Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Nov 6;69(Pt 12):o1749. doi: 10.1107/S1600536813029851

2,2,2-Tri­fluoro-N-(2-iodo­phen­yl)acetamide

Yang Ruchun a,*, Zhang Hui a, Cao BanPeng a
PMCID: PMC3885029  PMID: 24454204

Abstract

The three F atoms in the title compound, C8H5F3INO, are disordered over two sets of sites [relative occupancies = 0.615 (14):0.385 (14)]. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains running along the c-axis direction. The dihedral angle between the ring and the amide group is 62.1 (3)°.

Related literature  

For effects of flourine on the properties of compounds, see: Jeschke (2004); Mueller et al. (2007); Purser et al. (2008). For the synthesis, see: Konfink et al. (2007).graphic file with name e-69-o1749-scheme1.jpg

Experimental  

Crystal data  

  • C8H5F3INO

  • M r = 315.02

  • Tetragonal, Inline graphic

  • a = 15.8871 (1) Å

  • c = 15.9300 (2) Å

  • V = 4020.7 (6) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 3.20 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.447, T max = 0.567

  • 6063 measured reflections

  • 1775 independent reflections

  • 1153 reflections with I > 2σ(I)

  • R int = 0.055

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.105

  • S = 1.06

  • 1775 reflections

  • 155 parameters

  • 450 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813029851/ff2122sup1.cif

e-69-o1749-sup1.cif (14.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813029851/ff2122Isup2.hkl

e-69-o1749-Isup2.hkl (87.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813029851/ff2122Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.08 2.917 (6) 163

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Science Fund of the Education Office of Jiangxi (GJJ12583) and the Bureau of Science and Technology of Nanchang City.

supplementary crystallographic information

1. Comment

Aromatic compounds play an important role in the pharmaceutical and agrochemical industries as important intermediates. The fluorine atom has a strong electron withdrawing character and small atomic radius. Introduction of one or more F atoms can change the physiological activity, pharmacological activity and metabolic stability properties of the compound (Jeschke, 2004; Mueller, et al., 2007; Purser, et al., 2008). In our study, we report an aromatic compounds containing fluorine, 2,2,2-trifluoro-N-(2-iodophenyl)acetamide, which could be used in the synthesis of many bioactive compounds.

There is a single molecule in the asymmetric unit of the title compound 2,2,2-trifluoro-N-(2-iodophenyl)acetamide, C8H5F3INO. In the crystal, The three F atoms are disordered over two sites [relative occupancies 0.615 (14):0.385 (14)]. The crystal packing is stabilized by N1—H1···O1 hydrogen bond that connect molecules into chains running along the c direction.

2. Experimental

The title compound was synthesized according to the previously reported procedure (Konfink, et al., 2007).

3. Refinement

H atoms bond to N were located in a difference map and refined with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N) other H atoms attached to C were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and with Uiso(H) = 1.2Ueq(aromatic) or Uiso(H) = 1.5Ueq(methyl).

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot of C8H5F3INO. Ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radius.

Crystal data

C8H5F3INO Dx = 2.075 Mg m3
Mr = 315.02 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/a Cell parameters from 1114 reflections
Hall symbol: -I 4ad θ = 3.1–21.8°
a = 15.8871 (1) Å µ = 3.20 mm1
c = 15.9300 (2) Å T = 293 K
V = 4020.7 (6) Å3 Block, colourless
Z = 16 0.30 × 0.20 × 0.20 mm
F(000) = 2368

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer 1775 independent reflections
Radiation source: fine-focus sealed tube 1153 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.055
ω scans θmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) h = −17→15
Tmin = 0.447, Tmax = 0.567 k = −18→12
6063 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0324P)2 + 3.0148P] where P = (Fo2 + 2Fc2)/3
1775 reflections (Δ/σ)max < 0.001
155 parameters Δρmax = 0.42 e Å3
450 restraints Δρmin = −0.54 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
I1 0.61704 (3) 0.35482 (3) 0.43754 (3) 0.0704 (2)
N1 0.7883 (3) 0.4465 (3) 0.5004 (3) 0.0465 (12)
H1 0.7771 0.4175 0.5446 0.056*
O1 0.8853 (3) 0.4661 (3) 0.3977 (2) 0.0627 (13)
F1 0.9082 (8) 0.3600 (9) 0.5849 (6) 0.095 (4) 0.615 (14)
F2 0.9342 (9) 0.3088 (7) 0.4454 (6) 0.098 (4) 0.615 (14)
F3 0.9903 (8) 0.4012 (8) 0.5219 (9) 0.109 (4) 0.615 (14)
F1' 0.8791 (11) 0.3219 (12) 0.5583 (13) 0.081 (5) 0.385 (14)
F2' 0.8837 (13) 0.2878 (9) 0.4878 (15) 0.099 (5) 0.385 (14)
F3' 0.9922 (12) 0.3650 (14) 0.4827 (12) 0.091 (5) 0.385 (14)
C1 0.6481 (4) 0.4831 (4) 0.4479 (3) 0.0468 (15)
C2 0.5885 (4) 0.5432 (4) 0.4246 (4) 0.0594 (18)
H2 0.5342 0.5272 0.4099 0.071*
C3 0.6121 (5) 0.6273 (4) 0.4237 (4) 0.0649 (19)
H3 0.5728 0.6682 0.4094 0.078*
C4 0.6921 (5) 0.6507 (5) 0.4434 (4) 0.0634 (18)
H4 0.7076 0.7071 0.4400 0.076*
C5 0.7503 (4) 0.5913 (4) 0.4685 (4) 0.0543 (16)
H5 0.8045 0.6079 0.4830 0.065*
C6 0.7280 (4) 0.5074 (4) 0.4720 (3) 0.0440 (14)
C7 0.8600 (4) 0.4334 (4) 0.4613 (3) 0.0431 (14)
C8 0.9161 (5) 0.3650 (5) 0.5022 (5) 0.0577 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0683 (4) 0.0521 (4) 0.0909 (4) −0.0005 (2) −0.0240 (3) 0.0036 (3)
N1 0.052 (3) 0.047 (3) 0.041 (2) 0.010 (2) −0.001 (2) 0.008 (2)
O1 0.055 (3) 0.086 (4) 0.047 (2) 0.011 (3) 0.007 (2) 0.018 (2)
F1 0.112 (8) 0.113 (8) 0.061 (5) 0.062 (6) −0.008 (5) 0.010 (5)
F2 0.129 (8) 0.082 (6) 0.083 (5) 0.057 (6) −0.001 (6) −0.014 (5)
F3 0.077 (6) 0.118 (8) 0.133 (8) 0.006 (6) −0.065 (6) 0.013 (6)
F1' 0.084 (9) 0.087 (10) 0.073 (9) 0.015 (7) 0.017 (7) 0.041 (8)
F2' 0.112 (10) 0.066 (8) 0.118 (10) 0.016 (7) −0.039 (9) 0.003 (8)
F3' 0.063 (8) 0.116 (11) 0.092 (9) 0.036 (8) 0.018 (8) 0.027 (8)
C1 0.055 (4) 0.040 (3) 0.045 (3) 0.008 (3) 0.002 (3) −0.001 (3)
C2 0.055 (4) 0.058 (4) 0.065 (4) 0.022 (3) −0.007 (3) −0.001 (3)
C3 0.080 (5) 0.046 (4) 0.069 (4) 0.026 (4) −0.007 (4) 0.005 (3)
C4 0.078 (5) 0.045 (4) 0.067 (4) 0.013 (4) 0.004 (4) −0.001 (3)
C5 0.066 (4) 0.048 (4) 0.049 (3) 0.003 (3) 0.004 (3) −0.001 (3)
C6 0.053 (4) 0.042 (3) 0.037 (3) 0.014 (3) 0.006 (3) 0.004 (3)
C7 0.047 (4) 0.045 (4) 0.037 (3) 0.000 (3) −0.005 (3) −0.005 (3)
C8 0.052 (4) 0.062 (5) 0.059 (4) 0.015 (4) −0.002 (4) −0.004 (4)

Geometric parameters (Å, º)

I1—C1 2.103 (6) C1—C6 1.382 (8)
N1—C7 1.316 (7) C1—C2 1.394 (8)
N1—C6 1.433 (7) C2—C3 1.389 (9)
N1—H1 0.8600 C2—H2 0.9300
O1—C7 1.208 (6) C3—C4 1.361 (9)
F1—C8 1.326 (12) C3—H3 0.9300
F2—C8 1.303 (11) C4—C5 1.380 (9)
F3—C8 1.349 (13) C4—H4 0.9300
F1'—C8 1.271 (16) C5—C6 1.381 (8)
F2'—C8 1.351 (16) C5—H5 0.9300
F3'—C8 1.248 (18) C7—C8 1.548 (9)
C7—N1—C6 122.5 (5) C5—C6—C1 119.6 (6)
C7—N1—H1 118.8 C5—C6—N1 119.6 (6)
C6—N1—H1 118.8 C1—C6—N1 120.8 (6)
C6—C1—C2 120.4 (6) O1—C7—N1 128.1 (6)
C6—C1—I1 120.5 (4) O1—C7—C8 117.6 (6)
C2—C1—I1 118.9 (5) N1—C7—C8 114.3 (6)
C3—C2—C1 118.6 (7) F3'—C8—F1' 128.5 (12)
C3—C2—H2 120.7 F2—C8—F1 132.0 (10)
C1—C2—H2 120.7 F2—C8—F3 105.1 (10)
C4—C3—C2 120.8 (7) F1—C8—F3 82.9 (11)
C4—C3—H3 119.6 F3'—C8—F2' 109.1 (13)
C2—C3—H3 119.6 F1'—C8—F2' 56.9 (16)
C3—C4—C5 120.4 (7) F3'—C8—C7 116.9 (10)
C3—C4—H4 119.8 F1'—C8—C7 114.1 (9)
C5—C4—H4 119.8 F2—C8—C7 108.4 (6)
C4—C5—C6 120.0 (7) F1—C8—C7 113.9 (7)
C4—C5—H5 120.0 F3—C8—C7 107.6 (8)
C6—C5—H5 120.0 F2'—C8—C7 110.3 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.08 2.917 (6) 163

Symmetry code: (i) y+1/4, −x+5/4, z+1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2122).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Jeschke, P. (2004). Chembiochem, 5, 570–589.
  3. Konfink, C. C., Blank, B., Pagano, B., Gotz, N. & Knochel, P. (2007). Chem. Commun. 19, 1954–1956. [DOI] [PubMed]
  4. Mueller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881–1886. [DOI] [PubMed]
  5. Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320–330. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813029851/ff2122sup1.cif

e-69-o1749-sup1.cif (14.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813029851/ff2122Isup2.hkl

e-69-o1749-Isup2.hkl (87.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813029851/ff2122Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES