18C 0.1137 0.2612 −0.0894 0.047*
C19A 0.2914 (2) 0.02504 (19) −0.03425 (9) 0.0345 (4)
H19A 0.2002 −0.0542 −0.0638 0.052*
H19B 0.3421 −0.0140 −0.0064 0.052*
H19C 0.3545 0.0776 −0.0682 0.052*
O1B 0.31592 (13) 0.34788 (13) 0.46337 (6) 0.0366 (3)
O2B 0.09934 (12) −0.05612 (12) 0.24555 (6) 0.0285 (3)
N1B 0.21077 (13) 0.25496 (13) 0.33811 (7) 0.0233 (3)
H1B 0.2207 0.2679 0.2922 0.028*
N2B −0.08803 (13) −0.10989 (13) 0.32306 (7) 0.0240 (3)
N3B −0.13148 (14) −0.02662 (14) 0.37736 (7) 0.0257 (3)
C1B 0.31460 (16) 0.35901 (16) 0.39659 (8) 0.0243 (3)
C2B 0.42779 (16) 0.49491 (16) 0.37249 (9) 0.0268 (3)
H2BA 0.5238 0.5348 0.4044 0.032*
H2BB 0.4406 0.4673 0.3195 0.032*
C3B 0.37614 (16) 0.61150 (16) 0.38034 (9) 0.0247 (3)
C4B 0.40330 (17) 0.70709 (18) 0.45149 (9) 0.0302 (3)
H4B 0.4505 0.6971 0.4942 0.036*
C5B 0.3608 (2) 0.8167 (2) 0.45926 (11) 0.0384 (4)
H5B 0.3791 0.8796 0.5071 0.046*
C6B 0.2910 (2) 0.8332 (2) 0.39606 (11) 0.0398 (4)
H6B 0.2640 0.9081 0.4013 0.048*
C7B 0.26169 (19) 0.7381 (2) 0.32530 (11) 0.0366 (4)
H7B 0.2141 0.7482 0.2828 0.044*
C8B 0.30353 (17) 0.62717 (17) 0.31766 (9) 0.0293 (3)
H8B 0.2827 0.5627 0.2700 0.035*
C9B 0.08712 (15) 0.12641 (16) 0.34769 (8) 0.0219 (3)
C10B −0.01869 (16) 0.11522 (16) 0.39461 (8) 0.0239 (3)
C11B 0.04395 (15) −0.01523 (16) 0.29956 (8) 0.0216 (3)
C12B −0.20372 (16) −0.23775 (16) 0.27073 (8) 0.0247 (3)
C13B −0.17998 (19) −0.35804 (17) 0.24651 (9) 0.0313 (3)
H13B −0.0928 −0.3574 0.2658 0.038*
C14B −0.2880 (2) −0.48003 (18) 0.19304 (10) 0.0404 (4)
H14B −0.2729 −0.5614 0.1762 0.049*
C15B −0.4170 (2) −0.4809 (2) 0.16501 (10) 0.0443 (5)
H15B −0.4885 −0.5625 0.1289 0.053*
C16B −0.44110 (19) −0.3609 (2) 0.19021 (10) 0.0426 (5)
H16B −0.5291 −0.3627 0.1714 0.051*
C17B −0.33419 (18) −0.23789 (19) 0.24349 (10) 0.0332 (4)
H17B −0.3498 −0.1569 0.2606 0.040*
C18B −0.2191 (2) −0.09991 (19) 0.43300 (10) 0.0359 (4)
H18D −0.2967 −0.1957 0.4069 0.054*
H18E −0.2632 −0.0427 0.4584 0.054*
H18F −0.1553 −0.1097 0.4703 0.054*
C19B −0.02449 (19) 0.22860 (18) 0.45642 (9) 0.0327 (4)
H19D −0.1216 0.2233 0.4501 0.049*
H19E 0.0502 0.3245 0.4534 0.049*
H19F −0.0059 0.2112 0.5057 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0297 (6) 0.0411 (7) 0.0298 (6) 0.0174 (5) 0.0106 (5) 0.0121 (5)
O2A 0.0455 (6) 0.0349 (6) 0.0183 (5) 0.0265 (5) 0.0104 (4) 0.0078 (4)
N1A 0.0257 (6) 0.0216 (6) 0.0227 (6) 0.0116 (5) 0.0069 (5) 0.0091 (5)
N2A 0.0318 (6) 0.0277 (6) 0.0178 (6) 0.0176 (5) 0.0064 (5) 0.0060 (5)
N3A 0.0320 (6) 0.0281 (6) 0.0161 (6) 0.0161 (5) 0.0050 (5) 0.0032 (5)
C1A 0.0270 (7) 0.0215 (7) 0.0251 (7) 0.0124 (6) 0.0051 (6) 0.0050 (5)
C2A 0.0333 (8) 0.0311 (8) 0.0355 (9) 0.0186 (7) 0.0066 (7) 0.0138 (7)
C3A 0.0333 (8) 0.0364 (8) 0.0272 (8) 0.0216 (7) 0.0060 (6) 0.0146 (6)
C4A 0.0362 (9) 0.0449 (10) 0.0313 (8) 0.0242 (8) 0.0098 (7) 0.0132 (7)
C5A 0.0509 (10) 0.0450 (10) 0.0282 (8) 0.0268 (9) 0.0049 (7) 0.0070 (7)
C6A 0.0390 (9) 0.0442 (10) 0.0334 (9) 0.0156 (8) −0.0042 (7) 0.0118 (8)
C7A 0.0299 (8) 0.0564 (11) 0.0387 (9) 0.0223 (8) 0.0058 (7) 0.0182 (8)
C8A 0.0365 (9) 0.0486 (10) 0.0293 (8) 0.0272 (8) 0.0086 (7) 0.0116 (7)
C9A 0.0211 (6) 0.0201 (7) 0.0198 (7) 0.0082 (5) 0.0035 (5) 0.0038 (5)
C10A 0.0260 (7) 0.0208 (7) 0.0220 (7) 0.0099 (6) 0.0047 (5) 0.0032 (5)
C11A 0.0218 (6) 0.0220 (7) 0.0193 (7) 0.0094 (6) 0.0039 (5) 0.0066 (5)
C12A 0.0287 (7) 0.0255 (7) 0.0192 (7) 0.0140 (6) −0.0006 (6) 0.0052 (5)
C13A 0.0301 (8) 0.0313 (8) 0.0253 (7) 0.0126 (7) 0.0042 (6) 0.0075 (6)
C14A 0.0424 (9) 0.0276 (8) 0.0354 (9) 0.0092 (7) 0.0026 (7) 0.0117 (7)
C15A 0.0582 (11) 0.0285 (8) 0.0371 (9) 0.0233 (8) −0.0028 (8) 0.0047 (7)
C16A 0.0542 (11) 0.0437 (10) 0.0297 (8) 0.0353 (9) 0.0056 (8) 0.0056 (7)
C17A 0.0372 (8) 0.0364 (9) 0.0249 (7) 0.0216 (7) 0.0067 (6) 0.0108 (6)
C18A 0.0365 (8) 0.0350 (8) 0.0190 (7) 0.0146 (7) 0.0013 (6) 0.0055 (6)
C19A 0.0485 (10) 0.0343 (9) 0.0239 (8) 0.0237 (8) 0.0086 (7) 0.0018 (6)
O1B 0.0345 (6) 0.0386 (6) 0.0229 (6) 0.0053 (5) −0.0029 (5) 0.0095 (5)
O2B 0.0286 (5) 0.0264 (5) 0.0278 (6) 0.0105 (4) 0.0117 (4) 0.0049 (4)
N1B 0.0244 (6) 0.0222 (6) 0.0190 (6) 0.0064 (5) 0.0040 (5) 0.0072 (5)
N2B 0.0220 (6) 0.0233 (6) 0.0228 (6) 0.0076 (5) 0.0066 (5) 0.0036 (5)
N3B 0.0255 (6) 0.0255 (6) 0.0236 (6) 0.0096 (5) 0.0096 (5) 0.0052 (5)
C1B 0.0239 (7) 0.0240 (7) 0.0242 (7) 0.0103 (6) 0.0039 (5) 0.0064 (6)
C2B 0.0229 (7) 0.0243 (7) 0.0291 (8) 0.0075 (6) 0.0059 (6) 0.0056 (6)
C3B 0.0194 (6) 0.0214 (7) 0.0282 (7) 0.0044 (5) 0.0088 (6) 0.0067 (6)
C4B 0.0259 (7) 0.0326 (8) 0.0269 (8) 0.0099 (6) 0.0064 (6) 0.0049 (6)
C5B 0.0379 (9) 0.0342 (9) 0.0370 (9) 0.0146 (7) 0.0117 (7) −0.0011 (7)
C6B 0.0420 (9) 0.0337 (9) 0.0510 (11) 0.0224 (8) 0.0169 (8) 0.0113 (8)
C7B 0.0358 (9) 0.0403 (9) 0.0389 (9) 0.0193 (8) 0.0094 (7) 0.0162 (7)
C8B 0.0293 (8) 0.0281 (8) 0.0263 (8) 0.0102 (6) 0.0059 (6) 0.0052 (6)
C9B 0.0220 (7) 0.0233 (7) 0.0192 (6) 0.0093 (6) 0.0031 (5) 0.0060 (5)
C10B 0.0245 (7) 0.0240 (7) 0.0219 (7) 0.0101 (6) 0.0032 (5) 0.0061 (6)
C11B 0.0205 (6) 0.0243 (7) 0.0202 (7) 0.0097 (6) 0.0029 (5) 0.0080 (5)
C12B 0.0237 (7) 0.0229 (7) 0.0218 (7) 0.0051 (6) 0.0060 (6) 0.0071 (6)
C13B 0.0335 (8) 0.0274 (8) 0.0305 (8) 0.0109 (7) 0.0073 (6) 0.0092 (6)
C14B 0.0487 (10) 0.0235 (8) 0.0364 (9) 0.0068 (7) 0.0137 (8) 0.0032 (7)
C15B 0.0340 (9) 0.0394 (10) 0.0287 (9) −0.0058 (8) 0.0070 (7) −0.0010 (7)
C16B 0.0242 (8) 0.0578 (12) 0.0300 (9) 0.0078 (8) 0.0023 (7) 0.0053 (8)
C17B 0.0289 (8) 0.0372 (9) 0.0298 (8) 0.0127 (7) 0.0062 (6) 0.0065 (7)
C18B 0.0373 (9) 0.0345 (9) 0.0339 (9) 0.0125 (7) 0.0183 (7) 0.0119 (7)
C19B 0.0365 (8) 0.0315 (8) 0.0298 (8) 0.0168 (7) 0.0095 (7) 0.0031 (6)

Geometric parameters (Å, º)

O1A—C1A 1.2217 (18) O1B—C1B 1.2219 (19)
O2A—C11A 1.2334 (17) O2B—C11B 1.2412 (18)
N1A—H1A 0.8600 N1B—H1B 0.8600
N1A—C1A 1.3574 (19) N1B—C1B 1.3519 (19)
N1A—C9A 1.4069 (18) N1B—C9B 1.4118 (18)
N2A—N3A 1.4057 (16) N2B—N3B 1.4008 (17)
N2A—C11A 1.3958 (18) N2B—C11B 1.3985 (18)
N2A—C12A 1.4320 (19) N2B—C12B 1.4345 (18)
N3A—C10A 1.375 (2) N3B—C10B 1.3678 (19)
N3A—C18A 1.4673 (19) N3B—C18B 1.4553 (19)
C1A—C2A 1.525 (2) C1B—C2B 1.525 (2)
C2A—H2AA 0.9700 C2B—H2BA 0.9700
C2A—H2AB 0.9700 C2B—H2BB 0.9700
C2A—C3A 1.512 (2) C2B—C3B 1.517 (2)
C3A—C4A 1.384 (2) C3B—C4B 1.392 (2)
C3A—C8A 1.396 (2) C3B—C8B 1.389 (2)
C4A—H4A 0.9300 C4B—H4B 0.9300
C4A—C5A 1.391 (3) C4B—C5B 1.383 (2)
C5A—H5A 0.9300 C5B—H5B 0.9300
C5A—C6A 1.383 (3) C5B—C6B 1.386 (3)
C6A—H6A 0.9300 C6B—H6B 0.9300
C6A—C7A 1.382 (3) C6B—C7B 1.381 (3)
C7A—H7A 0.9300 C7B—H7B 0.9300
C7A—C8A 1.384 (3) C7B—C8B 1.391 (2)
C8A—H8A 0.9300 C8B—H8B 0.9300
C9A—C10A 1.362 (2) C9B—C10B 1.367 (2)
C9A—C11A 1.4339 (19) C9B—C11B 1.426 (2)
C10A—C19A 1.488 (2) C10B—C19B 1.486 (2)
C12A—C13A 1.389 (2) C12B—C13B 1.381 (2)
C12A—C17A 1.382 (2) C12B—C17B 1.387 (2)
C13A—H13A 0.9300 C13B—H13B 0.9300
C13A—C14A 1.389 (2) C13B—C14B 1.389 (2)
C14A—H14A 0.9300 C14B—H14B 0.9300
C14A—C15A 1.385 (3) C14B—C15B 1.374 (3)
C15A—H15A 0.9300 C15B—H15B 0.9300
C15A—C16A 1.381 (3) C15B—C16B 1.383 (3)
C16A—H16A 0.9300 C16B—H16B 0.9300
C16A—C17A 1.389 (2) C16B—C17B 1.389 (2)
C17A—H17A 0.9300 C17B—H17B 0.9300
C18A—H18A 0.9600 C18B—H18D 0.9600
C18A—H18B 0.9600 C18B—H18E 0.9600
C18A—H18C 0.9600 C18B—H18F 0.9600
C19A—H19A 0.9600 C19B—H19D 0.9600
C19A—H19B 0.9600 C19B—H19E 0.9600
C19A—H19C 0.9600 C19B—H19F 0.9600
C1A—N1A—H1A 118.7 C1B—N1B—H1B 117.9
C1A—N1A—C9A 122.53 (12) C1B—N1B—C9B 124.10 (12)
C9A—N1A—H1A 118.7 C9B—N1B—H1B 117.9
N3A—N2A—C12A 118.71 (12) N3B—N2B—C12B 117.75 (11)
C11A—N2A—N3A 109.01 (11) C11B—N2B—N3B 109.03 (11)
C11A—N2A—C12A 122.24 (12) C11B—N2B—C12B 122.09 (12)
N2A—N3A—C18A 114.99 (12) N2B—N3B—C18B 116.82 (12)
C10A—N3A—N2A 107.00 (11) C10B—N3B—N2B 107.38 (11)
C10A—N3A—C18A 121.64 (12) C10B—N3B—C18B 124.49 (13)
O1A—C1A—N1A 123.06 (14) O1B—C1B—N1B 123.34 (14)
O1A—C1A—C2A 121.64 (14) O1B—C1B—C2B 122.55 (14)
N1A—C1A—C2A 115.30 (13) N1B—C1B—C2B 114.08 (13)
C1A—C2A—H2AA 109.8 C1B—C2B—H2BA 109.5
C1A—C2A—H2AB 109.8 C1B—C2B—H2BB 109.5
H2AA—C2A—H2AB 108.2 H2BA—C2B—H2BB 108.0
C3A—C2A—C1A 109.43 (13) C3B—C2B—C1B 110.89 (12)
C3A—C2A—H2AA 109.8 C3B—C2B—H2BA 109.5
C3A—C2A—H2AB 109.8 C3B—C2B—H2BB 109.5
C4A—C3A—C2A 120.74 (14) C4B—C3B—C2B 119.81 (14)
C4A—C3A—C8A 118.09 (16) C8B—C3B—C2B 121.54 (14)
C8A—C3A—C2A 121.00 (15) C8B—C3B—C4B 118.65 (15)
C3A—C4A—H4A 119.3 C3B—C4B—H4B 119.7
C3A—C4A—C5A 121.35 (16) C5B—C4B—C3B 120.61 (16)
C5A—C4A—H4A 119.3 C5B—C4B—H4B 119.7
C4A—C5A—H5A 120.2 C4B—C5B—H5B 119.8
C6A—C5A—C4A 119.60 (17) C4B—C5B—C6B 120.31 (16)
C6A—C5A—H5A 120.2 C6B—C5B—H5B 119.8
C5A—C6A—H6A 120.0 C5B—C6B—H6B 120.1
C7A—C6A—C5A 119.93 (17) C7B—C6B—C5B 119.74 (16)
C7A—C6A—H6A 120.0 C7B—C6B—H6B 120.1
C6A—C7A—H7A 120.0 C6B—C7B—H7B 120.0
C6A—C7A—C8A 120.08 (16) C6B—C7B—C8B 119.90 (17)
C8A—C7A—H7A 120.0 C8B—C7B—H7B 120.0
C3A—C8A—H8A 119.5 C3B—C8B—C7B 120.78 (15)
C7A—C8A—C3A 120.94 (16) C3B—C8B—H8B 119.6
C7A—C8A—H8A 119.5 C7B—C8B—H8B 119.6
N1A—C9A—C11A 121.51 (12) N1B—C9B—C11B 122.38 (12)
C10A—C9A—N1A 129.66 (13) C10B—C9B—N1B 128.32 (13)
C10A—C9A—C11A 108.58 (13) C10B—C9B—C11B 108.85 (13)
N3A—C10A—C19A 120.26 (13) N3B—C10B—C19B 120.50 (13)
C9A—C10A—N3A 109.52 (13) C9B—C10B—N3B 109.22 (13)
C9A—C10A—C19A 130.20 (14) C9B—C10B—C19B 130.28 (14)
O2A—C11A—N2A 123.95 (13) O2B—C11B—N2B 123.28 (13)
O2A—C11A—C9A 130.81 (13) O2B—C11B—C9B 131.65 (13)
N2A—C11A—C9A 105.21 (12) N2B—C11B—C9B 105.02 (12)
C13A—C12A—N2A 120.23 (13) C13B—C12B—N2B 118.52 (14)
C17A—C12A—N2A 118.71 (13) C13B—C12B—C17B 121.12 (14)
C17A—C12A—C13A 121.04 (14) C17B—C12B—N2B 120.34 (14)
C12A—C13A—H13A 120.4 C12B—C13B—H13B 120.4
C14A—C13A—C12A 119.21 (15) C12B—C13B—C14B 119.18 (16)
C14A—C13A—H13A 120.4 C14B—C13B—H13B 120.4
C13A—C14A—H14A 120.0 C13B—C14B—H14B 119.9
C15A—C14A—C13A 120.06 (16) C15B—C14B—C13B 120.24 (17)
C15A—C14A—H14A 120.0 C15B—C14B—H14B 119.9
C14A—C15A—H15A 120.0 C14B—C15B—H15B 119.8
C16A—C15A—C14A 120.08 (16) C14B—C15B—C16B 120.34 (16)
C16A—C15A—H15A 120.0 C16B—C15B—H15B 119.8
C15A—C16A—H16A 119.8 C15B—C16B—H16B 119.9
C15A—C16A—C17A 120.48 (16) C15B—C16B—C17B 120.20 (17)
C17A—C16A—H16A 119.8 C17B—C16B—H16B 119.9
C12A—C17A—C16A 119.08 (15) C12B—C17B—C16B 118.91 (17)
C12A—C17A—H17A 120.5 C12B—C17B—H17B 120.5
C16A—C17A—H17A 120.5 C16B—C17B—H17B 120.5
N3A—C18A—H18A 109.5 N3B—C18B—H18D 109.5
N3A—C18A—H18B 109.5 N3B—C18B—H18E 109.5
N3A—C18A—H18C 109.5 N3B—C18B—H18F 109.5
H18A—C18A—H18B 109.5 H18D—C18B—H18E 109.5
H18A—C18A—H18C 109.5 H18D—C18B—H18F 109.5
H18B—C18A—H18C 109.5 H18E—C18B—H18F 109.5
C10A—C19A—H19A 109.5 C10B—C19B—H19D 109.5
C10A—C19A—H19B 109.5 C10B—C19B—H19E 109.5
C10A—C19A—H19C 109.5 C10B—C19B—H19F 109.5
H19A—C19A—H19B 109.5 H19D—C19B—H19E 109.5
H19A—C19A—H19C 109.5 H19D—C19B—H19F 109.5
H19B—C19A—H19C 109.5 H19E—C19B—H19F 109.5
O1A—C1A—C2A—C3A 56.40 (19) O1B—C1B—C2B—C3B −86.23 (18)
N1A—C1A—C2A—C3A −123.19 (14) N1B—C1B—C2B—C3B 91.80 (15)
N1A—C9A—C10A—N3A −170.40 (14) N1B—C9B—C10B—N3B 170.33 (14)
N1A—C9A—C10A—C19A 11.1 (3) N1B—C9B—C10B—C19B −9.8 (3)
N1A—C9A—C11A—O2A −1.8 (2) N1B—C9B—C11B—O2B 1.9 (2)
N1A—C9A—C11A—N2A 176.26 (12) N1B—C9B—C11B—N2B −175.40 (12)
N2A—N3A—C10A—C9A −7.50 (16) N2B—N3B—C10B—C9B 5.75 (16)
N2A—N3A—C10A—C19A 171.13 (13) N2B—N3B—C10B—C19B −174.13 (13)
N2A—C12A—C13A—C14A −178.87 (14) N2B—C12B—C13B—C14B −176.98 (14)
N2A—C12A—C17A—C16A 177.18 (14) N2B—C12B—C17B—C16B 177.11 (14)
N3A—N2A—C11A—O2A 172.11 (13) N3B—N2B—C11B—O2B −171.57 (13)
N3A—N2A—C11A—C9A −6.14 (15) N3B—N2B—C11B—C9B 6.02 (15)
N3A—N2A—C12A—C13A −22.75 (19) N3B—N2B—C12B—C13B −146.60 (14)
N3A—N2A—C12A—C17A 158.89 (13) N3B—N2B—C12B—C17B 35.38 (19)
C1A—N1A—C9A—C10A 52.2 (2) C1B—N1B—C9B—C10B 53.7 (2)
C1A—N1A—C9A—C11A −121.29 (15) C1B—N1B—C9B—C11B −134.85 (15)
C1A—C2A—C3A—C4A 93.50 (17) C1B—C2B—C3B—C4B 83.37 (16)
C1A—C2A—C3A—C8A −81.70 (18) C1B—C2B—C3B—C8B −97.55 (16)
C2A—C3A—C4A—C5A −174.17 (15) C2B—C3B—C4B—C5B 178.16 (14)
C2A—C3A—C8A—C7A 174.12 (16) C2B—C3B—C8B—C7B −177.67 (14)
C3A—C4A—C5A—C6A −0.2 (3) C3B—C4B—C5B—C6B −0.3 (3)
C4A—C3A—C8A—C7A −1.2 (2) C4B—C3B—C8B—C7B 1.4 (2)
C4A—C5A—C6A—C7A −0.8 (3) C4B—C5B—C6B—C7B 1.1 (3)
C5A—C6A—C7A—C8A 0.8 (3) C5B—C6B—C7B—C8B −0.6 (3)
C6A—C7A—C8A—C3A 0.3 (3) C6B—C7B—C8B—C3B −0.7 (2)
C8A—C3A—C4A—C5A 1.2 (2) C8B—C3B—C4B—C5B −1.0 (2)
C9A—N1A—C1A—O1A −8.2 (2) C9B—N1B—C1B—O1B 4.1 (2)
C9A—N1A—C1A—C2A 171.37 (13) C9B—N1B—C1B—C2B −173.89 (13)
C10A—C9A—C11A—O2A −176.54 (15) C10B—C9B—C11B—O2B 174.80 (15)
C10A—C9A—C11A—N2A 1.55 (15) C10B—C9B—C11B—N2B −2.50 (16)
C11A—N2A—N3A—C10A 8.50 (15) C11B—N2B—N3B—C10B −7.40 (16)
C11A—N2A—N3A—C18A 146.89 (13) C11B—N2B—N3B—C18B −152.81 (13)
C11A—N2A—C12A—C13A 118.93 (16) C11B—N2B—C12B—C13B 73.50 (18)
C11A—N2A—C12A—C17A −59.42 (19) C11B—N2B—C12B—C17B −104.52 (17)
C11A—C9A—C10A—N3A 3.74 (16) C11B—C9B—C10B—N3B −2.02 (17)
C11A—C9A—C10A—C19A −174.72 (15) C11B—C9B—C10B—C19B 177.85 (15)
C12A—N2A—N3A—C10A 154.81 (12) C12B—N2B—N3B—C10B −152.14 (13)
C12A—N2A—N3A—C18A −66.80 (17) C12B—N2B—N3B—C18B 62.45 (18)
C12A—N2A—C11A—O2A 27.2 (2) C12B—N2B—C11B—O2B −28.7 (2)
C12A—N2A—C11A—C9A −151.03 (13) C12B—N2B—C11B—C9B 148.94 (13)
C12A—C13A—C14A—C15A 1.7 (2) C12B—C13B—C14B—C15B −0.3 (2)
C13A—C12A—C17A—C16A −1.2 (2) C13B—C12B—C17B—C16B −0.9 (2)
C13A—C14A—C15A—C16A −1.2 (3) C13B—C14B—C15B—C16B −0.5 (3)
C14A—C15A—C16A—C17A −0.6 (3) C14B—C15B—C16B—C17B 0.7 (3)
C15A—C16A—C17A—C12A 1.7 (3) C15B—C16B—C17B—C12B 0.0 (3)
C17A—C12A—C13A—C14A −0.6 (2) C17B—C12B—C13B—C14B 1.0 (2)
C18A—N3A—C10A—C9A −142.51 (14) C18B—N3B—C10B—C9B 147.82 (15)
C18A—N3A—C10A—C19A 36.1 (2) C18B—N3B—C10B—C19B −32.1 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1A···O2B 0.86 1.97 2.8292 (16) 173
C14A—H14A···O1Ai 0.93 2.55 3.454 (2) 165
N1B—H1B···O2A 0.86 1.98 2.8115 (16) 163
C2B—H2BA···O1Bii 0.97 2.55 3.4239 (19) 150
C4B—H4B···O1Bii 0.93 2.72 3.487 (2) 141
C8B—H8B···O2A 0.93 2.57 3.404 (2) 150
C14B—H14B···O1Aiii 0.93 2.70 3.398 (2) 132

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5356).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Butcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013a). Acta Cryst. E69, o46–o47. [DOI] [PMC free article] [PubMed]
  4. Butcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013b). Acta Cryst. E69, o39. [DOI] [PMC free article] [PubMed]
  5. Chandrakantha, B., Isloor, A. M., Sridharan, K., Philip, R., Shetty, P. & Padaki, M. (2013). Arabian J. Chem. 6, 97–102.
  6. Cheng, J. L., Wei, F. L., Zhu, L., Zhao, J. H. & Zhu, G. N. (2008). Chin. J. Org. Chem. 28, 622–627.
  7. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  8. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  9. Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927. [DOI] [PMC free article] [PubMed]
  10. Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942. [DOI] [PMC free article] [PubMed]
  11. Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2677. [DOI] [PMC free article] [PubMed]
  12. Hatton, L. R., Buntain, I. G., Hawkins, D. W., Parnell, E. W. & Pearson, C. J. (1993). US Patent 5232940.
  13. Liu, Y. Y., Shi, H., Li, Y. F. & Zhu, H. J. (2010). J. Heterocycl. Chem. 47, 897–902.
  14. Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.
  15. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.
  18. Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813029590/hg5356sup1.cif

e-69-o1726-sup1.cif (40.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813029590/hg5356Isup2.hkl

e-69-o1726-Isup2.hkl (347KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813029590/hg5356Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES