Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Nov 6;69(Pt 12):o1728. doi: 10.1107/S160053681302761X

4-Eth­oxy-3-meth­oxy­benzaldehyde

Zorica Leka a,*, Sladjana B Novaković b, Goran A Bogdanović b, Jovana Muškinja c, Rastko D Vukićević c
PMCID: PMC3885015  PMID: 24454190

Abstract

In the title compound, C10H12O3, all non-H atoms are approximately coplanar, with an r.m.s. deviation of 0.046 Å. In the crystal, very weak C—H⋯O inter­actions link the mol­ecules into sheets parallel to (101).

Related literature  

For the bioactivity of de­hydro­zingerone derivatives and their role in the synthesis of heterocycles, see: Tatsuzaki et al. (2006); Kubra et al. (2013); Panda & Chowdary (2008); Mostahar et al. (2007). For related crystal structures, see: Matos Beja et al. (1997); Velavan et al. (1995).graphic file with name e-69-o1728-scheme1.jpg

Experimental  

Crystal data  

  • C10H12O3

  • M r = 180.20

  • Monoclinic, Inline graphic

  • a = 11.5314 (16) Å

  • b = 8.7905 (11) Å

  • c = 9.3363 (13) Å

  • β = 97.339 (14)°

  • V = 938.6 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.78 mm−1

  • T = 293 K

  • 0.39 × 0.17 × 0.14 mm

Data collection  

  • Agilent Gemini S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) T min = 0.933, T max = 1.000

  • 6035 measured reflections

  • 1848 independent reflections

  • 1299 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.148

  • S = 1.04

  • 1848 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681302761X/zq2209sup1.cif

e-69-o1728-sup1.cif (18.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681302761X/zq2209Isup2.hkl

e-69-o1728-Isup2.hkl (89.1KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681302761X/zq2209Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.93 2.67 3.547 (3) 157
C10—H10B⋯O2ii 0.96 2.62 3.525 (2) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological development of the Republic of Serbia (projects No. 172014, 172035 and 172034).

supplementary crystallographic information

1. Comment

Dehydrozingerone derivatives belong to an important class of compounds, not only due to their different bioactivities (Tatsuzaki et al., 2006; Kubra et al., 2013), but also as the key substrates in synthesis of some heterocycles (Panda et al., 2008), particularly flavones (Mostahar et al., 2007). They can be synthesized by condensation of the corresponding aromatic aldehyde with acetone. Thus, starting substrate in synthesis of ethyl derivative of dehydrozingerone is 4-ethoxy-3-methoxybenzaldehyde (I), compound obtained by simple methylation of vanillin.

In the title structure, all non-hydrogen atoms are approximately coplanar with a mean deviation of 0.046 Å (Fig. 1). A somewhat higher displacement of 0.102 (2) Å has been observed for atom C9 belonging to ethoxy moiety. The dihedral angle between the best planes through the phenyl ring and the non-H atoms of ethoxy moiety is 8.1 (1)°. The aromatic C—C bond lengths are in the expected range of 1.368 (2)–1.411 (2) Å (Table 2). The five C—O bonds have various lengths. The shortest length is found for the carbonyl C1—O1 = 1.204 (2) bond in accordance with the prevaling double bond character.

The crystal structure exhibits no conventional hydrogen bonding. The molecules are held together by weak C–H···O and van der Waals interactions. The two C—H···O intermolecular contacts shorter than the sum of the van der Waals radii [C1—H1 = 0.93; H1···O1= 2.67 Å; C1—H1···O1i = 157.3° and C10—H10B = 0.96, H10B···O2 = 2.62 Å, C10—H10B···O2ii = 156.4° (symmetry codes: i = -x,+y - 1/2,-z + 3/2; ii = -x + 1,+y - 1/2,-z + 1/2)] connect the molecules into a sheet parallel to (101). These sheets further connect into three-dimensional structure by C—H···π interaction [C10—H10c = 0.96, H10c···Cg1 = 3.00 Å C10—H10c···Cg1iii = 147° [(symmetry code: iii = -x + 1,-y,-z + 1)] (Fig. 2). The approximate distance between the adjacent parallel sheets is 3.5 Å. For related crystal structures, see Matos Beja et al. (1997) and Velavan et al. (1995).

2. Experimental

Diethyl sulfate was dropped into a water solution of sodium hydroxide and vanillin. The reaction mixture was stirred overnight at 50°C and cooled at room temperature resulting firstly an oily product, which on standing gave crude crystal 4-ethoxy-3-methoxybenzaldehyde.

One gram of crude 4-ethoxy-3-methoxybenzaldehyde was stirred vigorously in 150 ml of boiling water, the hot mixture filtered of through a cotton pad. The obtained milky-white emulsion upon overnight cooling at room temperature gave crystal needles of 4-ethoxy-3-methoxybenzaldehyde.

3. Refinement

All H atoms were included in calculated positions and treated as riding with d(C—H) equal to: 0.96 Å (CH3), 0.97 Å (CH2) or 0.93 Å (aromatic CH) and Uiso(H) equal to: 1.5 Ueq(C) for CH3 or 1.2 Ueq(C) for CH2 and CH.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Three-dimensional layered structure of the title compound. All H atoms which are not involved in intermolecular interactions are omitted for clarity.

Crystal data

C10H12O3 F(000) = 384
Mr = 180.20 Dx = 1.275 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybc Cell parameters from 1676 reflections
a = 11.5314 (16) Å θ = 3.9–71.1°
b = 8.7905 (11) Å µ = 0.78 mm1
c = 9.3363 (13) Å T = 293 K
β = 97.339 (14)° Needle, white
V = 938.6 (2) Å3 0.39 × 0.17 × 0.14 mm
Z = 4

Data collection

Agilent Gemini S diffractometer 1848 independent reflections
Radiation source: Enhance (Cu) X-ray Source 1299 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
Detector resolution: 16.3280 pixels mm-1 θmax = 73.2°, θmin = 3.9°
ω scans h = −14→14
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −10→8
Tmin = 0.933, Tmax = 1.000 l = −11→9
6035 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0746P)2 + 0.0716P] where P = (Fo2 + 2Fc2)/3
1848 reflections (Δ/σ)max < 0.001
120 parameters Δρmax = 0.12 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Experimental. Absorption correction: empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (CrysAlis PRO; Agilent, 2013)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.01326 (13) −0.00997 (18) 0.78722 (16) 0.0954 (5)
O2 0.27667 (11) 0.22381 (13) 0.46226 (14) 0.0818 (4)
O3 0.37383 (11) −0.00811 (13) 0.35924 (13) 0.0780 (4)
C1 0.03443 (17) −0.1075 (2) 0.7257 (2) 0.0824 (5)
H1 0.0130 −0.2076 0.7411 0.099*
C2 0.12260 (15) −0.0833 (2) 0.62934 (18) 0.0683 (5)
C3 0.15663 (15) 0.0635 (2) 0.59500 (18) 0.0675 (5)
H3 0.1230 0.1470 0.6348 0.081*
C4 0.23881 (14) 0.08576 (18) 0.50352 (17) 0.0642 (4)
C5 0.29161 (15) −0.0414 (2) 0.44602 (18) 0.0665 (5)
C6 0.25783 (15) −0.1856 (2) 0.47925 (19) 0.0768 (5)
H6 0.2918 −0.2696 0.4406 0.092*
C7 0.17310 (17) −0.2063 (2) 0.5703 (2) 0.0793 (6)
H7 0.1502 −0.3043 0.5917 0.095*
C8 0.22711 (16) 0.3550 (2) 0.5194 (2) 0.0889 (6)
H8A 0.1438 0.3535 0.4938 0.133*
H8B 0.2588 0.4447 0.4804 0.133*
H8C 0.2453 0.3554 0.6227 0.133*
C9 0.43966 (16) −0.1315 (2) 0.3099 (2) 0.0812 (6)
H9A 0.3872 −0.2051 0.2583 0.097*
H9B 0.4838 −0.1823 0.3916 0.097*
C10 0.52047 (17) −0.0694 (3) 0.2129 (2) 0.0930 (7)
H10A 0.4761 −0.0211 0.1314 0.140*
H10B 0.5659 −0.1507 0.1799 0.140*
H10C 0.5717 0.0037 0.2645 0.140*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0975 (10) 0.0929 (10) 0.1040 (11) −0.0069 (8) 0.0448 (9) −0.0036 (8)
O2 0.0900 (8) 0.0605 (7) 0.1034 (9) 0.0055 (6) 0.0452 (7) 0.0059 (6)
O3 0.0846 (8) 0.0715 (8) 0.0838 (8) 0.0123 (6) 0.0332 (7) 0.0019 (6)
C1 0.0844 (12) 0.0782 (12) 0.0887 (13) −0.0103 (10) 0.0265 (10) 0.0006 (10)
C2 0.0694 (10) 0.0658 (11) 0.0714 (10) −0.0022 (8) 0.0152 (8) 0.0024 (8)
C3 0.0679 (10) 0.0652 (10) 0.0715 (10) 0.0047 (8) 0.0170 (8) −0.0022 (8)
C4 0.0661 (9) 0.0578 (10) 0.0706 (10) 0.0041 (7) 0.0162 (8) 0.0045 (7)
C5 0.0675 (9) 0.0694 (11) 0.0643 (9) 0.0050 (8) 0.0153 (8) 0.0017 (8)
C6 0.0872 (12) 0.0633 (11) 0.0834 (12) 0.0063 (9) 0.0239 (10) −0.0036 (9)
C7 0.0920 (13) 0.0600 (11) 0.0887 (12) −0.0049 (9) 0.0224 (10) 0.0028 (9)
C8 0.0965 (14) 0.0606 (11) 0.1171 (16) 0.0027 (9) 0.0431 (12) −0.0010 (10)
C9 0.0803 (12) 0.0827 (12) 0.0839 (12) 0.0139 (10) 0.0235 (10) −0.0118 (10)
C10 0.0837 (13) 0.1090 (17) 0.0911 (14) 0.0149 (11) 0.0294 (11) −0.0087 (12)

Geometric parameters (Å, º)

O1—C1 1.204 (2) C6—C7 1.387 (2)
O2—C4 1.3618 (18) C6—H6 0.9300
O2—C8 1.421 (2) C7—H7 0.9300
O3—C5 1.355 (2) C8—H8A 0.9600
O3—C9 1.433 (2) C8—H8B 0.9600
C1—C2 1.457 (2) C8—H8C 0.9600
C1—H1 0.9300 C9—C10 1.484 (3)
C2—C7 1.376 (2) C9—H9A 0.9700
C2—C3 1.398 (2) C9—H9B 0.9700
C3—C4 1.368 (2) C10—H10A 0.9600
C3—H3 0.9300 C10—H10B 0.9600
C4—C5 1.411 (2) C10—H10C 0.9600
C5—C6 1.374 (2)
C4—O2—C8 117.27 (13) C2—C7—H7 119.7
C5—O3—C9 117.93 (14) C6—C7—H7 119.7
O1—C1—C2 126.0 (2) O2—C8—H8A 109.5
O1—C1—H1 117.0 O2—C8—H8B 109.5
C2—C1—H1 117.0 H8A—C8—H8B 109.5
C7—C2—C3 119.20 (16) O2—C8—H8C 109.5
C7—C2—C1 119.78 (17) H8A—C8—H8C 109.5
C3—C2—C1 121.02 (17) H8B—C8—H8C 109.5
C4—C3—C2 120.83 (16) O3—C9—C10 108.51 (16)
C4—C3—H3 119.6 O3—C9—H9A 110.0
C2—C3—H3 119.6 C10—C9—H9A 110.0
O2—C4—C3 125.22 (15) O3—C9—H9B 110.0
O2—C4—C5 115.38 (14) C10—C9—H9B 110.0
C3—C4—C5 119.40 (15) H9A—C9—H9B 108.4
O3—C5—C6 125.06 (16) C9—C10—H10A 109.5
O3—C5—C4 115.17 (15) C9—C10—H10B 109.5
C6—C5—C4 119.77 (16) H10A—C10—H10B 109.5
C5—C6—C7 120.13 (17) C9—C10—H10C 109.5
C5—C6—H6 119.9 H10A—C10—H10C 109.5
C7—C6—H6 119.9 H10B—C10—H10C 109.5
C2—C7—C6 120.65 (17)
O1—C1—C2—C7 177.57 (19) O2—C4—C5—O3 0.8 (2)
O1—C1—C2—C3 −2.7 (3) C3—C4—C5—O3 −178.53 (14)
C7—C2—C3—C4 0.2 (3) O2—C4—C5—C6 −178.87 (16)
C1—C2—C3—C4 −179.46 (15) C3—C4—C5—C6 1.7 (3)
C8—O2—C4—C3 0.3 (3) O3—C5—C6—C7 179.56 (16)
C8—O2—C4—C5 −179.05 (16) C4—C5—C6—C7 −0.8 (3)
C2—C3—C4—O2 179.20 (15) C3—C2—C7—C6 0.8 (3)
C2—C3—C4—C5 −1.5 (3) C1—C2—C7—C6 −179.51 (17)
C9—O3—C5—C6 −6.9 (3) C5—C6—C7—C2 −0.5 (3)
C9—O3—C5—C4 173.41 (14) C5—O3—C9—C10 177.85 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···O1i 0.93 2.67 3.547 (3) 157
C10—H10B···O2ii 0.96 2.62 3.525 (2) 156

Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2209).

References

  1. Agilent (2013). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Kubra, R., Murthy, P. & Mohan Rao, J. (2013). J. Food Sci. 78, M64–M69. [DOI] [PubMed]
  4. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  5. Matos Beja, A., Paixão, J. A., Ramos Silva, M., Alte da Veiga, L., Rocha Gonsalves, A. M. d’A., Pereira, M. M. & Serra, A. C. (1997). Acta Cryst. C53, 494–496.
  6. Mostahar, S., Katun, P. & Islam, A. (2007). J. Biol. Sci. 7, 514–519.
  7. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  8. Panda, S. S. & Chowdary, P. V. R. (2008). Indian J. Pharm. Sci. 70, 208–215. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Tatsuzaki, J., Bastow, K. F., Nakagawa-Goto, K., Nakamura, S., Itokawa, H. & Lee, K.-H. (2006). J. Nat. Prod. 69, 1445–1449. [DOI] [PMC free article] [PubMed]
  12. Velavan, R., Sureshkumar, P., Sivakumar, K. & Natarajan, S. (1995). Acta Cryst. C51, 1131–1133.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681302761X/zq2209sup1.cif

e-69-o1728-sup1.cif (18.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681302761X/zq2209Isup2.hkl

e-69-o1728-Isup2.hkl (89.1KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681302761X/zq2209Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES