Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Nov 6;69(Pt 12):o1750–o1751. doi: 10.1107/S1600536813029875

N-(4-Acetyl­phen­yl)-4-meth­oxy­benzene­sulfonamide

Thawanrat Kobkeatthawin a, Suchada Chantrapromma a,*,, C S Chidan Kumar b, Hoong-Kun Fun b,§
PMCID: PMC3885030  PMID: 24454205

Abstract

The title compound, C15H15NO4S, was obtained by the condensation of 4-amino­aceto­phenone and 4-meth­oxy­benzene­sulfonyl chloride. The dihedral angle between the benzene rings is 86.56 (9)° and the mol­ecule has an approximate V-shaped conformation. The C atom of the meth­oxy group is roughly coplanar with its attached ring [deviation = 0.177 (3) Å], as is the methyl C atom of the acetyl group with its ring [deviation = 0.065 (2) Å]. An intra­molecular C—H⋯O inter­action generates an S(6) ring. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into [010] chains. Weak C—H⋯π inter­actions are also observed.

Related literature  

For related structures, see: Li et al. (2006); Xu et al. (2005). For background to and applications of sulfonamides, see: Alsughayer et al. (2011); Dragostin et al. (2013);graphic file with name e-69-o1750-scheme1.jpg

Experimental  

Crystal data  

  • C15H15NO4S

  • M r = 305.35

  • Monoclinic, Inline graphic

  • a = 12.8220 (3) Å

  • b = 8.2709 (2) Å

  • c = 14.6165 (4) Å

  • β = 112.841 (1)°

  • V = 1428.52 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.48 × 0.44 × 0.33 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.894, T max = 0.924

  • 15571 measured reflections

  • 4120 independent reflections

  • 2593 reflections with I > 2σ(I)

  • R int = 0.043

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.135

  • S = 1.04

  • 4120 reflections

  • 196 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813029875/hb7153sup1.cif

e-69-o1750-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813029875/hb7153Isup2.hkl

e-69-o1750-Isup2.hkl (201.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813029875/hb7153Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3i 0.85 (2) 2.05 (2) 2.896 (2) 172.3 (19)
C8—H8A⋯O2 0.93 2.38 3.030 (2) 127
C9—H9A⋯O1ii 0.93 2.53 3.459 (2) 174
C14—H14ACg1i 0.96 2.83 3.630 (3) 141
C14—H14CCg2iii 0.96 2.83 3.529 (2) 130
C15—H15CCg1iv 0.96 2.99 3.804 (3) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Financial support from the Thailand Research Fund through the Royal Golden Jubilee PhD Program (grant No. PHD/0137/2554) is gratefully acknowledged. CSCK thanks the Universiti Sains Malaysia for a postdoctoral research fellowship. The authors extend their appreciation to Prince of Songkla University and the Universiti Sains Malaysia for the APEX DE2012 grant No. 1002/PFIZIK/910323.

supplementary crystallographic information

1. Comment

Sulfonamides containing an –SO2NH– group can be found in many pharmacologically active compounds: recent reports have described antibacterial (Alsughayer et al., 2011) and antioxidant (Dragostin et al., 2013) behaviour. As part of our ongoing research in this field, the title compound (I), a 4-methoxybenzene-sulfonamide derivative, was synthesized for being used as starting material for various syntheses. Herein the crystal structure of (I) is reported.

Figure 1 shows the molecular structure of (I), C15H15NO4S, suggesting a V-shaped conformation (Fig. 2). The benzene rings make the dihedral angle of 86.56 (9)°. The methoxy group is almost co-planar with its attached benzene ring with the deviation of 0.0310 (2) Å for the eight non H atoms (C1–C6/O4/C15) and the torsion angle C15–O4–C4–C5 = -2.2 (3)°. The amide group and acetyl substituent also lie in almost the same plane with the bound benzene ring with the deviation of 0.0220 (2) Å for the ten non H atoms (C7–C14/N1/O3) and the torsion angles of C11–C10–C13–O3 = -177.28 (18)° and C11–C10–C13–C14 = 2.6 (3)°. The dihedral angle between these two planes [C1–C6/O4/C15 and C7–C14/N1/O3] is 88.38 (7)° (Fig. 2). An intramolecular C8—H8A···O2 weak interaction generates an S(6) ring (Fig. 1) Bond distances of (I) are comparable with those in related structures (Li et al., 2006 and Xu et al., 2005).

In the crystal (Fig. 3), the molecules are linked by N—H···O hydrogen bonds and C—H···O weak interactions (Table 1) into chains along [010]. Weak C—H···π interactions are also observed (Table 1).

2. Experimental

The title compound was synthesized by condensation of 4-aminoacetophenone (0.40 g, 3 mmol) and 4-methoxybenzenesulfonyl chloride in CH2Cl2 (30 ml) in the presence of pyridine. The reaction mixture was refluxed for 24 hr at 40 °C and monitored with TLC for the completion of the reaction. Water was then added and the concoction was extracted with CH2Cl2. The solvent was evaporated under reduced pressure to yield the resulting solid of the title compound (yield 68%). Yellow blocks of (I) were recrystalized from acetone:CH3OH solution (1:1 v/v) by slow evaporation of the solvent at room temperature after several days, Mp. 448–449 K.

3. Refinement

Amide H atoms was located from the difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and 0.96 for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 40% probability displacement ellipsoids. The intramolecular C—H···O hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The V-shape conformation of the molecule.

Fig. 3.

Fig. 3.

The crystal packing of the title compound viewed along the c axis. Hydrogen bonds were shown as dashed lines.

Crystal data

C15H15NO4S F(000) = 640
Mr = 305.35 Dx = 1.420 Mg m3
Monoclinic, P21/c Melting point = 448–449 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 12.8220 (3) Å Cell parameters from 4120 reflections
b = 8.2709 (2) Å θ = 1.7–29.9°
c = 14.6165 (4) Å µ = 0.24 mm1
β = 112.841 (1)° T = 298 K
V = 1428.52 (6) Å3 Block, yellow
Z = 4 0.48 × 0.44 × 0.33 mm

Data collection

Bruker APEXII CCD diffractometer 4120 independent reflections
Radiation source: sealed tube 2593 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.043
φ and ω scans θmax = 29.9°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −17→17
Tmin = 0.894, Tmax = 0.924 k = −11→11
15571 measured reflections l = −20→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.0913P] where P = (Fo2 + 2Fc2)/3
4120 reflections (Δ/σ)max = 0.001
196 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.21179 (4) 1.00630 (5) 1.08283 (4) 0.04186 (15)
O1 0.21200 (12) 1.17413 (16) 1.10664 (11) 0.0546 (4)
O2 0.14687 (11) 0.89569 (17) 1.11408 (11) 0.0529 (4)
O3 0.48523 (14) 0.21499 (16) 1.11408 (12) 0.0624 (4)
O4 0.05688 (12) 0.98389 (16) 0.64850 (11) 0.0540 (4)
N1 0.34483 (13) 0.95337 (19) 1.13298 (12) 0.0408 (4)
C1 0.16988 (14) 0.9867 (2) 0.95362 (14) 0.0378 (4)
C2 0.22355 (15) 1.0787 (2) 0.90451 (14) 0.0418 (4)
H2A 0.2849 1.1439 0.9404 0.050*
C3 0.18492 (15) 1.0722 (2) 0.80272 (15) 0.0432 (4)
H3A 0.2209 1.1321 0.7697 0.052*
C4 0.09193 (16) 0.9760 (2) 0.74878 (14) 0.0415 (4)
C5 0.04067 (17) 0.8825 (2) 0.79829 (15) 0.0487 (5)
H5A −0.0201 0.8161 0.7627 0.058*
C6 0.07979 (16) 0.8882 (2) 0.90017 (15) 0.0466 (5)
H6A 0.0454 0.8254 0.9333 0.056*
C7 0.38891 (14) 0.7983 (2) 1.12776 (12) 0.0353 (4)
C8 0.32855 (16) 0.6554 (2) 1.12191 (14) 0.0422 (4)
H8A 0.2549 0.6591 1.1191 0.051*
C9 0.37892 (16) 0.5091 (2) 1.12029 (15) 0.0427 (4)
H9A 0.3381 0.4144 1.1157 0.051*
C10 0.48954 (16) 0.4993 (2) 1.12535 (13) 0.0381 (4)
C11 0.54871 (16) 0.6432 (2) 1.13233 (14) 0.0422 (4)
H11A 0.6230 0.6394 1.1368 0.051*
C12 0.49943 (15) 0.7902 (2) 1.13275 (14) 0.0413 (4)
H12A 0.5400 0.8849 1.1364 0.050*
C13 0.54079 (17) 0.3380 (2) 1.12393 (14) 0.0427 (4)
C14 0.66124 (18) 0.3279 (3) 1.13447 (15) 0.0542 (5)
H14A 0.6814 0.2168 1.1316 0.081*
H14B 0.7094 0.3736 1.1970 0.081*
H14C 0.6704 0.3870 1.0815 0.081*
C15 −0.0427 (2) 0.8943 (3) 0.59083 (17) 0.0666 (6)
H15A −0.0602 0.9117 0.5215 0.100*
H15B −0.1050 0.9300 0.6067 0.100*
H15C −0.0297 0.7812 0.6057 0.100*
H1N1 0.3889 (18) 1.031 (2) 1.1334 (15) 0.047 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0414 (2) 0.0396 (3) 0.0475 (3) 0.00720 (19) 0.0204 (2) −0.00056 (19)
O1 0.0597 (9) 0.0422 (8) 0.0628 (9) 0.0125 (6) 0.0248 (7) −0.0084 (6)
O2 0.0485 (8) 0.0588 (9) 0.0603 (9) 0.0041 (6) 0.0309 (7) 0.0070 (7)
O3 0.0769 (10) 0.0329 (7) 0.0842 (11) −0.0013 (7) 0.0386 (9) 0.0008 (7)
O4 0.0561 (9) 0.0552 (9) 0.0464 (9) −0.0140 (7) 0.0152 (7) −0.0038 (6)
N1 0.0411 (8) 0.0332 (8) 0.0468 (10) 0.0015 (7) 0.0156 (7) −0.0022 (7)
C1 0.0337 (8) 0.0337 (9) 0.0464 (10) 0.0046 (7) 0.0158 (8) 0.0028 (7)
C2 0.0365 (9) 0.0369 (10) 0.0508 (12) −0.0058 (7) 0.0156 (8) −0.0021 (8)
C3 0.0404 (10) 0.0378 (10) 0.0528 (12) −0.0039 (8) 0.0196 (9) 0.0016 (8)
C4 0.0412 (9) 0.0374 (10) 0.0438 (11) 0.0011 (8) 0.0143 (8) −0.0015 (8)
C5 0.0444 (10) 0.0437 (11) 0.0526 (12) −0.0126 (8) 0.0130 (9) −0.0018 (9)
C6 0.0435 (10) 0.0425 (10) 0.0552 (12) −0.0073 (8) 0.0209 (9) 0.0039 (9)
C7 0.0381 (8) 0.0344 (9) 0.0321 (9) 0.0022 (7) 0.0121 (7) −0.0007 (7)
C8 0.0385 (9) 0.0405 (10) 0.0496 (11) −0.0001 (8) 0.0193 (8) 0.0004 (8)
C9 0.0455 (10) 0.0337 (9) 0.0513 (11) −0.0035 (8) 0.0213 (9) 0.0010 (8)
C10 0.0440 (9) 0.0346 (9) 0.0356 (9) 0.0016 (7) 0.0153 (8) 0.0026 (7)
C11 0.0373 (9) 0.0411 (10) 0.0494 (11) 0.0022 (8) 0.0179 (8) 0.0020 (8)
C12 0.0391 (9) 0.0346 (9) 0.0506 (11) −0.0030 (7) 0.0180 (8) 0.0004 (8)
C13 0.0552 (11) 0.0377 (10) 0.0356 (10) 0.0069 (8) 0.0180 (9) 0.0038 (7)
C14 0.0590 (12) 0.0497 (12) 0.0530 (13) 0.0166 (10) 0.0208 (10) −0.0003 (9)
C15 0.0587 (14) 0.0790 (16) 0.0519 (14) −0.0175 (12) 0.0103 (11) −0.0074 (12)

Geometric parameters (Å, º)

S1—O2 1.4261 (14) C7—C12 1.392 (2)
S1—O1 1.4308 (13) C7—C8 1.397 (2)
S1—N1 1.6335 (16) C8—C9 1.376 (2)
S1—C1 1.7590 (19) C8—H8A 0.9300
O3—C13 1.218 (2) C9—C10 1.394 (3)
O4—C4 1.358 (2) C9—H9A 0.9300
O4—C15 1.433 (3) C10—C11 1.394 (2)
N1—C7 1.416 (2) C10—C13 1.491 (2)
N1—H1N1 0.85 (2) C11—C12 1.371 (2)
C1—C6 1.381 (3) C11—H11A 0.9300
C1—C2 1.397 (3) C12—H12A 0.9300
C2—C3 1.375 (3) C13—C14 1.494 (3)
C2—H2A 0.9300 C14—H14A 0.9600
C3—C4 1.395 (3) C14—H14B 0.9600
C3—H3A 0.9300 C14—H14C 0.9600
C4—C5 1.387 (3) C15—H15A 0.9600
C5—C6 1.375 (3) C15—H15B 0.9600
C5—H5A 0.9300 C15—H15C 0.9600
C6—H6A 0.9300
O2—S1—O1 119.39 (9) C9—C8—C7 119.50 (17)
O2—S1—N1 108.79 (8) C9—C8—H8A 120.3
O1—S1—N1 104.35 (9) C7—C8—H8A 120.3
O2—S1—C1 108.17 (9) C8—C9—C10 121.67 (17)
O1—S1—C1 108.75 (8) C8—C9—H9A 119.2
N1—S1—C1 106.72 (8) C10—C9—H9A 119.2
C4—O4—C15 117.12 (16) C11—C10—C9 117.90 (16)
C7—N1—S1 126.00 (13) C11—C10—C13 122.34 (17)
C7—N1—H1N1 113.8 (14) C9—C10—C13 119.76 (16)
S1—N1—H1N1 112.0 (14) C12—C11—C10 121.26 (17)
C6—C1—C2 120.09 (18) C12—C11—H11A 119.4
C6—C1—S1 120.10 (15) C10—C11—H11A 119.4
C2—C1—S1 119.69 (14) C11—C12—C7 120.25 (16)
C3—C2—C1 119.49 (17) C11—C12—H12A 119.9
C3—C2—H2A 120.3 C7—C12—H12A 119.9
C1—C2—H2A 120.3 O3—C13—C10 120.55 (18)
C2—C3—C4 120.26 (18) O3—C13—C14 119.98 (17)
C2—C3—H3A 119.9 C10—C13—C14 119.47 (17)
C4—C3—H3A 119.9 C13—C14—H14A 109.5
O4—C4—C5 124.41 (17) C13—C14—H14B 109.5
O4—C4—C3 115.76 (17) H14A—C14—H14B 109.5
C5—C4—C3 119.82 (18) C13—C14—H14C 109.5
C6—C5—C4 119.90 (18) H14A—C14—H14C 109.5
C6—C5—H5A 120.0 H14B—C14—H14C 109.5
C4—C5—H5A 120.0 O4—C15—H15A 109.5
C5—C6—C1 120.40 (18) O4—C15—H15B 109.5
C5—C6—H6A 119.8 H15A—C15—H15B 109.5
C1—C6—H6A 119.8 O4—C15—H15C 109.5
C12—C7—C8 119.41 (16) H15A—C15—H15C 109.5
C12—C7—N1 117.40 (16) H15B—C15—H15C 109.5
C8—C7—N1 123.14 (17)
O2—S1—N1—C7 53.22 (18) C2—C1—C6—C5 −1.4 (3)
O1—S1—N1—C7 −178.31 (15) S1—C1—C6—C5 174.65 (15)
C1—S1—N1—C7 −63.27 (17) S1—N1—C7—C12 151.37 (15)
O2—S1—C1—C6 5.98 (17) S1—N1—C7—C8 −31.2 (3)
O1—S1—C1—C6 −125.08 (15) C12—C7—C8—C9 −0.6 (3)
N1—S1—C1—C6 122.88 (15) N1—C7—C8—C9 −177.92 (17)
O2—S1—C1—C2 −177.94 (13) C7—C8—C9—C10 0.6 (3)
O1—S1—C1—C2 51.00 (16) C8—C9—C10—C11 0.1 (3)
N1—S1—C1—C2 −61.03 (15) C8—C9—C10—C13 179.65 (17)
C6—C1—C2—C3 1.0 (3) C9—C10—C11—C12 −1.0 (3)
S1—C1—C2—C3 −175.13 (14) C13—C10—C11—C12 179.50 (17)
C1—C2—C3—C4 0.8 (3) C10—C11—C12—C7 1.0 (3)
C15—O4—C4—C5 2.7 (3) C8—C7—C12—C11 −0.3 (3)
C15—O4—C4—C3 −176.22 (18) N1—C7—C12—C11 177.24 (17)
C2—C3—C4—O4 176.85 (16) C11—C10—C13—O3 −177.28 (18)
C2—C3—C4—C5 −2.2 (3) C9—C10—C13—O3 3.2 (3)
O4—C4—C5—C6 −177.21 (18) C11—C10—C13—C14 2.6 (3)
C3—C4—C5—C6 1.7 (3) C9—C10—C13—C14 −176.96 (18)
C4—C5—C6—C1 0.1 (3)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O3i 0.85 (2) 2.05 (2) 2.896 (2) 172.3 (19)
C8—H8A···O2 0.93 2.38 3.030 (2) 127
C9—H9A···O1ii 0.93 2.53 3.459 (2) 174
C14—H14A···Cg1i 0.96 2.83 3.630 (3) 141
C14—H14C···Cg2iii 0.96 2.83 3.529 (2) 130
C15—H15C···Cg1iv 0.96 2.99 3.804 (3) 144

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) −x+1, −y+1, −z+2; (iv) −x, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7153).

References

  1. Alsughayer, A., Elassar, A.-Z. A., Mustafa, S. & Sagheer, F. A. (2011). J. Biomater. Nanobiotechnol 2, 144–149.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dragostin, O. M., Lupascu, F., Vasile, C., Mares, M., Nastasa, V., Moraru, R. F., Pieptu, D. & Profire, L. (2013). Molecules, 18, 4140–4157. [DOI] [PMC free article] [PubMed]
  4. Li, X.-M., Zeng, C.-C., Xu, Y.-S., Yan, H., Zheng, D.-W. & Zhong, R. G. (2006). J. Chem. Crystallogr 36, 357–363.
  5. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  9. Xu, Y.-S., Zeng, C.-C., Li, X.-M. & Zhong, R.-G. (2005). Acta Cryst. E61, o3802–o3804.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813029875/hb7153sup1.cif

e-69-o1750-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813029875/hb7153Isup2.hkl

e-69-o1750-Isup2.hkl (201.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813029875/hb7153Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES