Abstract
In the title compound, C10H12O3, all non-H atoms are approximately coplanar, with an r.m.s. deviation of 0.046 Å. In the crystal, very weak C—H⋯O interactions link the molecules into sheets parallel to (101).
Related literature
For the bioactivity of dehydrozingerone derivatives and their role in the synthesis of heterocycles, see: Tatsuzaki et al. (2006 ▶); Kubra et al. (2013 ▶); Panda & Chowdary (2008 ▶); Mostahar et al. (2007 ▶). For related crystal structures, see: Matos Beja et al. (1997 ▶); Velavan et al. (1995 ▶).
Experimental
Crystal data
C10H12O3
M r = 180.20
Monoclinic,
a = 11.5314 (16) Å
b = 8.7905 (11) Å
c = 9.3363 (13) Å
β = 97.339 (14)°
V = 938.6 (2) Å3
Z = 4
Cu Kα radiation
μ = 0.78 mm−1
T = 293 K
0.39 × 0.17 × 0.14 mm
Data collection
Agilent Gemini S diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013 ▶) T min = 0.933, T max = 1.000
6035 measured reflections
1848 independent reflections
1299 reflections with I > 2σ(I)
R int = 0.021
Refinement
R[F 2 > 2σ(F 2)] = 0.047
wR(F 2) = 0.148
S = 1.04
1848 reflections
120 parameters
H-atom parameters constrained
Δρmax = 0.12 e Å−3
Δρmin = −0.17 e Å−3
Data collection: CrysAlis PRO (Agilent, 2013 ▶); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012 ▶) and Mercury (Macrae et al., 2006 ▶); software used to prepare material for publication: WinGX (Farrugia, 2012 ▶), PLATON (Spek, 2009 ▶) and PARST (Nardelli, 1995 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681302761X/zq2209sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681302761X/zq2209Isup2.hkl
Supplementary material file. DOI: 10.1107/S160053681302761X/zq2209Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C1—H1⋯O1i | 0.93 | 2.67 | 3.547 (3) | 157 |
| C10—H10B⋯O2ii | 0.96 | 2.62 | 3.525 (2) | 156 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
This work was supported by the Ministry of Education, Science and Technological development of the Republic of Serbia (projects No. 172014, 172035 and 172034).
supplementary crystallographic information
1. Comment
Dehydrozingerone derivatives belong to an important class of compounds, not only due to their different bioactivities (Tatsuzaki et al., 2006; Kubra et al., 2013), but also as the key substrates in synthesis of some heterocycles (Panda et al., 2008), particularly flavones (Mostahar et al., 2007). They can be synthesized by condensation of the corresponding aromatic aldehyde with acetone. Thus, starting substrate in synthesis of ethyl derivative of dehydrozingerone is 4-ethoxy-3-methoxybenzaldehyde (I), compound obtained by simple methylation of vanillin.
In the title structure, all non-hydrogen atoms are approximately coplanar with a mean deviation of 0.046 Å (Fig. 1). A somewhat higher displacement of 0.102 (2) Å has been observed for atom C9 belonging to ethoxy moiety. The dihedral angle between the best planes through the phenyl ring and the non-H atoms of ethoxy moiety is 8.1 (1)°. The aromatic C—C bond lengths are in the expected range of 1.368 (2)–1.411 (2) Å (Table 2). The five C—O bonds have various lengths. The shortest length is found for the carbonyl C1—O1 = 1.204 (2) bond in accordance with the prevaling double bond character.
The crystal structure exhibits no conventional hydrogen bonding. The molecules are held together by weak C–H···O and van der Waals interactions. The two C—H···O intermolecular contacts shorter than the sum of the van der Waals radii [C1—H1 = 0.93; H1···O1= 2.67 Å; C1—H1···O1i = 157.3° and C10—H10B = 0.96, H10B···O2 = 2.62 Å, C10—H10B···O2ii = 156.4° (symmetry codes: i = -x,+y - 1/2,-z + 3/2; ii = -x + 1,+y - 1/2,-z + 1/2)] connect the molecules into a sheet parallel to (101). These sheets further connect into three-dimensional structure by C—H···π interaction [C10—H10c = 0.96, H10c···Cg1 = 3.00 Å C10—H10c···Cg1iii = 147° [(symmetry code: iii = -x + 1,-y,-z + 1)] (Fig. 2). The approximate distance between the adjacent parallel sheets is 3.5 Å. For related crystal structures, see Matos Beja et al. (1997) and Velavan et al. (1995).
2. Experimental
Diethyl sulfate was dropped into a water solution of sodium hydroxide and vanillin. The reaction mixture was stirred overnight at 50°C and cooled at room temperature resulting firstly an oily product, which on standing gave crude crystal 4-ethoxy-3-methoxybenzaldehyde.
One gram of crude 4-ethoxy-3-methoxybenzaldehyde was stirred vigorously in 150 ml of boiling water, the hot mixture filtered of through a cotton pad. The obtained milky-white emulsion upon overnight cooling at room temperature gave crystal needles of 4-ethoxy-3-methoxybenzaldehyde.
3. Refinement
All H atoms were included in calculated positions and treated as riding with d(C—H) equal to: 0.96 Å (CH3), 0.97 Å (CH2) or 0.93 Å (aromatic CH) and Uiso(H) equal to: 1.5 Ueq(C) for CH3 or 1.2 Ueq(C) for CH2 and CH.
Figures
Fig. 1.
The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
Fig. 2.

Three-dimensional layered structure of the title compound. All H atoms which are not involved in intermolecular interactions are omitted for clarity.
Crystal data
| C10H12O3 | F(000) = 384 |
| Mr = 180.20 | Dx = 1.275 Mg m−3 |
| Monoclinic, P21/c | Cu Kα radiation, λ = 1.54180 Å |
| Hall symbol: -P 2ybc | Cell parameters from 1676 reflections |
| a = 11.5314 (16) Å | θ = 3.9–71.1° |
| b = 8.7905 (11) Å | µ = 0.78 mm−1 |
| c = 9.3363 (13) Å | T = 293 K |
| β = 97.339 (14)° | Needle, white |
| V = 938.6 (2) Å3 | 0.39 × 0.17 × 0.14 mm |
| Z = 4 |
Data collection
| Agilent Gemini S diffractometer | 1848 independent reflections |
| Radiation source: Enhance (Cu) X-ray Source | 1299 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.021 |
| Detector resolution: 16.3280 pixels mm-1 | θmax = 73.2°, θmin = 3.9° |
| ω scans | h = −14→14 |
| Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −10→8 |
| Tmin = 0.933, Tmax = 1.000 | l = −11→9 |
| 6035 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.148 | H-atom parameters constrained |
| S = 1.04 | w = 1/[σ2(Fo2) + (0.0746P)2 + 0.0716P] where P = (Fo2 + 2Fc2)/3 |
| 1848 reflections | (Δ/σ)max < 0.001 |
| 120 parameters | Δρmax = 0.12 e Å−3 |
| 0 restraints | Δρmin = −0.17 e Å−3 |
Special details
| Experimental. Absorption correction: empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (CrysAlis PRO; Agilent, 2013) |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | −0.01326 (13) | −0.00997 (18) | 0.78722 (16) | 0.0954 (5) | |
| O2 | 0.27667 (11) | 0.22381 (13) | 0.46226 (14) | 0.0818 (4) | |
| O3 | 0.37383 (11) | −0.00811 (13) | 0.35924 (13) | 0.0780 (4) | |
| C1 | 0.03443 (17) | −0.1075 (2) | 0.7257 (2) | 0.0824 (5) | |
| H1 | 0.0130 | −0.2076 | 0.7411 | 0.099* | |
| C2 | 0.12260 (15) | −0.0833 (2) | 0.62934 (18) | 0.0683 (5) | |
| C3 | 0.15663 (15) | 0.0635 (2) | 0.59500 (18) | 0.0675 (5) | |
| H3 | 0.1230 | 0.1470 | 0.6348 | 0.081* | |
| C4 | 0.23881 (14) | 0.08576 (18) | 0.50352 (17) | 0.0642 (4) | |
| C5 | 0.29161 (15) | −0.0414 (2) | 0.44602 (18) | 0.0665 (5) | |
| C6 | 0.25783 (15) | −0.1856 (2) | 0.47925 (19) | 0.0768 (5) | |
| H6 | 0.2918 | −0.2696 | 0.4406 | 0.092* | |
| C7 | 0.17310 (17) | −0.2063 (2) | 0.5703 (2) | 0.0793 (6) | |
| H7 | 0.1502 | −0.3043 | 0.5917 | 0.095* | |
| C8 | 0.22711 (16) | 0.3550 (2) | 0.5194 (2) | 0.0889 (6) | |
| H8A | 0.1438 | 0.3535 | 0.4938 | 0.133* | |
| H8B | 0.2588 | 0.4447 | 0.4804 | 0.133* | |
| H8C | 0.2453 | 0.3554 | 0.6227 | 0.133* | |
| C9 | 0.43966 (16) | −0.1315 (2) | 0.3099 (2) | 0.0812 (6) | |
| H9A | 0.3872 | −0.2051 | 0.2583 | 0.097* | |
| H9B | 0.4838 | −0.1823 | 0.3916 | 0.097* | |
| C10 | 0.52047 (17) | −0.0694 (3) | 0.2129 (2) | 0.0930 (7) | |
| H10A | 0.4761 | −0.0211 | 0.1314 | 0.140* | |
| H10B | 0.5659 | −0.1507 | 0.1799 | 0.140* | |
| H10C | 0.5717 | 0.0037 | 0.2645 | 0.140* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0975 (10) | 0.0929 (10) | 0.1040 (11) | −0.0069 (8) | 0.0448 (9) | −0.0036 (8) |
| O2 | 0.0900 (8) | 0.0605 (7) | 0.1034 (9) | 0.0055 (6) | 0.0452 (7) | 0.0059 (6) |
| O3 | 0.0846 (8) | 0.0715 (8) | 0.0838 (8) | 0.0123 (6) | 0.0332 (7) | 0.0019 (6) |
| C1 | 0.0844 (12) | 0.0782 (12) | 0.0887 (13) | −0.0103 (10) | 0.0265 (10) | 0.0006 (10) |
| C2 | 0.0694 (10) | 0.0658 (11) | 0.0714 (10) | −0.0022 (8) | 0.0152 (8) | 0.0024 (8) |
| C3 | 0.0679 (10) | 0.0652 (10) | 0.0715 (10) | 0.0047 (8) | 0.0170 (8) | −0.0022 (8) |
| C4 | 0.0661 (9) | 0.0578 (10) | 0.0706 (10) | 0.0041 (7) | 0.0162 (8) | 0.0045 (7) |
| C5 | 0.0675 (9) | 0.0694 (11) | 0.0643 (9) | 0.0050 (8) | 0.0153 (8) | 0.0017 (8) |
| C6 | 0.0872 (12) | 0.0633 (11) | 0.0834 (12) | 0.0063 (9) | 0.0239 (10) | −0.0036 (9) |
| C7 | 0.0920 (13) | 0.0600 (11) | 0.0887 (12) | −0.0049 (9) | 0.0224 (10) | 0.0028 (9) |
| C8 | 0.0965 (14) | 0.0606 (11) | 0.1171 (16) | 0.0027 (9) | 0.0431 (12) | −0.0010 (10) |
| C9 | 0.0803 (12) | 0.0827 (12) | 0.0839 (12) | 0.0139 (10) | 0.0235 (10) | −0.0118 (10) |
| C10 | 0.0837 (13) | 0.1090 (17) | 0.0911 (14) | 0.0149 (11) | 0.0294 (11) | −0.0087 (12) |
Geometric parameters (Å, º)
| O1—C1 | 1.204 (2) | C6—C7 | 1.387 (2) |
| O2—C4 | 1.3618 (18) | C6—H6 | 0.9300 |
| O2—C8 | 1.421 (2) | C7—H7 | 0.9300 |
| O3—C5 | 1.355 (2) | C8—H8A | 0.9600 |
| O3—C9 | 1.433 (2) | C8—H8B | 0.9600 |
| C1—C2 | 1.457 (2) | C8—H8C | 0.9600 |
| C1—H1 | 0.9300 | C9—C10 | 1.484 (3) |
| C2—C7 | 1.376 (2) | C9—H9A | 0.9700 |
| C2—C3 | 1.398 (2) | C9—H9B | 0.9700 |
| C3—C4 | 1.368 (2) | C10—H10A | 0.9600 |
| C3—H3 | 0.9300 | C10—H10B | 0.9600 |
| C4—C5 | 1.411 (2) | C10—H10C | 0.9600 |
| C5—C6 | 1.374 (2) | ||
| C4—O2—C8 | 117.27 (13) | C2—C7—H7 | 119.7 |
| C5—O3—C9 | 117.93 (14) | C6—C7—H7 | 119.7 |
| O1—C1—C2 | 126.0 (2) | O2—C8—H8A | 109.5 |
| O1—C1—H1 | 117.0 | O2—C8—H8B | 109.5 |
| C2—C1—H1 | 117.0 | H8A—C8—H8B | 109.5 |
| C7—C2—C3 | 119.20 (16) | O2—C8—H8C | 109.5 |
| C7—C2—C1 | 119.78 (17) | H8A—C8—H8C | 109.5 |
| C3—C2—C1 | 121.02 (17) | H8B—C8—H8C | 109.5 |
| C4—C3—C2 | 120.83 (16) | O3—C9—C10 | 108.51 (16) |
| C4—C3—H3 | 119.6 | O3—C9—H9A | 110.0 |
| C2—C3—H3 | 119.6 | C10—C9—H9A | 110.0 |
| O2—C4—C3 | 125.22 (15) | O3—C9—H9B | 110.0 |
| O2—C4—C5 | 115.38 (14) | C10—C9—H9B | 110.0 |
| C3—C4—C5 | 119.40 (15) | H9A—C9—H9B | 108.4 |
| O3—C5—C6 | 125.06 (16) | C9—C10—H10A | 109.5 |
| O3—C5—C4 | 115.17 (15) | C9—C10—H10B | 109.5 |
| C6—C5—C4 | 119.77 (16) | H10A—C10—H10B | 109.5 |
| C5—C6—C7 | 120.13 (17) | C9—C10—H10C | 109.5 |
| C5—C6—H6 | 119.9 | H10A—C10—H10C | 109.5 |
| C7—C6—H6 | 119.9 | H10B—C10—H10C | 109.5 |
| C2—C7—C6 | 120.65 (17) | ||
| O1—C1—C2—C7 | 177.57 (19) | O2—C4—C5—O3 | 0.8 (2) |
| O1—C1—C2—C3 | −2.7 (3) | C3—C4—C5—O3 | −178.53 (14) |
| C7—C2—C3—C4 | 0.2 (3) | O2—C4—C5—C6 | −178.87 (16) |
| C1—C2—C3—C4 | −179.46 (15) | C3—C4—C5—C6 | 1.7 (3) |
| C8—O2—C4—C3 | 0.3 (3) | O3—C5—C6—C7 | 179.56 (16) |
| C8—O2—C4—C5 | −179.05 (16) | C4—C5—C6—C7 | −0.8 (3) |
| C2—C3—C4—O2 | 179.20 (15) | C3—C2—C7—C6 | 0.8 (3) |
| C2—C3—C4—C5 | −1.5 (3) | C1—C2—C7—C6 | −179.51 (17) |
| C9—O3—C5—C6 | −6.9 (3) | C5—C6—C7—C2 | −0.5 (3) |
| C9—O3—C5—C4 | 173.41 (14) | C5—O3—C9—C10 | 177.85 (15) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C1—H1···O1i | 0.93 | 2.67 | 3.547 (3) | 157 |
| C10—H10B···O2ii | 0.96 | 2.62 | 3.525 (2) | 156 |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x+1, y−1/2, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2209).
References
- Agilent (2013). CrysAlis PRO Agilent Technologies, Yarnton, England.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Kubra, R., Murthy, P. & Mohan Rao, J. (2013). J. Food Sci. 78, M64–M69. [DOI] [PubMed]
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Matos Beja, A., Paixão, J. A., Ramos Silva, M., Alte da Veiga, L., Rocha Gonsalves, A. M. d’A., Pereira, M. M. & Serra, A. C. (1997). Acta Cryst. C53, 494–496.
- Mostahar, S., Katun, P. & Islam, A. (2007). J. Biol. Sci. 7, 514–519.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Panda, S. S. & Chowdary, P. V. R. (2008). Indian J. Pharm. Sci. 70, 208–215. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Tatsuzaki, J., Bastow, K. F., Nakagawa-Goto, K., Nakamura, S., Itokawa, H. & Lee, K.-H. (2006). J. Nat. Prod. 69, 1445–1449. [DOI] [PMC free article] [PubMed]
- Velavan, R., Sureshkumar, P., Sivakumar, K. & Natarajan, S. (1995). Acta Cryst. C51, 1131–1133.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681302761X/zq2209sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681302761X/zq2209Isup2.hkl
Supplementary material file. DOI: 10.1107/S160053681302761X/zq2209Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

